Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Physiol ; 602(12): 2823-2838, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38748778

RESUMO

Skeletal muscle dysfunction is a major problem in critically ill patients suffering from sepsis. This condition is associated with mitochondrial dysfunction and increased autophagy in skeletal muscles. Autophagy is a proteolytic mechanism involved in eliminating dysfunctional cellular components, including mitochondria. The latter process, referred to as mitophagy, is essential for maintaining mitochondrial quality and skeletal muscle health. Recently, a fluorescent reporter system called mito-QC (i.e. mitochondrial quality control) was developed to specifically quantify mitophagy levels. In the present study, we used mito-QC transgenic mice and confocal microscopy to morphologically monitor mitophagy levels during sepsis. To induce sepsis, Mito-QC mice received Escherichia coli lipopolysaccharide (10 mg kg-1 i.p.) or phosphate-buffered saline and skeletal muscles (hindlimb and diaphragm) were excised 48 h later. In control groups, there was a negative correlation between the basal mitophagy level and overall muscle mitochondrial content. Sepsis increased general autophagy in both limb muscles and diaphragm but had no effect on mitophagy levels. Sepsis was associated with a downregulation of certain mitophagy receptors (Fundc1, Bcl2L13, Fkbp8 and Phbb2). The present study suggests that general autophagy and mitophagy can be dissociated from one another, and that the characteristic accumulation of damaged mitochondria in skeletal muscles under the condition of sepsis may reflect a failure of adequate compensatory mitophagy. KEY POINTS: There was a negative correlation between the basal level of skeletal muscle mitophagy and the mitochondrial content of individual muscles. Mitophagy levels in limb muscles and the diaphragm were unaffected by lipopolysaccharide (LPS)-induced sepsis. With the exception of BNIP3 in sepsis, LPS administration induced either no change or a downregulation of mitophagy receptors in skeletal muscles.


Assuntos
Camundongos Transgênicos , Mitofagia , Músculo Esquelético , Sepse , Animais , Sepse/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Camundongos , Lipopolissacarídeos/farmacologia , Camundongos Endogâmicos C57BL , Masculino , Mitocôndrias Musculares/metabolismo , Autofagia/fisiologia
2.
Semin Cancer Biol ; 66: 12-21, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-31319163

RESUMO

Autophagy refers to an essential mechanism that evolved to sustain eukaryotic homeostasis and metabolism during instances of nutrient deprivation. During autophagy, intracellular cargo is encapsulated and delivered to the lysosome for elimination. Loss of basal autophagy in vivo negatively impacts cellular proteostasis, metabolism and tissue integrity. Accordingly, many drug development strategies are focused on modulating autophagic capacity in various pathophysiological states, from cancer to neurodegenerative disease. The role of autophagy in cancer is particularly complicated, as either augmenting or attenuating this process can have variable outcomes on cellular survival, proliferation and transformation. This complexity is compounded by the emergence of several selective autophagy pathways, which act to eliminate damaged or superfluous cellular components in a targeted fashion. The advent of sensitive tools to monitor autophagy pathways in vivo holds promise to clarify their importance in cancer pathophysiology. In this review, we provide an overview of autophagy in cancer biology and outline how the development of tools to study autophagy in vivo could enhance our understanding of its function for translational benefit.


Assuntos
Autofagia/fisiologia , Neoplasias/patologia , Animais , Homeostase/fisiologia , Humanos , Doenças Neurodegenerativas/patologia , Proteostase/fisiologia
3.
Int J Mol Sci ; 21(5)2020 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-32164182

RESUMO

Mitochondrial damage plays a prominent role in glaucoma. The only way cells can degrade whole mitochondria is via autophagy, in a process called mitophagy. Thus, studying mitophagy in the context of glaucoma is essential to understand the disease. Up to date limited tools are available for analyzing mitophagy in vivo. We have taken advantage of the mito-QC reporter, a recently generated mouse model that allows an accurate mitophagy assessment to fill this gap. We used primary RGCs and retinal explants derived from mito-QC mice to quantify mitophagy activation in vitro and ex vivo. We also analyzed mitophagy in retinal ganglion cells (RGCs), in vivo, using different mitophagy inducers, as well as after optic nerve crush (ONC) in mice, a commonly used surgical procedure to model glaucoma. Using mito-QC reporter we quantified mitophagy induced by several known inducers in primary RGCs in vitro, ex vivo and in vivo. We also found that RGCs were rescued from some glaucoma relevant stress factors by incubation with the iron chelator deferiprone (DFP). Thus, the mito-QC reporter-based model is a valuable tool for accurately analyzing mitophagy in the context of glaucoma.


Assuntos
Deferiprona/farmacologia , Genes Reporter , Glaucoma/metabolismo , Quelantes de Ferro/farmacologia , Mitocôndrias/metabolismo , Células Ganglionares da Retina/citologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Glaucoma/etiologia , Humanos , Camundongos , Mitofagia , Cultura Primária de Células , Ratos , Células Ganglionares da Retina/efeitos dos fármacos , Células Ganglionares da Retina/metabolismo
4.
Biol Chem ; 399(2): 147-178, 2018 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-28976892

RESUMO

In 2012, we briefly summarized the mechanisms, pathophysiological roles and methods for analyzing mitophagy. As then, the mitophagy field has continued to grow rapidly, and many new molecular mechanisms regulating mitophagy and molecular tools for monitoring mitophagy have been discovered and developed. Therefore, the purpose of this review is to update information regarding these advances in mitophagy while focusing on basic molecular mechanisms of mitophagy in different organisms and its pathophysiological roles. We also discuss the advantage and limitations of current methods to monitor and quantify mitophagy in cultured cells and in vivo mouse tissues.


Assuntos
Mitocôndrias/metabolismo , Mitofagia , Animais , Humanos , Mitocôndrias/patologia
5.
Methods Mol Biol ; 2845: 79-93, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39115659

RESUMO

Mitophagy is the degradation of mitochondria via the autophagy-lysosome system, disruption of which has been linked to multiple neurodegenerative diseases. As a flux process involving the identification, tagging, and degradation of subcellular components, the analysis of mitophagy benefits from the microscopy analysis of fluorescent reporters. Studying the pathogenic mechanisms of disease also benefits from analysis in animal models in order to capture the complex interplay of molecular and cell biological phenomena. Here, we describe protocols to analyze mitophagy reporters in Drosophila by light microscopy.


Assuntos
Mitocôndrias , Mitofagia , Animais , Mitocôndrias/metabolismo , Genes Reporter , Drosophila/metabolismo , Microscopia de Fluorescência/métodos , Drosophila melanogaster/metabolismo , Lisossomos/metabolismo , Autofagia/fisiologia , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética
6.
Nat Aging ; 2(6): 494-507, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-36213625

RESUMO

The effects of aging on the brain are widespread and can have dramatic implications on the overall health of an organism. Mitochondrial dysfunction is a hallmark of brain aging, but, the interplay between mitochondrial quality control, neuronal aging, and organismal health is not well understood. Here, we show that aging leads to a decline in mitochondrial autophagy (mitophagy) in the Drosophila brain with a concomitant increase in mitochondrial content. We find that induction of BCL2-interacting protein 3 (BNIP3), a mitochondrial outer membrane protein, in the adult nervous system induces mitophagy and prevents the accumulation of dysfunctional mitochondria in the aged brain. Importantly, neuronal induction of BNIP3-mediated mitophagy increases organismal longevity and healthspan. Furthermore, BNIP3-mediated mitophagy in the nervous system improves muscle and intestinal homeostasis in aged flies, indicating cell non-autonomous effects. Our findings identify BNIP3 as a therapeutic target to counteract brain aging and prolong overall organismal health with age.


Assuntos
Drosophila , Mitofagia , Animais , Mitofagia/fisiologia , Envelhecimento , Autofagia , Mitocôndrias/metabolismo
7.
Cell Metab ; 34(2): 197-208.e5, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35030325

RESUMO

Mitophagy is a quality control mechanism that eliminates damaged mitochondria, yet its significance in mammalian pathophysiology and aging has remained unclear. Here, we report that mitophagy contributes to mitochondrial dysfunction in skeletal muscle of aged mice and human patients. The early disease stage is characterized by muscle fibers with central nuclei, with enhanced mitophagy around these nuclei. However, progressive mitochondrial dysfunction halts mitophagy and disrupts lysosomal homeostasis. Interestingly, activated or halted mitophagy occur in a mosaic manner even in adjacent muscle fibers, indicating cell-autonomous regulation. Rapamycin restores mitochondrial turnover, indicating mTOR-dependence of mitochondrial recycling in advanced disease stage. Our evidence suggests that (1) mitophagy is a hallmark of age-related mitochondrial pathology in mammalian muscle, (2) mosaic halting of mitophagy is a mechanism explaining mosaic respiratory chain deficiency and accumulation of pathogenic mtDNA variants in adult-onset mitochondrial diseases and normal aging, and (3) augmenting mitophagy is a promising therapeutic approach for muscle mitochondrial dysfunction.


Assuntos
Doenças Mitocondriais , Mitofagia , Animais , Humanos , Mamíferos , Camundongos , Mitocôndrias , Doenças Mitocondriais/metabolismo , Fibras Musculares Esqueléticas , Músculo Esquelético/metabolismo
8.
Cells ; 11(13)2022 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-35805181

RESUMO

The best-known hallmarks of Parkinson's disease (PD) are the motor deficits that result from the degeneration of dopaminergic neurons in the substantia nigra. Dopaminergic neurons are thought to be particularly susceptible to mitochondrial dysfunction. As such, for their survival, they rely on the elaborate quality control mechanisms that have evolved in mammalian cells to monitor mitochondrial function and eliminate dysfunctional mitochondria. Mitophagy is a specialized type of autophagy that mediates the selective removal of damaged mitochondria from cells, with the net effect of dampening the toxicity arising from these dysfunctional organelles. Despite an increasing understanding of the molecular mechanisms that regulate the removal of damaged mitochondria, the detailed molecular link to PD pathophysiology is still not entirely clear. Herein, we review the fundamental molecular pathways involved in PINK1/Parkin-mediated and receptor-mediated mitophagy, the evidence for the dysfunction of these pathways in PD, and recently-developed state-of-the art assays for measuring mitophagy in vitro and in vivo.


Assuntos
Mitofagia , Doença de Parkinson , Animais , Autofagia/fisiologia , Mamíferos/metabolismo , Mitocôndrias/metabolismo , Mitofagia/fisiologia , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Proteínas Quinases/metabolismo
9.
Elife ; 102021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34340748

RESUMO

Parkinson's disease (PD) is a major and progressive neurodegenerative disorder, yet the biological mechanisms involved in its aetiology are poorly understood. Evidence links this disorder with mitochondrial dysfunction and/or impaired lysosomal degradation - key features of the autophagy of mitochondria, known as mitophagy. Here, we investigated the role of LRRK2, a protein kinase frequently mutated in PD, in this process in vivo. Using mitophagy and autophagy reporter mice, bearing either knockout of LRRK2 or expressing the pathogenic kinase-activating G2019S LRRK2 mutation, we found that basal mitophagy was specifically altered in clinically relevant cells and tissues. Our data show that basal mitophagy inversely correlates with LRRK2 kinase activity in vivo. In support of this, use of distinct LRRK2 kinase inhibitors in cells increased basal mitophagy, and a CNS penetrant LRRK2 kinase inhibitor, GSK3357679A, rescued the mitophagy defects observed in LRRK2 G2019S mice. This study provides the first in vivo evidence that pathogenic LRRK2 directly impairs basal mitophagy, a process with strong links to idiopathic Parkinson's disease, and demonstrates that pharmacological inhibition of LRRK2 is a rational mitophagy-rescue approach and potential PD therapy.


Assuntos
Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/antagonistas & inibidores , Mitofagia/genética , Doença de Parkinson/fisiopatologia , Animais , Feminino , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Mitofagia/efeitos dos fármacos , Mutação , Doença de Parkinson/genética
10.
Mech Ageing Dev ; 185: 111196, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31843465

RESUMO

Mitophagy is a natural phenomenon and entails the lysosomal degradation of mitochondria by the autophagy pathway. In recent years, the development of fluorescent pH-sensitive mitochondrial reporters has greatly facilitated the monitoring of mitophagy by distinguishing between cytosolic mitochondria or those delivered to acidic lysosomes. We recently published the mito-QC reporter, which consists of a mitochondrial outer membrane-localised tandem mCherry-GFP tag. This allows the quantification of mitophagy via the increase in red-only mCherry signal that arises when the GFP signal is quenched upon mitochondrial delivery to lysosomes. Here we develop a macro for FIJI, the mito-QC Counter, and describe its use to allow reliable and consistent semi-automated quantification of mitophagy. In this methods article we describe step-by-step how to detect and quantify mitophagy and show that mitophagy levels can be reliably calculated in different cell lines and under distinct stimuli. Finally, we show that the mito-QC Counter can be used to quantify mitophagy in tissues of mito-QC transgenic mice. We demonstrate that mitophagy levels in skeletal muscle correlates with glycolytic activity. Our present data show that the mito-QC Counter macro for FIJI enables the robust quantification of mitophagy both in vitro and in vivo.


Assuntos
Autofagia/fisiologia , Lisossomos , Microscopia de Fluorescência/métodos , Mitocôndrias , Mitofagia/fisiologia , Animais , Transporte Biológico/fisiologia , Linhagem Celular , Concentração de Íons de Hidrogênio , Proteínas Luminescentes , Lisossomos/metabolismo , Lisossomos/ultraestrutura , Camundongos , Camundongos Transgênicos , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Membranas Mitocondriais/metabolismo , Renovação Mitocondrial
11.
FEBS J ; 285(7): 1185-1202, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29151277

RESUMO

The autophagic turnover of mitochondria, termed mitophagy, is thought to play an essential role in not only maintaining the health of the mitochondrial network but also that of the cell and organism as a whole. We have come a long way in identifying the molecular components required for mitophagy through extensive in vitro work and cell line characterisation, yet the physiological significance and context of these pathways remain largely unexplored. This is highlighted by the recent development of new mouse models that have revealed a striking level of variation in mitophagy, even under normal conditions. Here, we focus on programmed mitophagy and summarise our current understanding of why, how and where this takes place in mammals.


Assuntos
Mamíferos , Mitofagia , Modelos Biológicos , Animais , Linhagem Celular , Humanos , Proteínas de Membrana/metabolismo , Proteínas Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo
12.
Exp Biol Med (Maywood) ; 242(8): 781-787, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28093935

RESUMO

Removal of damaged mitochondria through mitophagy is critical for maintaining cellular homeostasis and functions. Increasing evidence implicates mitophagy in red blood cell differentiation, neurodegeneration, macrophage-mediated inflammation, ischemia, adipogenesis, drug-induced tissue injury, and cancer. Considerable progress has been made toward understanding the biochemical mechanisms involved in mitophagy regulation. However, few reliable assays to monitor and quantify mitophagy have been developed, particularly in vivo. In this review, we summarize the recent development of three assays, MitoTimer, mt-Keima and mito-QC, for monitoring and quantifying mitophagy in cells and in animal tissues. We also discuss the advantages and limitations of these three assays when using them to monitor and quantify mitophagy. Impact statement Removal of damaged mitochondria through mitophagy is critical for maintaining cellular homeostasis and functions. However, reliable quantitative assays to monitor mitophagy, particularly in vivo, are just emerging. This review will summarize the current novel quantitative assays to monitor mitophagy in vivo.


Assuntos
Microscopia de Fluorescência/métodos , Mitocôndrias/ultraestrutura , Mitofagia , Citometria de Fluxo/métodos , Proteínas Mitocondriais/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA