Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 266
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(25): e2307261, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38225702

RESUMO

Conventional photodynamic therapy (PDT) of rheumatoid arthritis (RA) faces a dilemma: low-power is insufficient to kill pro-inflammatory cells while high-power exacerbates inflammation. Herein, mitochondrial targeting is introduced in PDT of RA to implement a "less-is-more" strategy, where higher apoptosis in pro-inflammatory cells are achieved with lower laser power. In arthritic rats, chlorine 6-loaded and mitochondria-targeting liposomes (Ce6@M-Lip) passively accumulated in inflamed joints, entered pro-inflammatory macrophages, and actively localized to mitochondria, leading to enhanced mitochondrial dysfunction under laser irradiation. By effectively disrupting mitochondria, pro-inflammatory macrophages are more susceptible to PDT, resulting in increased apoptosis initiation. Additionally, it identifies that high-power irradiation caused cell rupture and release of endogenous danger signals that recruited and activated additional macrophages. In contrast, under low-power irradiation, mitochondria-targeting Ce6@M-Lip not only prevented inflammation but also reduced pro-inflammatory macrophage infiltration and pro-inflammatory cytokine secretion. Overall, targeting mitochondria reconciled therapeutic efficacy and inflammation, thus enabling efficacious yet inflammation-sparing PDT for RA. This highlights the promise of mitochondrial targeting to resolve the dilemma between anti-inflammatory efficacy and inflammatory exacerbation in PDT by implementing a "less-is-more" strategy.


Assuntos
Artrite Reumatoide , Lipossomos , Mitocôndrias , Fotoquimioterapia , Animais , Fotoquimioterapia/métodos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/metabolismo , Lipossomos/química , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Ratos , Apoptose/efeitos dos fármacos , Inflamação/tratamento farmacológico , Inflamação/patologia
2.
Small ; 20(10): e2305923, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37919865

RESUMO

Emerging evidence has demonstrated the significant contribution of mitochondrial metabolism dysfunction to promote cancer development and progression. Aberrant expression of mitochondrial genome (mtDNA)-encoded proteins widely involves mitochondrial metabolism dysfunction, and targeted regulation of their expression can be an effective strategy for cancer therapy, which however is challenged due to the protection by the mitochondrial double membrane. Herein, a mitochondria-targeted RNAi nanoparticle (NP) platform for effective regulation of mitochondrial metabolism and breast cancer (BCa) therapy is developed. This nanoplatform is composed of a hydrophilic polyethylene glycol (PEG) shell, a hydrophobic poly(2-(diisopropylamino)ethyl methacrylate) (PDPA) core, and charged-mediated complexes of mitochondria-targeting and membrane-penetrating peptide amphiphile (MMPA) and small interfering RNA (siRNA) embedded in the core. After tumor accumulation and internalization by tumor cells, these NPs can respond to the endosomal pH to expose the MMPA/siRNA complexes, which can specifically transport siRNA into the mitochondria to down-regulate mtDNA-encoded protein expression (e.g., ATP6 and CYB). More importantly, because ATP6 down-regulation can suppress ATP production and enhance reactive oxygen species (ROS) generation to induce mitochondrial damage and mtDNA leakage into tumor tissues, the NPs can combinatorially inhibit tumor growth via suppressing ATP production and repolarizing tumor-associated macrophages (TAMs) into tumor-inhibiting M1-like macrophages by mtDNA.


Assuntos
Neoplasias da Mama , Nanopartículas , Propionatos , Compostos de Sulfidrila , Humanos , Feminino , Interferência de RNA , Neoplasias da Mama/patologia , RNA Interferente Pequeno/genética , Nanopartículas/química , Peptídeos/metabolismo , Mitocôndrias/metabolismo , DNA Mitocondrial , Trifosfato de Adenosina , Linhagem Celular Tumoral
3.
Chemistry ; 30(50): e202401277, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38847268

RESUMO

The clinical practice of photodynamic therapy of cancer (PDT) is mostly limited to superficial types of cancer. The major reason behind this limited applicability is the need for light in the photogeneration of ROS, and in particular singlet oxygen. In order to circumvent this major roadblock, we designed and synthesized naphthalene-derived endoperoxides with mitochondria targeting triphenylphosphonium moieties. Here, we show that these compounds release singlet oxygen by thermal cycloreversion, and initiate cell death with IC50<10 µM in cancer cell cultures. The mouse 4T1 breast tumor model study, where the endoperoxide compound was introduced intraperitoneally, also showed highly promising results, with negligible systemic toxicity. Targeted delivery of singlet oxygen to cancer cell mitochondria could be the breakthrough needed to transform Photodynamic Therapy into a broadly applicable methodology for cancer treatment by keeping the central tenet and discarding problematic dependencies on oxygen or external light.


Assuntos
Mitocôndrias , Fotoquimioterapia , Fármacos Fotossensibilizantes , Oxigênio Singlete , Oxigênio Singlete/metabolismo , Oxigênio Singlete/química , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Animais , Camundongos , Linhagem Celular Tumoral , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Humanos , Peróxidos/química , Feminino , Naftalenos/química , Naftalenos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo
4.
Cancer Control ; 31: 10732748241299072, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39487853

RESUMO

BACKGROUND: Abnormalities in mitochondrial structure or function are closely related to the development of malignant tumors. Mitochondrial metabolic reprogramming provides precursor substances and energy for the vital activities of tumor cells, so that cancer cells can rapidly adapt to the unfavorable environment of hypoxia and nutrient deficiency. Mitochondria can enable tumor cells to gain the ability to proliferate, escape immune responses, and develop drug resistance by altering constitutive junctions, oxidative phosphorylation, oxidative stress, and mitochondrial subcellular relocalization. This greatly reduces the rate of effective clinical control of tumors. PURPOSE: Explore the major role of mitochondria in cancer, as well as targeted mitochondrial therapies and mitochondria-associated markers. CONCLUSIONS: This review provides a comprehensive analysis of the various aspects of mitochondrial aberrations and addresses drugs that target mitochondrial therapy, providing a basis for clinical mitochondria-targeted anti-tumor therapy.


Assuntos
Mitocôndrias , Neoplasias , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Mitocôndrias/metabolismo , Estresse Oxidativo
5.
Bioorg Chem ; 147: 107325, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38583247

RESUMO

Dual suppression of oxidative phosphorylation (OXPHOS) and glycolysis can disrupt metabolic adaption of cancer cells, inhibiting energy supply and leading to successful cancer therapy. Herein, we have developed an α-tocopheryl succinate (α-TOS)-functionalized iridium(III) complex Ir2, a highly lipophilic mitochondria targeting anticancer molecule, could inhibit both oxidative phosphorylation (OXPHOS) and glycolysis, resulting in the energy blockage and cancer growth suppression. Mechanistic studies reveal that complex Ir2 induces reactive oxygen species (ROS) elevation and mitochondrial depolarization, and triggers DNA oxidative damage. These damages could evoke the cancer cell death with the mitochondrial-relevant apoptosis and autophagy. 3D tumor spheroids experiment demonstrates that Ir2 owned superior antiproliferation performance, as the potent anticancer agent in vivo. This study not only provided a new path for dual inhibition of both mitochondrial OXPHOS and glycolytic metabolisms with a novel α-TOS-functionalized metallodrug, but also further demonstrated that the mitochondrial-relevant therapy could be effective in enhancing the anticancer performance.


Assuntos
Antineoplásicos , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Glicólise , Fosforilação Oxidativa , Humanos , Fosforilação Oxidativa/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Proliferação de Células/efeitos dos fármacos , Estrutura Molecular , Animais , Irídio/química , Irídio/farmacologia , Relação Estrutura-Atividade , Espécies Reativas de Oxigênio/metabolismo , Relação Dose-Resposta a Droga , Apoptose/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Camundongos , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Camundongos Endogâmicos BALB C , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia
6.
Bioorg Chem ; 143: 107020, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38176374

RESUMO

Abnormally high levels of copper in tumors stimulate malignant proliferation and migration of cancer cells, which proposes a formidable challenge for the thorough therapy of malignant tumors. In this work, we developed a reliable, mitochondria-targeted near-infrared aggregation-induced emission fluorescent probe, TTQ-Th, whose thiourea moiety specifically could recognize mitochondria even both upon loss of mitochondrial membrane potential or in fixated cells, and can capture copper overexpressed by tumor cells, leading to severe copper deficiency. In parallel, TTQ-Th can generate sufficient reactive oxygen species (ROS) upon photoexcitation, while copper deficiency inhibits expression of related copper-based enzymes, resulting in a decline in ATP production. Such energy deficiency, combined with reduced MMP and elevated oxidative stress can lead to critical cell oncosis. Both in vitro and intracellular experiments can illustrate that the elevated ROS has remarkable damage to tumor cells and contributes to the elimination of the primary tumor, while copper deficiency further hinder tumor cell migration and induces G0/G1 cell cycle arrest in a dose-dependent manner, which is an efficacious strategy for the treatment of malignant tumors.


Assuntos
Neoplasias , Fotoquimioterapia , Humanos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Cobre/farmacologia , Cobre/metabolismo , Fotoquimioterapia/métodos , Espécies Reativas de Oxigênio/metabolismo , Mitocôndrias/metabolismo , Neoplasias/tratamento farmacológico
7.
Mikrochim Acta ; 191(4): 181, 2024 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-38446252

RESUMO

Silica nanoparticles (SiNPs) with a chemically modified surface typically have a complicated chemical composition, which can significantly differ from their intended design. In this study, we systematically studied the effects of two surface modification methods on active-targeting of intracellular organelles of SiNPs: (1) the widely used step-by-step approach, which involves modifying SiNPs in two steps, i.e., the outer surface of SiNPs was firstly modified with amino groups and then these amino groups were linked with targeting groups, and (2) a newly developed one-step approach in which the ligand-silane complex is initially synthesized, followed by chemically immobilizing the complex on the surface of SiNPs. In the one-step approach, the molar ratio of reactants was precisely tuned so that there are no reactive groups left on the outer surface of SiNPs. Two essential organelles, mitochondria and the nucleus, were selected to compare the targeting performances of SiNPs synthesized via these two approaches. By characterizing physicochemical properties, including structural properties, the number of amino groups, surface charge, polydispersity, and cell colocalization, we demonstrated that SiNPs synthesized via the one-step approach with no residual linkage groups on their surface showed significantly improved mitochondria- and nucleus-targeting performances. This precise control of surface properties allows for optimized biological behavior and active-targeting efficiency of SiNPs. We anticipate that such simple and efficient synthetic strategies will enable the synthesis of effective SiNPs for active-targeting organelles in various biological applications.


Assuntos
Mitocôndrias , Nanopartículas , Corantes , Silanos , Dióxido de Silício
8.
Int J Mol Sci ; 25(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39000148

RESUMO

The metabolism of glioma cells exhibits significant heterogeneity and is partially responsible for treatment outcomes. Given this variability, we hypothesized that the effectiveness of treatments targeting various metabolic pathways depends on the bioenergetic profiles and mitochondrial status of glioma cells. To this end, we analyzed mitochondrial biomass, mitochondrial protein density, oxidative phosphorylation (OXPHOS), and glycolysis in a panel of eight glioma cell lines. Our findings revealed considerable variability: mitochondrial biomass varied by up to 3.2-fold, the density of mitochondrial proteins by up to 2.1-fold, and OXPHOS levels by up to 7.3-fold across the cell lines. Subsequently, we stratified glioma cell lines based on their mitochondrial status, OXPHOS, and bioenergetic fitness. Following this stratification, we utilized 16 compounds targeting key bioenergetic, mitochondrial, and related pathways to analyze the associations between induced changes in cell numbers, proliferation, and apoptosis with respect to their steady-state mitochondrial and bioenergetic metrics. Remarkably, a significant fraction of the treatments showed strong correlations with mitochondrial biomass and the density of mitochondrial proteins, suggesting that mitochondrial status may reflect glioma cell sensitivity to specific treatments. Overall, our results indicate that mitochondrial status and bioenergetics are linked to the efficacy of treatments targeting metabolic pathways in glioma.


Assuntos
Biomassa , Metabolismo Energético , Glioma , Mitocôndrias , Proteínas Mitocondriais , Fosforilação Oxidativa , Glioma/metabolismo , Glioma/patologia , Humanos , Linhagem Celular Tumoral , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Proliferação de Células , Glicólise , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/tratamento farmacológico , Apoptose
9.
Int J Mol Sci ; 25(18)2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39337557

RESUMO

Cutaneous metastatic melanoma (CMM) is the most aggressive form of skin cancer with a poor prognosis. Drug-induced secondary tumorigenesis and the emergency of drug resistance worsen an already worrying scenario, thus rendering urgent the development of new treatments not dealing with mutable cellular processes. Triphenyl phosphonium salts (TPPSs), in addiction to acting as cytoplasmic membrane disruptors, are reported to be mitochondria-targeting compounds, exerting anticancer effects mainly by damaging their membranes and causing depolarization, impairing mitochondria functions and their DNA, triggering oxidative stress (OS), and priming primarily apoptotic cell death. TPP-based bola amphiphiles are capable of self-forming nanoparticles (NPs) with enhanced biological properties, as commonly observed for nanomaterials. Already employed in several other biomedical applications, the per se selective potent antibacterial effects of a TPP bola amphiphile have only recently been demonstrated on 50 multidrug resistant (MDR) clinical superbugs, as well as its exceptional and selective anticancer properties on sensitive and MDR neuroblastoma cells. Here, aiming at finding new molecules possibly developable as new treatments for counteracting CMM, the effects of this TPP-based bola amphiphile (BPPB) have been investigated against two BRAF mutants CMM cell lines (MeOV and MeTRAV) with excellent results (even IC50 = 49 nM on MeOV after 72 h treatment). With these findings and considering the low cytotoxicity of BPPB against different mammalian non-tumoral cell lines and red blood cells (RBCs, selectivity indexes up to 299 on MeOV after 72 h treatment), the possible future development of BPPB as topical treatment for CMM lesions was presumed. With this aim, a biodegradable hyaluronic acid (HA)-based hydrogel formulation (HA-BPPB-HG) was prepared without using any potentially toxic crosslinking agents simply by dispersing suitable amounts of the two ingredients in water and sonicating under gentle heating. HA-BPPB-HA was completely characterized, with promising outcomes such as high swelling capability, high porosity, and viscous elastic rheological behavior.


Assuntos
Proliferação de Células , Ácido Hialurônico , Hidrogéis , Melanoma , Proteínas Proto-Oncogênicas B-raf , Espécies Reativas de Oxigênio , Humanos , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Hidrogéis/química , Hidrogéis/farmacologia , Melanoma/tratamento farmacológico , Melanoma/patologia , Melanoma/metabolismo , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Mutação , Nanopartículas/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/patologia
10.
Immunol Cell Biol ; 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37565603

RESUMO

The PE_PGRS proteins have coevolved with the antigenic ESX-V secretory system and are abundant in pathogenic Mycobacterium. Only a few PE_PGRS proteins have been characterized, and research suggests their role in organelle targeting, cell death pathways, calcium (Ca2+ ) homeostasis and disease pathogenesis. The PE_PGRS45 (Rv2615c) protein was predicted to contain mitochondria targeting sequences by in silico evaluation. Therefore, we investigated the targeting of the Rv2615c protein to host mitochondria and its effect on mitochondrial functions. In vitro experiments showed the Rv2615c protein colocalized with the mitochondria and led to morphological mitochondrial perturbations. Recombinant Rv2615c was observed to cause increased levels of intracellular reactive oxygen species and the adenosine diphosphate-to-adenosine triphosphate ratio. The Rv2615c protein also induced mitochondrial membrane depolarization and the generation of mitochondrial superoxide. We observed the release of cytochrome C into the cytoplasm and increased expression of proapoptotic genes Bax and Bim with no significant change in anti-apoptotic Bcl2 in Rv2615c-stimulated THP1 macrophages. Ca2+ is a key signaling molecule in tuberculosis pathogenesis, modulating host cell responses. As reported for other PE_PGRS proteins, Rv2615c also has Ca2+ -binding motifs and thus can modulate calcium homeostasis in the host. We also observed a high level of Ca2+ influx in THP1 macrophages stimulated with Rv2615c. Based on these findings, we suggest that Rv2615c may be an effector protein that could contribute to disease pathogenesis by targeting host mitochondria.

11.
Small ; 19(45): e2302952, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37434337

RESUMO

Zinc has been proven to interweave with many critical cell death pathways, and not only exhibits potent anticancer activity solely, but sensitizes cancer cells to anticancer treatment, making zinc supplementation ideal for boosting odds against malignancy. Herein, a smart nanorobot (termed as Zinger) is developed, composed of iRGD-functionalized liposome encapsulating black phosphorus nanosheet (BPNs) doped zeolite imidazole framework-8 (BPN@ZIF-8), for advancing zinc-promoted photodynamic therapy (PDT). Zinger exhibits photo-triggered sequential mitochondria-targeting ability, and can induce zinc overload-mediated mitochondrial stress, which consequently sensitized tumor to PDT through synergistically modulating reactive oxygen species (ROS) production and p53 pathway. It is identified that Zinger selectively triggered intracellular zinc overload and photodynamic effect in cancer cells, which together enhanced PDT treatment outcomes. Importantly, Zinger shows high efficacy in overcoming various treatment barriers, allowing for effectively killing cancer cells in the complex circumstances. Particularly, Zinger exhibits good tumor accumulation, penetration, and even cell uptake, and can respond to light stimulation to eliminate tumors while avoiding normal tissues, thereby prolonging survival of tumor-bearing mice. Therefore, the study provides a novel insight in the development of novel zinc-associated therapy for advancing cancer treatment approaches.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Animais , Camundongos , Fototerapia , Neoplasias/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Homeostase , Mitocôndrias/metabolismo , Linhagem Celular Tumoral , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico
12.
Chembiochem ; 24(11): e202200774, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36917207

RESUMO

The targeting of bioactive molecules and probes to mitochondria can be achieved by coupling to the lipophilic triphenyl phosphonium (TPP) cation, which accumulates several hundred-fold within mitochondria in response to the mitochondrial membrane potential (Δψm ). Typically, a simple alkane links the TPP to its "cargo", increasing overall hydrophobicity. As it would be beneficial to enhance the water solubility of mitochondria-targeted compounds we explored the effects of replacing the alkyl linker with a polyethylene glycol (PEG). We found that the use of PEG led to compounds that were readily taken up by isolated mitochondria and by mitochondria inside cells. Within mitochondria the PEG linker greatly decreased adsorption of the TPP constructs to the matrix-facing face of the mitochondrial inner membrane. These findings will allow the distribution of mitochondria-targeted TPP compounds within mitochondria to be fine-tuned.


Assuntos
Mitocôndrias , Polietilenoglicóis , Interações Hidrofóbicas e Hidrofílicas , Compostos Organofosforados/farmacologia
13.
J Integr Plant Biol ; 65(6): 1505-1520, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36897023

RESUMO

Protein biogenesis is a complex process, and complexity is greatly increased in eukaryotic cells through specific targeting of proteins to different organelles. To direct targeting, organellar proteins carry an organelle-specific targeting signal for recognition by organelle-specific import machinery. However, the situation is confusing for transmembrane domain (TMD)-containing signal-anchored (SA) proteins of various organelles because TMDs function as an endoplasmic reticulum (ER) targeting signal. Although ER targeting of SA proteins is well understood, how they are targeted to mitochondria and chloroplasts remains elusive. Here, we investigated how the targeting specificity of SA proteins is determined for specific targeting to mitochondria and chloroplasts. Mitochondrial targeting requires multiple motifs around and within TMDs: a basic residue and an arginine-rich region flanking the N- and C-termini of TMDs, respectively, and an aromatic residue in the C-terminal side of the TMD that specify mitochondrial targeting in an additive manner. These motifs play a role in slowing down the elongation speed during translation, thereby ensuring mitochondrial targeting in a co-translational manner. By contrast, the absence of any of these motifs individually or together causes at varying degrees chloroplast targeting that occurs in a post-translational manner.


Assuntos
Mitocôndrias , Sinais Direcionadores de Proteínas , Sequência de Aminoácidos , Mitocôndrias/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Plantas/metabolismo , Cloroplastos/metabolismo , Transporte Proteico
14.
Chemistry ; 28(58): e202201494, 2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-35851725

RESUMO

S-Nitrosylation has been found to play an important role in regulating mitochondrial function. However, probes for detection of protein S-nitrosylation in mitochondria remain unexplored. Herein, a novel 4-(pyridin-4-yl)vinyl-substituted indole was designed, exhibiting a long-wavelength emission and a high fluorescent quantum yield. Functionalization of the 7-position of the indole ring with an arylphosphine ester resulted with probes with efficient mitochondria-targeting ability. Furthermore, the indole-arylphosphine displayed a significant fluorescence enhancement upon exposure to S-nitrosoglutathione (GSNO) at low micromolar concentrations in A431 cells. Taken together, this study provides a new indole-based fluorescent probe with a unique long-wavelength emission for direct detection of S-nitrosylation in mitochondria, which may represent a powerful tool for understanding the critical roles of S-nitrosylation within mitochondria of living organisms.


Assuntos
Corantes Fluorescentes , S-Nitrosoglutationa , Corantes Fluorescentes/metabolismo , S-Nitrosoglutationa/metabolismo , Proteína S/metabolismo , Mitocôndrias/metabolismo , Indóis/metabolismo , Ésteres/metabolismo
15.
Chemistry ; 28(3): e202103517, 2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-34791722

RESUMO

Membrane lytic peptides (MLP) are widely explored as cellular delivery vehicles or antitumor/antibacterial agents. However, the poor selectivity between cancer and normal cells slims their prospects as potential anti-tumor drugs. Herein, we have developed a rationally designed self-assembly strategy to enhance tumor selectivity of MLP-based conjugates, incorporating a hydrophobic triphenylphosphonium (TPP) group for mitochondria targeting, and a hydrophilic arginine-glycine-aspartic acid (RGD) sequence targeting integrins. The self-assembly nanoparticles can enhance the stability of the peptides in vitro plasma and be endocytosed selectively into the cancer cells. The histidine-rich lytic peptide component assists the disruption of endosomal/lysosomal membranes and subsequent the mitochondria membrane, which leads to apoptosis. This rational design of MLP-based conjugates provides a practical strategy to increase the application prospects of lytic peptides in cancer treatment.


Assuntos
Antineoplásicos , Nanopartículas , Neoplasias , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Humanos , Mitocôndrias , Neoplasias/tratamento farmacológico , Peptídeos/uso terapêutico
16.
Nanotechnology ; 33(34)2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35550566

RESUMO

Fe-based metal-organic frameworks (MOFs) are promising drug delivery materials due to their large surface area, high stability, and biocompatibility. However, their drug loading capacity is constrained by their small pore size, and a further improvement in their drug capacity is needed. In this work, we report an effective and green structural modification strategy to improve drug loading capacity for Fe-based MOFs. Our strategy is to grow MIL-100 (Fe) on carboxylate-terminated polystyrene (PS-COOH) via a sustainable route, which creates a large inner cavity as well as exposure to more functional groups that benefit drug loading capacity. We employ the scanning electron microscope and transmission electron microscope to confirm the hollow structure of MIL-100 (Fe). Up to 30% of drug loading capacity has been demonstrated in our study. We also conduct cell viability tests to investigate its therapeutic effects on breast cancer cells (MDA-MB-231). Confocal laser scanning microscopy imaging confirms cellular uptake and mitochondrial targeting function of doxorubicin-loaded H-M (DOX@H-M) nanoparticles. JC-1 staining of cancer cells reveals a significant change in the mitochondrial membrane potential, indicating the mitochondrial dysfunction and apoptosis of tumor cells. Our study paves the way for the facile synthesis of hollow structural MOFs and demonstrates the potential of applying Fe-based MOFs in breast cancer treatment.


Assuntos
Estruturas Metalorgânicas , Nanopartículas , Doxorrubicina/farmacologia , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Mitocôndrias
17.
Bioorg Chem ; 129: 106189, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36270168

RESUMO

In this paper, we present a new donor-π bridge-acceptor type fluorescent probe, MIB, which bears two organelle-targeted groups, namely positively charged benzothiazole group for mitochondria and morpholine moiety for lysosomes. In aqueous solution, the nucleophilic addition of HSO3- (as SO2 donor) to MIB blocked its long-range π-conjugation and ICT process and resulted in significant optical signal changes (blue-shifted UV absorbance and fluorescence), which enabled colorimetric and ratiometric fluorescent detection of HSO3- with high selectivity and sensitivity (detection limit of 63.15 nM). MIB offers obvious advantages of good water-solubility, fast response time (within 1 min), unique dual lysosome/mitochondria targeting capability and has been applied to the sensing of endogenous and exogenous SO2 in live cells through fluorescent imaging. In addition, the proposed probe has been utilized for the determination of bisulfite in real water, food and herbal medicine samples, showing good recovery (91.45 % - 109.3 %) and precision.


Assuntos
Corantes Fluorescentes , Análise de Alimentos , Plantas Medicinais , Dióxido de Enxofre , Água , Colorimetria/métodos , Corantes Fluorescentes/química , Lisossomos/química , Mitocôndrias/química , Água/química , Dióxido de Enxofre/análise , Plantas Medicinais/química , Células HeLa
18.
J Nanobiotechnology ; 20(1): 42, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35062959

RESUMO

Despite considerable progress has been achieved in hypoxia-associated anti-tumor therapy, the efficacy of utilizing hypoxia-activated prodrugs alone is not satisfied owing to the inadequate hypoxia within the tumor regions. In this work, a mitochondrial targeted nanoplatform integrating photodynamic therapy, photothermal therapy and hypoxia-activated chemotherapy has been developed to synergistically treat cancer and maximize the therapeutic window. Polydopamine coated hollow copper sulfide nanoparticles were used as the photothermal nanoagents and thermosensitive drug carriers for loading the hypoxia-activated prodrug, TH302, in our study. Chlorin e6 (Ce6) and triphenyl phosphonium (TPP) were conjugated onto the surface of the nanoplatform. Under the action of TPP, the obtained nanoplatform preferentially accumulated in mitochondria to restore the drug activity and avoid drug resistance. Using 660 nm laser to excite Ce6 can generate ROS and simultaneously exacerbate the cellular hypoxia. While under the irradiation of 808 nm laser, the nanoplatform produced local heat which can increase the release of TH302 in tumor cells, ablate cancer cells as well as intensify the tumor hypoxia levels. The aggravated tumor hypoxia then significantly boosted the anti-tumor efficiency of TH302. Both in vitro and in vivo studies demonstrated the greatly improved anti-cancer activity compared to conventional hypoxia-associated chemotherapy. This work highlights the potential of using a combination of hypoxia-activated prodrugs plus phototherapy for synergistic cancer treatment.


Assuntos
Hipóxia Celular/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Mitocôndrias/metabolismo , Nanopartículas/química , Fotoquimioterapia/métodos , Animais , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Nitroimidazóis/química , Nitroimidazóis/farmacocinética , Nitroimidazóis/farmacologia , Mostardas de Fosforamida/química , Mostardas de Fosforamida/farmacocinética , Mostardas de Fosforamida/farmacologia , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Distribuição Tecidual
19.
J Nanobiotechnology ; 20(1): 475, 2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36369039

RESUMO

Phototherapy is a conducive and non-invasive strategy for cancer therapy under light irradiation. Inspiringly, fluorescence imaging in the second near-infrared window (NIR-II, 1000-1700 nm) holds a great promise for imaging-guided phototherapy with deep penetration and high spatiotemporal resolution. However, most phototherapeutics still face great challenges, including complicated synthesis of agents, potential biotoxicity and unsatisfied therapeutic outcomes. Herein, a near-infrared laser triggered molecular photosensitizer FEPT, modified with triphenylphosphine PEGylation (PEG2000-TPP), is developed for NIR-II imaging-guided mitochondria-targeting synergistic photothermal therapy (PTT)/photodynamic therapy (PDT)/immune therapy (IMT). The mitochondria-targeting photosensitizer FEPT can produce reactive oxygen species (ROS) and hyperpyrexia upon 808 nm laser irradiation, resulting in mitochondrial dysfunction and photo-induced apoptosis via caspase-3 pathway. Phototherapy-induced hyperthermia or ROS triggers the release of immunogenic intracellular substrates from dying tumor cells, thereby promoting the activation of antitumor immunity. Herein, this work provides a practicable strategy to develop a molecular phototheranostic platform for imaging-guided cancer therapy via mitochondria-targeting.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Fármacos Fotossensibilizantes/química , Terapia Fototérmica , Espécies Reativas de Oxigênio/metabolismo , Fototerapia , Mitocôndrias/metabolismo , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Imagem Óptica , Linhagem Celular Tumoral , Nanopartículas/química
20.
Int J Mol Sci ; 23(19)2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36232638

RESUMO

Radiotherapy represents a highly targeted and efficient treatment choice in many cancer types, both with curative and palliative intents. Nevertheless, radioresistance, consisting in the adaptive response of the tumor to radiation-induced damage, represents a major clinical problem. A growing body of the literature suggests that mechanisms related to mitochondrial changes and metabolic remodeling might play a major role in radioresistance development. In this work, the main contributors to the acquired cellular radioresistance and their relation with mitochondrial changes in terms of reactive oxygen species, hypoxia, and epigenetic alterations have been discussed. We focused on recent findings pointing to a major role of mitochondria in response to radiotherapy, along with their implication in the mechanisms underlying radioresistance and radiosensitivity, and briefly summarized some of the recently proposed mitochondria-targeting strategies to overcome the radioresistant phenotype in cancer.


Assuntos
Neoplasias , Linhagem Celular Tumoral , Humanos , Hipóxia/metabolismo , Mitocôndrias/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/radioterapia , Tolerância a Radiação/genética , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA