Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Glob Chang Biol ; 24(8): 3331-3343, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29569301

RESUMO

Wetlands are the single largest natural source of atmospheric methane (CH4 ), a greenhouse gas, and occur extensively in the northern hemisphere. Large discrepancies remain between "bottom-up" and "top-down" estimates of northern CH4 emissions. To explore whether these discrepancies are due to poor representation of nongrowing season CH4 emissions, we synthesized nongrowing season and annual CH4 flux measurements from temperate, boreal, and tundra wetlands and uplands. Median nongrowing season wetland emissions ranged from 0.9 g/m2 in bogs to 5.2 g/m2 in marshes and were dependent on moisture, vegetation, and permafrost. Annual wetland emissions ranged from 0.9 g m-2  year-1 in tundra bogs to 78 g m-2  year-1 in temperate marshes. Uplands varied from CH4 sinks to CH4 sources with a median annual flux of 0.0 ± 0.2 g m-2  year-1 . The measured fraction of annual CH4 emissions during the nongrowing season (observed: 13% to 47%) was significantly larger than that was predicted by two process-based model ensembles, especially between 40° and 60°N (modeled: 4% to 17%). Constraining the model ensembles with the measured nongrowing fraction increased total nongrowing season and annual CH4 emissions. Using this constraint, the modeled nongrowing season wetland CH4 flux from >40° north was 6.1 ± 1.5 Tg/year, three times greater than the nongrowing season emissions of the unconstrained model ensemble. The annual wetland CH4 flux was 37 ± 7 Tg/year from the data-constrained model ensemble, 25% larger than the unconstrained ensemble. Considering nongrowing season processes is critical for accurately estimating CH4 emissions from high-latitude ecosystems, and necessary for constraining the role of wetland emissions in a warming climate.


Assuntos
Florestas , Pradaria , Gases de Efeito Estufa/análise , Metano/análise , Áreas Alagadas , Ásia , Europa (Continente) , Modelos Teóricos , América do Norte , Estações do Ano
2.
Glob Chang Biol ; 23(7): 2755-2767, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28084043

RESUMO

Ecosystem models show divergent responses of the terrestrial carbon cycle to global change over the next century. Individual model evaluation and multimodel comparisons with data have largely focused on individual processes at subannual to decadal scales. Thus far, data-based evaluations of emergent ecosystem responses to climate and CO2 at multidecadal and centennial timescales have been rare. We compared the sensitivity of net primary productivity (NPP) to temperature, precipitation, and CO2 in ten ecosystem models with the sensitivities found in tree-ring reconstructions of NPP and raw ring-width series at six temperate forest sites. These model-data comparisons were evaluated at three temporal extents to determine whether the rapid, directional changes in temperature and CO2 in the recent past skew our observed responses to multiple drivers of change. All models tested here were more sensitive to low growing season precipitation than tree-ring NPP and ring widths in the past 30 years, although some model precipitation responses were more consistent with tree rings when evaluated over a full century. Similarly, all models had negative or no response to warm-growing season temperatures, while tree-ring data showed consistently positive effects of temperature. Although precipitation responses were least consistent among models, differences among models to CO2 drive divergence and ensemble uncertainty in relative change in NPP over the past century. Changes in forest composition within models had no effect on climate or CO2 sensitivity. Fire in model simulations reduced model sensitivity to climate and CO2 , but only over the course of multiple centuries. Formal evaluation of emergent model behavior at multidecadal and multicentennial timescales is essential to reconciling model projections with observed ecosystem responses to past climate change. Future evaluation should focus on improved representation of disturbance and biomass change as well as the feedbacks with moisture balance and CO2 in individual models.


Assuntos
Dióxido de Carbono , Mudança Climática , Ecossistema , Florestas , Clima , América do Norte , Árvores
3.
Tree Physiol ; 2024 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-39418321

RESUMO

Understanding how canopy-scale photosynthesis responds to temperature is of paramount importance for realistic prediction of the likely impact of climate change on forest growth. The effects of temperature on leaf-scale photosynthesis have been extensively documented but data demonstrating the temperature response of canopy-scale photosynthesis are relatively rare, and the mechanisms that determine the response are not well quantified. Here, we compared leaf- and canopy-scale photosynthesis responses to temperature measured in a whole-tree chamber experiment and tested mechanisms that could explain the difference between leaf and crown scale temperature optima for photosynthesis. We hypothesised that 1) there is a large contribution of non-light saturated leaves to total crown photosynthesis; 2) photosynthetic component processes vary vertically through the canopy following the gradient in incident light; and 3) seasonal temperature acclimation of photosynthetic biochemistry has a significant role in determining the overall temperature response of canopy photosynthesis. We tested these hypotheses using three models of canopy radiation interception and photosynthesis parameterized with leaf-level physiological data and estimates of canopy leaf area. Our results identified the influence of non-light saturated leaves as a key determinant of the lower temperature optimum of canopy photosynthesis, which reduced the temperature optimum of canopy photosynthesis by 6-8 °C compared to the leaf scale. Further, we demonstrate the importance of accounting for within-canopy variation and seasonal temperature acclimation of photosynthetic biochemistry in determining the magnitude of canopy photosynthesis. Overall, our study identifies key processes that need to be incorporated in terrestrial biosphere models to accurately predict temperature responses of whole-tree photosynthesis.

4.
Ecology ; 100(12): e02874, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31463931

RESUMO

Resource competition theory predicts that when two species compete for a single, finite resource, the better competitor should exclude the other. However, in some cases, weaker competitors can persist through intraguild predation, that is, by eating their stronger competitor. Mixotrophs, species that meet their carbon demand by combining photosynthesis and phagotrophic heterotrophy, may function as intraguild predators when they consume the phototrophs with which they compete for light. Thus, theory predicts that mixotrophy may allow for coexistence of two species on a single limiting resource. We tested this prediction by developing a new mathematical model for a unicellular mixotroph and phytoplankter that compete for light, and comparing the model's predictions with a laboratory experimental system. We find that, like other intraguild predators, mixotrophs can persist when an ecosystem is sufficiently productive (i.e., the supply of the limiting resource, light, is relatively high), or when species interactions are strong (i.e., attack rates and conversion efficiencies are high). Both our mathematical and laboratory models show that, depending upon the environment and species traits, a variety of equilibrium outcomes, ranging from competitive exclusion to coexistence, are possible.


Assuntos
Ecossistema , Fitoplâncton , Animais , Modelos Biológicos , Comportamento Predatório , Especificidade da Espécie , Água
5.
Hum Ecol Interdiscip J ; 46(3): 363-379, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29997409

RESUMO

This article analyses high-quality hydroclimate proxy records and spatial reconstructions from the Central and Eastern Mediterranean and compares them with two Earth System Model simulations (CCSM4, MPI-ESM-P) for the Crusader period in the Levant (1095-1290 CE), the Mamluk regime in Transjordan (1260-1516 CE) and the Ottoman crisis and Celâlî Rebellion (1580-1610 CE). During the three time intervals, environmental and climatic stress tested the resilience of complex societies. We find that the multidecadal precipitation and drought variations in the Central and Eastern Mediterranean cannot be explained by external forcings (solar variations, tropical volcanism); rather they were driven by internal climate dynamics. Our research emphasises the challenges, opportunities and limitations of linking proxy records, palaeoreconstructions and model simulations to better understand how climate can affect human history.

6.
Mar Pollut Bull ; 132: 5-25, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29728262

RESUMO

A suite of five ocean models is used to simulate the movement of floating debris generated by the Great Japan Tsunami of 2011. This debris was subject to differential wind and wave-induced motion relative to the ambient current (often termed "windage") which is a function of the shape, size, and buoyancy of the individual debris items. Model solutions suggest that during the eastward drift across the North Pacific the debris became "stratified" by the wind so that objects with different windages took different paths: high windage items reached North America in large numbers the first year, medium windage items recirculated southwest toward Hawaii and Asia, and low windage items collected in the Subtropical Gyre, primarily in the so-called "garbage patch" area located northeast of Hawaii and known for high concentrations of microplastics. Numerous boats lost during the tsunami were later observed at sea and/or found on the west coast of North America: these observations are used to determine optimal windage values for scaling the model solutions. The initial number of boats set adrift during the tsunami is estimated at about 1000, while about 100 boats are projected to still float in year 2018 with an e-folding decay of 2 to 8 years.


Assuntos
Modelos Teóricos , Tsunamis , Poluição da Água , Monitoramento Ambiental , Resíduos de Alimentos , Havaí , Japão , Oceanos e Mares , Plásticos , Navios , Resíduos , Movimentos da Água , Vento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA