Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant J ; 113(5): 1004-1020, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36602010

RESUMO

Xylan is the most abundant non-cellulosic polysaccharide in grass cell walls, and it has important structural roles. The name glucuronoarabinoxylan (GAX) is used to describe this variable hemicellulose. It has a linear backbone of ß-1,4-xylose (Xyl) residues that may be substituted with α-1,2-linked (4-O-methyl)-glucuronic acid (GlcA), α-1,3-linked arabinofuranose (Araf), and sometimes acetylation at the O-2 and/or O-3 positions. The role of these substitutions remains unclear, although there is increasing evidence that they affect the way xylan interacts with other cell wall components, particularly cellulose and lignin. Here, we used substitution-dependent endo-xylanase enzymes to investigate the variability of xylan substitution in grass culm cell walls. We show that there are at least three different types of xylan: (i) an arabinoxylan with evenly distributed Araf substitutions without GlcA (AXe); (ii) a glucuronoarabinoxylan with clustered GlcA modifications (GAXc); and (iii) a highly substituted glucuronoarabinoxylan (hsGAX). Immunolocalization of AXe and GAXc in Brachypodium distachyon culms revealed that these xylan types are not restricted to a few cell types but are instead widely detected in Brachypodium cell walls. We hypothesize that there are functionally specialized xylan types within the grass cell wall. The even substitutions of AXe may permit folding and binding on the surface of cellulose fibrils, whereas the more complex substitutions of the other xylans may support a role in the matrix and interaction with other cell wall components.


Assuntos
Celulose , Xilanos , Xilanos/metabolismo , Celulose/metabolismo , Lignina/metabolismo , Ácido Glucurônico/metabolismo , Xilose/metabolismo , Parede Celular/metabolismo
2.
New Phytol ; 242(2): 524-543, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38413240

RESUMO

The Poaceae family of plants provides cereal crops that are critical for human and animal nutrition, and also, they are an important source of biomass. Interacting plant cell wall components give rise to recalcitrance to digestion; thus, understanding the wall molecular architecture is important to improve biomass properties. Xylan is the main hemicellulose in grass cell walls. Recently, we reported structural variation in grass xylans, suggesting functional specialisation and distinct interactions with cellulose and lignin. Here, we investigated the functions of these xylans by perturbing the biosynthesis of specific xylan types. We generated CRISPR/Cas9 knockout mutants in Brachypodium distachyon XAX1 and GUX2 genes involved in xylan substitution. Using carbohydrate gel electrophoresis, we identified biochemical changes in different xylan types. Saccharification, cryo-SEM, subcritical water extraction and ssNMR were used to study wall architecture. BdXAX1A and BdGUX2 enzymes modify different types of grass xylan. Brachypodium mutant walls are likely more porous, suggesting the xylan substitutions directed by both BdXAX1A and GUX2 enzymes influence xylan-xylan and/or xylan-lignin interactions. Since xylan substitutions influence wall architecture and digestibility, our findings open new avenues to improve cereals for food and to use grass biomass for feed and the production of bioenergy and biomaterials.


Assuntos
Brachypodium , Xilanos , Animais , Humanos , Xilanos/metabolismo , Lignina/metabolismo , Brachypodium/metabolismo , Parede Celular/metabolismo
3.
Cereb Cortex ; 33(14): 9095-9104, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37231204

RESUMO

Schizophrenia is a self-disorder characterized by disrupted brain dynamics and architectures of multiple molecules. This study aims to explore spatiotemporal dynamics and its association with psychiatric symptoms. Resting-state functional magnetic resonance imaging data were collected from 98 patients with schizophrenia. Brain dynamics included the temporal and spatial variations in functional connectivity density and association with symptom scores were evaluated. Moreover, the spatial association between dynamics and receptors/transporters according to prior molecular imaging in healthy subjects was examined. Patients demonstrated decreased temporal variation and increased spatial variation in perceptual and attentional systems. However, increased temporal variation and decreased spatial variation were revealed in higher order networks and subcortical networks in patients. Specifically, spatial variation in perceptual and attentional systems was associated with symptom severity. Moreover, case-control differences were associated with dopamine, serotonin and mu-opioid receptor densities, serotonin reuptake transporter density, dopamine transporter density, and dopamine synthesis capacity. Therefore, this study implicates the abnormal dynamic interactions between the perceptual system and cortical core networks; in addition, the subcortical regions play a role in the dynamic interaction among the cortical regions in schizophrenia. These convergent findings support the importance of brain dynamics and emphasize the contribution of primary information processing to the pathological mechanism underlying schizophrenia.


Assuntos
Esquizofrenia , Humanos , Dopamina , Serotonina , Imageamento por Ressonância Magnética/métodos , Encéfalo , Mapeamento Encefálico/métodos
4.
Mol Pharm ; 17(3): 965-978, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-31968941

RESUMO

Dual glucagon-like peptide-1/glucagon receptor agonists have emerged as promising candidates for the treatment of diabetes and obesity. Issues of degradation sensitivity and rapid renal clearance are addressed, for example, by the conjugation of peptides to fatty acid chains, promoting reversible albumin binding. We use combined dynamic and static light scattering to directly measure the self-assembly of a set of dual peptide agonists based on the exendin-4 structure with varying fatty acid chain lengths in terms of apparent molecular mass and hydrodynamic radius (RS). We use NMR spectroscopy to gain an insight into the molecular architecture of the assembly. We investigate conformational changes of the monomeric subunits resulting from peptide self-assembly and assembly stability as a function of the fatty acid chain length using circular dichroism and fluorescence spectroscopy. Our results demonstrate that self-assembly of the exendin-4-derived dual agonist peptides is essentially driven by hydrophobic interactions involving the conjugated acyl chains. The fatty acid chain length affects assembly equilibria and the assembly stability, although the peptide subunits in the assembly retain a dynamic secondary structure. The assembly architecture is characterized by juxtaposition of the fatty acyl side chains and a hydrophobic cluster of the peptide moiety. This cluster experiences local conformational changes in the assembly compared to the monomeric unit leading to a reduction in solvent exposure. The N-terminal half of the peptide and a C-terminal loop are not in contact with neighboring peptide subunits in the assemblies. Altogether, our study contributes to a thorough understanding of the association characteristics and the tendency toward self-assembly in response to lipidation. This is important not only to achieve the desired bioavailability but also with respect to the physical stability of peptide solutions.


Assuntos
Descoberta de Drogas/métodos , Exenatida/química , Exenatida/farmacologia , Ácidos Graxos Voláteis/química , Peptídeo 1 Semelhante ao Glucagon/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Receptores de Glucagon/agonistas , Acilação , Sequência de Aminoácidos , Animais , Dicroísmo Circular , Difusão Dinâmica da Luz , Interações Hidrofóbicas e Hidrofílicas , Lagartos/metabolismo , Espectroscopia de Ressonância Magnética , Peso Molecular , Estrutura Secundária de Proteína
5.
Small ; 15(20): e1900561, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30977296

RESUMO

Multivalent ligand-receptor interactions play essential roles in biological recognition and signaling. As the receptor arrangement on the cell surface can alter the outcome of cell signaling and also provide spatial specificity for ligand binding, controlling the presentation of ligands has become a promising strategy to manipulate or selectively target protein receptors. The lack of adjustable universal tools to control ligand positions at the size of a few nanometers has prompted the development of polyproline tri-helix macrocycles as scaffolds to present ligands in designated patterns. Model lectin Helix pomatia agglutinin has shown selectivity toward the matching GalNAc ligand pattern matching its binding sites arrangement. The GalNAc pattern selectivity is also observed on intact asialoglycoprotein receptor oligomer on human hepatoma cells showing the pattern-selective interaction can be achieved not only on isolated protein oligomers but also the receptors arranged on the cell surface. As the scaffold design allows convenient creation of versatile ligand patterns, it can be expected as a promising tool to probe the arrangement of receptors on the cell surface and as nanomedicine to manipulate signaling or cell recognition.


Assuntos
Lectinas/química , Lectinas/metabolismo , Compostos Macrocíclicos/química , Nanopartículas/química , Tamanho da Partícula , Peptídeos/química , Multimerização Proteica , Sequência de Aminoácidos , Receptor de Asialoglicoproteína/química , Linhagem Celular Tumoral , Ciclização , Galactosamina/química , Glicoconjugados/síntese química , Glicoconjugados/química , Humanos , Ligantes , Peptídeos/síntese química , Ligação Proteica , Espectroscopia de Prótons por Ressonância Magnética
6.
Int J Mol Sci ; 20(2)2019 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-30634573

RESUMO

Voltage-dependent potassium channels (Kv channels) are crucial regulators of cell excitability that participate in a range of physiological and pathophysiological processes. These channels are molecular machines that display a mechanism (known as gating) for opening and closing a gate located in a pore domain (PD). In Kv channels, this mechanism is triggered and controlled by changes in the magnitude of the transmembrane voltage sensed by a voltage-sensing domain (VSD). In this review, we consider several aspects of the VSD⁻PD coupling in Kv channels, and in some relatives, that share a common general structure characterized by a single square-shaped ion conduction pore in the center, surrounded by four VSDs located at the periphery. We compile some recent advances in the knowledge of their architecture, based in cryo-electron microscopy (cryo-EM) data for high-resolution determination of their structure, plus some new functional data obtained with channel variants in which the covalent continuity between the VSD and PD modules has been interrupted. These advances and new data bring about some reconsiderations about the use of exclusively a classical electromechanical lever model of VSD⁻PD coupling by some Kv channels, and open a view of the Kv-type channels as allosteric machines in which gating may be dynamically influenced by some long-range interactional/allosteric mechanisms.


Assuntos
Ativação do Canal Iônico , Canais de Potássio de Abertura Dependente da Tensão da Membrana/química , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Relação Quantitativa Estrutura-Atividade , Regulação Alostérica , Animais , Microscopia Crioeletrônica , Humanos , Modelos Moleculares , Conformação Proteica , Domínios Proteicos
7.
Beilstein J Org Chem ; 15: 2644-2654, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31807199

RESUMO

This work describes a novel fluorescent 2,1,3-benzothiadiazole derivative designed to act as a water-soluble and selective bioprobe for plasma membrane imaging. The new compound was efficiently synthesized in a two-step procedure with good yields. The photophysical properties were evaluated and the dye proved to have an excellent photostability in several solvents. DFT calculations were found in agreement with the experimental data and helped to understand the stabilizing intramolecular charge-transfer process from the first excited state. The new fluorescent derivative could be applied as selective bioprobe in several cell lines and displayed plasma-membrane affinity during the imaging experiments for all tested models.

8.
J Neurochem ; 144(4): 390-407, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29134655

RESUMO

It is essential to study the molecular architecture of post-synaptic density (PSD) to understand the molecular mechanism underlying the dynamic nature of PSD, one of the bases of synaptic plasticity. A well-known model for the architecture of PSD of type I excitatory synapses basically comprises of several scaffolding proteins (scaffold protein model). On the contrary, 'PSD lattice' observed through electron microscopy has been considered a basic backbone of type I PSDs. However, major constituents of the PSD lattice and the relationship between the PSD lattice and the scaffold protein model, remain unknown. We purified a PSD lattice fraction from the synaptic plasma membrane of rat forebrain. Protein components of the PSD lattice were examined through immuno-gold negative staining electron microscopy. The results indicated that tubulin, actin, α-internexin, and Ca2+ /calmodulin-dependent kinase II are major constituents of the PSD lattice, whereas scaffold proteins such as PSD-95, SAP102, GKAP, Shank1, and Homer, were rather minor components. A similar structure was also purified from the synaptic plasma membrane of forebrains from 7-day-old rats. On the basis of this study, we propose a 'PSD lattice-based dynamic nanocolumn' model for PSD molecular architecture, in which the scaffold protein model and the PSD lattice model are combined and an idea of dynamic nanocolumn PSD subdomain is also included. In the model, cytoskeletal proteins, in particular, tubulin, actin, and α-internexin, may play major roles in the construction of the PSD backbone and provide linker sites for various PSD scaffold protein complexes/subdomains.


Assuntos
Proteínas do Tecido Nervoso/metabolismo , Densidade Pós-Sináptica/metabolismo , Animais , Encéfalo/crescimento & desenvolvimento , Encéfalo/ultraestrutura , Feminino , Perfilação da Expressão Gênica , Imuno-Histoquímica , Microscopia Eletrônica , Plasticidade Neuronal , Densidade Pós-Sináptica/ultraestrutura , Gravidez , Ratos , Ratos Wistar , Membranas Sinápticas/metabolismo
9.
Biochem Soc Trans ; 44(1): 74-8, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26862191

RESUMO

The molecular architecture of plant secondary cell walls is still not resolved. There are several proposed structures for cellulose fibrils, the main component of plant cell walls and the conformation of other molecules is even less well known. Glucuronic acid (GlcA) substitution of xylan (GUX) enzymes, in CAZy family glycosyl transferase (GT)8, decorate the xylan backbone with various specific patterns of GlcA. It was recently discovered that dicot xylan has a domain with the side chain decorations distributed on every second unit of the backbone (xylose). If the xylan backbone folds in a similar way to glucan chains in cellulose (2-fold helix), this kind of arrangement may allow the undecorated side of the xylan chain to hydrogen bond with the hydrophilic surface of cellulose microfibrils. MD simulations suggest that such interactions are energetically stable. We discuss the possible role of this xylan decoration pattern in building of the plant cell wall.


Assuntos
Parede Celular/metabolismo , Plantas/metabolismo , Xilanos/metabolismo , Metabolismo dos Carboidratos , Celulose/química , Celulose/metabolismo , Filogenia
10.
Mar Drugs ; 14(5)2016 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-27187421

RESUMO

To elucidate the structure-antioxidant activity relationships of chitosan gallate (CG), a series of CG derivatives with different degrees of substitution (DS's) and molecular weights (MWs) were synthesized from chitosan (CS) and gallic acid (GA) via a free radical graft reaction. A higher MW led to a lower DS of CG. The structures of CG were characterized by FT-IR and ¹H NMR, and results showed that GA was mainly conjugated to the C-2 and C-6 positions of the CS chain. The antioxidant activity (the DPPH radical scavenging activity and reducing power) were enhanced with an increased DS and a decreased MW of CG. A correlation between antioxidant activities and the DS and MW of CG was also established. In addition, a suitable concentration (0~250 µg/mL) of CG with different MWs (32.78~489.32 kDa) and DS's (0~92.89 mg·GAE/g CG) has no cytotoxicity. These results should provide a guideline to the application of CG derivatives in food or pharmacology industries.


Assuntos
Antioxidantes/química , Quitosana/análogos & derivados , Quitosana/química , Ácido Gálico/química , Sequestradores de Radicais Livres/química , Radicais Livres/química , Radical Hidroxila/química , Peso Molecular , Oxirredução , Espectroscopia de Infravermelho com Transformada de Fourier/métodos
11.
Plant J ; 79(3): 492-506, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24889696

RESUMO

The interaction between xylan and cellulose microfibrils is important for secondary cell wall properties in vascular plants; however, the molecular arrangement of xylan in the cell wall and the nature of the molecular bonding between the polysaccharides are unknown. In dicots, the xylan backbone of ß-(1,4)-linked xylosyl residues is decorated by occasional glucuronic acid, and approximately one-half of the xylosyl residues are O-acetylated at C-2 or C-3. We recently proposed that the even, periodic spacing of GlcA residues in the major domain of dicot xylan might allow the xylan backbone to fold as a twofold helical screw to facilitate alignment along, and stable interaction with, cellulose fibrils; however, such an interaction might be adversely impacted by random acetylation of the xylan backbone. Here, we investigated the arrangement of acetyl residues in Arabidopsis xylan using mass spectrometry and NMR. Alternate xylosyl residues along the backbone are acetylated. Using molecular dynamics simulation, we found that a twofold helical screw conformation of xylan is stable in interactions with both hydrophilic and hydrophobic cellulose faces. Tight docking of xylan on the hydrophilic faces is feasible only for xylan decorated on alternate residues and folded as a twofold helical screw. The findings suggest an explanation for the importance of acetylation for xylan-cellulose interactions, and also have implications for our understanding of cell wall molecular architecture and properties, and biological degradation by pathogens and fungi. They will also impact strategies to improve lignocellulose processing for biorefining and bioenergy.


Assuntos
Arabidopsis/metabolismo , Parede Celular/metabolismo , Celulose/metabolismo , Xilanos/metabolismo , Acetilação
12.
Angew Chem Int Ed Engl ; 54(45): 13204-7, 2015 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-26311632

RESUMO

The creation of self-assembling microscale architectures that possess new and useful physical properties remains a significant challenge. Herein we report that an 11-helical foldamer self-assembles in a controlled manner to form a series of 3D foldectures with unusual three-fold symmetrical shapes that are distinct from those generated from 12-helical foldamers. The foldamer packing motif was revealed by powder X-ray diffraction technique, and provides an important link between the molecular-level symmetry and the microscale morphologies. The utility of foldectures with hollow interiors as robust and well-defined supramolecular hosts was demonstrated for inorganic, organic, and even protein guests. This work will pave the way for the design of functional foldectures with greater 3D shape diversity and for the development of biocompatible delivery vehicles and containment vessels.


Assuntos
Peptídeos/química , Difração de Pó , Dobramento de Proteína , Proteínas/química , Modelos Moleculares , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície
13.
Fish Shellfish Immunol ; 40(1): 61-8, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24973513

RESUMO

Caspase proteins are intracellular proteases which function as initiators and effectors of apoptosis. According their difference of functions, the caspases can be divided into apoptosis related caspases and inflammatory mediator, and the former included apoptosis activator and apoptosis executioner. In this study, three different subtype caspases (caspase1, caspase3 and caspase9) from Miichthys miiuy miiuy croaker were analyzed. The caspase1 belongs to the inflammatory mediator, caspase3 belongs to apoptosis executioner, and caspase9 belongs to apoptosis activator. Miichthys miiuy caspase1 (Mmcaspase1) and Mmcaspase9 exhibited three conserved domains including a CARD, a large subunit p20 and a small subunit p10. The Mmcaspase3 encoded two conserved domains including a large subunit p20 and a small subunit p10. Mmcaspase3 and Mmcaspase9 contained a histidine active sequence and a cysteine active sequence. However, Mmcaspase1 only contained the cysteine active sequence. The real-time PCR (RT-PCR) analysis showed these three caspases were expressed constitutively in all examined tissues in miiuy croaker, although the expression levels varied from tissue to tissue. Expression analysis showed that Mmcaspase1 was up-regulated obviously in liver, spleen and kidney, and indicated its positive role in response to Vibrio anguillarum infection, but Mmcaspase3 and Mmcaspase9 showed different expression pattern in liver, spleen and kidney, its showed that different subtypes of caspase having different immune response mechanisms. These results revealed that the organs adjusted the expressions of these three genes with the infected of pathogens, suggesting the immunoprotection of these genes.


Assuntos
Caspases/genética , Doenças dos Peixes/genética , Proteínas de Peixes/genética , Regulação da Expressão Gênica , Perciformes/genética , Perciformes/imunologia , Vibrioses/veterinária , Sequência de Aminoácidos , Animais , Sequência de Bases , Caspases/química , Caspases/metabolismo , Evolução Molecular , Doenças dos Peixes/microbiologia , Proteínas de Peixes/química , Proteínas de Peixes/metabolismo , Genoma , Dados de Sequência Molecular , Filogenia , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Alinhamento de Sequência/veterinária , Vibrio/fisiologia , Vibrioses/genética , Vibrioses/microbiologia
14.
Int J Biol Macromol ; 262(Pt 1): 129513, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38262828

RESUMO

ε-Poly-l-lysine (ε-PL) is a natural homo-poly(amino acid) which can be produced by microorganisms. With the advantages in broad-spectrum antimicrobial activity, biodegradability, and biocompatibility, ε-PL has been widely used as a preservative in the food industry. Different molecular architectures endow ε-PL and ε-PL-based materials with versatile applications. However, the microbial synthesis of ε-PL is currently limited by low efficiencies in genetic engineering and molecular architecture modification. This review presents recent advances in ε-PL production and molecular architecture modification of microbial ε-PL, with a focus on the current challenges and solutions for the improvement of the productivity and diversity of ε-PL. In addition, we highlight recent examples where ε-PL has been applied to expand the versability of edible films and nanoparticles in various applications. Commercial production and the challenges and future research directions in ε-PL biosynthesis are also discussed. Currently, although the main use of ε-PL is as a food preservative, ε-PL and ε-PL-based polymers have shown excellent application potential in biomedical fields. With the development of synthetic biology, the design and synthesis of ε-PL with a customized molecular architecture are possible in the near future. ε-PL-based polymers with specific functions will be a new trend in biopolymer manufacturing.


Assuntos
Polilisina , Streptomyces , Polilisina/química , Streptomyces/genética , Fermentação , Aminoácidos , Polímeros
15.
ACS Appl Bio Mater ; 7(2): 564-578, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-36847611

RESUMO

Short surfactant-like amphiphilic peptide, A3K, resembling a surfactant with a hydrophobic tail (A3) and a polar headgroup (K), is experimentally determined to form a membrane. Although the peptides are known to exist as ß-strands, the exact packing architecture stabilizing the membrane is unknown. Earlier simulation studies have reported successful packing configurations through trial and error. In this work, we present a systematic protocol to identify the best peptide configurations for different packing patterns. The influence of stacking peptides in square and hexagonal packing geometry with the neighboring peptides in parallel and antiparallel orientations was explored. The best peptide configurations were determined from the free energy of bringing 2-4 peptides together as a bundle that can be stacked into a membrane. The stability of the assembled bilayer membrane was further investigated through molecular dynamics simulation. The role of peptide tilting, interpeptide distance, the nature and the extent of interactions, and the conformational degrees of freedom on the stability of the membrane is discussed. The consistency with the experimental findings suggests hexagonal antiparallel as the most relevant molecular architecture.


Assuntos
Simulação de Dinâmica Molecular , Peptídeos , Peptídeos/química , Conformação Molecular , Tensoativos
16.
Adv Sci (Weinh) ; 11(19): e2307800, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38477549

RESUMO

The therapeutic outcomes of patients with eosinophilic chronic rhinosinusitis (ECRS) remain unsatisfactory, largely because the underlying mechanisms of eosinophilic inflammation are uncertain. Here, it is shown that the nasal secretions of ECRS patients have high eosinophil extracellular trap (EET) and cell-free DNA (cfDNA) levels. Moreover, the cfDNA induced EET formation by activating toll-like receptor 9 (TLR9) signaling. After demonstrating that DNase I reduced eosinophilic inflammation by modulating EET formation, linear polyglycerol-amine (LPGA)-coated TiS2 nanosheets (TLPGA) as functional 2D nanoplatforms with low cytotoxicity, mild protein adsorption, and increased degradation rate is developed. Due to the more flexible linear architecture, TLPGA exhibited higher cfDNA affinity than the TiS2 nanosheets coated with dendritic polyglycerol-amine (TDPGA). TLPGA reduced cfDNA levels in the nasal secretions of ECRS patients while suppressing cfDNA-induced TLR9 activation and EET formation in vitro. TLPGA displayed exceptional biocompatibility, preferential nasal localization, and potent inflammation modulation in mice with eosinophilic inflammation. These results highlight the pivotal feature of the linear molecular architecture and 2D sheet-like nanostructure in the development of anti-inflammation nanoplatforms, which can be exploited for ECRS treatment.


Assuntos
Eosinofilia , Armadilhas Extracelulares , Rinossinusite , Animais , Feminino , Humanos , Masculino , Camundongos , Doença Crônica , Modelos Animais de Doenças , Eosinofilia/metabolismo , Eosinófilos/metabolismo , Armadilhas Extracelulares/metabolismo , Nanoestruturas/química , Rinossinusite/imunologia
17.
Brain Res Bull ; 216: 111052, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39173776

RESUMO

BACKGROUND: Internet gaming disorder (IGD) is mainly characterized by its core dysfunction in higher-order brain cortices involved in inhibitory control, whose neurobiological basis remains unclear. Then, we will investigate local intrinsic neural activity (INA) alterations in IGD, ascertain whether these potential alterations are related to clinical characteristics, and further explore the underlying molecular architecture. METHOD: In this study, we performed the fractional amplitude of low-frequency fluctuation (fALFF) and regional homogeneity (ReHo) derived from resting-state functional magnetic resonance imaging (rs-fMRI) to explore the impact of IGD on local INA. Correlation analysis revealed the relationship between ReHo and fALFF in terms of group differences and clinical characteristics. Moreover, correlations between fALFF, ReHo, and PET- and SPECT-driven maps were investigated to elucidate the specific molecular architecture alternations in IGD. Finally, receiver operating characteristic curve (ROC) analysis was used to show the potential abilities of fALFF and ReHo in distinguishing individuals with IGD (IGDs) from healthy controls (HCs). RESULT: Compared with HCs, IGDs revealed increased ReHo and fALFF in the prefrontal cortex. Significantly decreased ReHo was observed in the temporal lobe, occipital lobe, and cerebellum. In addition, the ReHo values in the cerebellum_7b_R were positively correlated with internet addiction severity. ROC curve analysis showed that ReHo and fALFF-altered brain regions could effectively distinguish IGDs from HCs. More importantly, cross-modal correlations revealed local INA changes in brain regions associated with the monoamine neurotransmitter system and the less studied cholinergic/GABAergic system. CONCLUSION: These results suggest that local functional impairments are shown in the audiovisual and inhibitory control circuits in IGDs. This may be associated with underlying neurotransmitter system alterations. Therefore, this study provides the possibility of GABAergic receptor agonists and cholinergic receptor inhibitors for the treatment of IGD.


Assuntos
Encéfalo , Transtorno de Adição à Internet , Imageamento por Ressonância Magnética , Humanos , Masculino , Imageamento por Ressonância Magnética/métodos , Transtorno de Adição à Internet/metabolismo , Transtorno de Adição à Internet/fisiopatologia , Adulto Jovem , Adulto , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Feminino , Mapeamento Encefálico/métodos
18.
Polymers (Basel) ; 15(18)2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37765584

RESUMO

The incorporation of polycarboxylate ether superplasticizer (PCE)-type polymers and silica fume (SF) in high-performance concretes (HPC) leads to remarkable rheological and mechanical improvements. In the fresh state, PCEs are adsorbed on cement particles and dispersants, promoting the workability of the concrete. Silica fume enables very well-compacted concrete to be obtained, which is characterized by high mechanical parameters in its hardened state. Some PCEs are incompatible with silica fume, which can result in slump loss and poor rheological behavior. The main objective of this research is to study the influence of three types of PCEs, which all have different molecular architectures, on the rheological and mechanical behavior of high-performance concretes containing 10% SF as a partial replacement of cement. The results show that the carboxylic density of PCE has an influence on its compatibility with SF.

19.
Annu Rev Biophys ; 52: 573-595, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37159298

RESUMO

Recent advances in cryo-electron microscopy have marked only the beginning of the potential of this technique. To bring structure into cell biology, the modality of cryo-electron tomography has fast developed into a bona fide in situ structural biology technique where structures are determined in their native environment, the cell. Nearly every step of the cryo-focused ion beam-assisted electron tomography (cryo-FIB-ET) workflow has been improved upon in the past decade, since the first windows were carved into cells, unveiling macromolecular networks in near-native conditions. By bridging structural and cell biology, cryo-FIB-ET is advancing our understanding of structure-function relationships in their native environment and becoming a tool for discovering new biology.


Assuntos
Tomografia com Microscopia Eletrônica , Microscopia Crioeletrônica
20.
Methods Mol Biol ; 2563: 297-324, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36227480

RESUMO

The assembly of membraneless compartments by phase separation has recently been recognized as a mechanism for spatial and temporal organization of biomolecules within the cell. The functions of such mesoscale assemblies, termed biomolecular condensates, depend on networks of multivalent interactions between proteins, their structured and disordered domains, and commonly also include nucleic acids. Cryo-electron tomography is an ideal tool to investigate the three-dimensional architecture of such pleomorphic interaction networks at nanometer resolution and thus form inferences about function. However, preparation of suitable cryo-electron microscopy samples of condensates may be prone to protein denaturation, low retention of material on the sample carrier, and contamination associated with cryo-sample preparation and transfers. Here, we describe a series of protocols designed to obtain high-quality cryo-electron tomography data of biomolecular condensates reconstituted in vitro. These include critical screening by light microscopy, cryo-fixation by plunge freezing, sample loading into an electron microscope operated at liquid nitrogen temperature, data collection, processing of the data into three-dimensional tomograms, and their interpretation.


Assuntos
Tomografia com Microscopia Eletrônica , Ácidos Nucleicos , Condensados Biomoleculares , Microscopia Crioeletrônica/métodos , Tomografia com Microscopia Eletrônica/métodos , Nitrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA