Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Lab Invest ; 104(3): 100304, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38092179

RESUMO

Gene expression profiling from formalin-fixed paraffin-embedded (FFPE) renal allograft biopsies is a promising approach for feasibly providing a molecular diagnosis of rejection. However, large-scale studies evaluating the performance of models using NanoString platform data to define molecular archetypes of rejection are lacking. We tested a diverse retrospective cohort of over 1400 FFPE biopsy specimens, rescored according to Banff 2019 criteria and representing 10 of 11 United Network of Organ Sharing regions, using the Banff Human Organ Transplant panel from NanoString and developed a multiclass model from the gene expression data to assign relative probabilities of 4 molecular archetypes: No Rejection, Antibody-Mediated Rejection, T Cell-Mediated Rejection, and Mixed Rejection. Using Least Absolute Shrinkage and Selection Operator regularized regression with 10-fold cross-validation fitted to 1050 biopsies in the discovery cohort and technically validated on an additional 345 biopsies, our model achieved overall accuracy of 85% in the discovery cohort and 80% in the validation cohort, with ≥75% positive predictive value for each class, except for the Mixed Rejection class in the validation cohort (positive predictive value, 53%). This study represents the technical validation of the first model built from a large and diverse sample of diagnostic FFPE biopsy specimens to define and classify molecular archetypes of histologically defined diagnoses as derived from Banff Human Organ Transplant panel gene expression profiling data.


Assuntos
Nefropatias , Transplante de Rim , Transplante de Órgãos , Humanos , Transplante de Rim/efeitos adversos , Estudos de Coortes , Estudos Retrospectivos , Rejeição de Enxerto/diagnóstico , Rejeição de Enxerto/genética , Nefropatias/patologia , Expressão Gênica , Biópsia , Rim/patologia
2.
Int J Mol Sci ; 21(17)2020 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-32878024

RESUMO

The primary diagnosis of thyroid tumors based on histopathological patterns can be ambiguous in some cases, so proper classification of thyroid diseases might be improved if molecular biomarkers support cytological and histological assessment. In this work, tissue microarrays representative for major types of thyroid malignancies-papillary thyroid cancer (classical and follicular variant), follicular thyroid cancer, anaplastic thyroid cancer, and medullary thyroid cancer-and benign thyroid follicular adenoma and normal thyroid were analyzed by mass spectrometry imaging (MSI), and then different computation approaches were implemented to test the suitability of the registered profiles of tryptic peptides for tumor classification. Molecular similarity among all seven types of thyroid specimens was estimated, and multicomponent classifiers were built for sample classification using individual MSI spectra that corresponded to small clusters of cells. Moreover, MSI components showing the most significant differences in abundance between the compared types of tissues detected and their putative identity were established by annotation with fragments of proteins identified by liquid chromatography-tandem mass spectrometry in corresponding tissue lysates. In general, high accuracy of sample classification was associated with low inter-tissue similarity index and a high number of components with significant differences in abundance between the tissues. Particularly, high molecular similarity was noted between three types of tumors with follicular morphology (adenoma, follicular cancer, and follicular variant of papillary cancer), whose differentiation represented the major classification problem in our dataset. However, low level of the intra-tissue heterogeneity increased the accuracy of classification despite high inter-tissue similarity (which was exemplified by normal thyroid and benign adenoma). We compared classifiers based on all detected MSI components (n = 1536) and the subset of the most abundant components (n = 147). Despite relatively higher contribution of components with significantly different abundance and lower overall inter-tissue similarity in the latter case, the precision of classification was generally higher using all MSI components. Moreover, the classification model based on individual spectra (a single-pixel approach) outperformed the model based on mean spectra of tissue cores. Our result confirmed the high feasibility of MSI-based approaches to multi-class detection of cancer types and proved the good performance of sample classification based on individual spectra (molecular image pixels) that overcame problems related to small amounts of heterogeneous material, which limit the applicability of classical proteomics.


Assuntos
Biomarcadores Tumorais/metabolismo , Proteoma/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Glândula Tireoide/patologia , Neoplasias da Glândula Tireoide/classificação , Neoplasias da Glândula Tireoide/patologia , Análise Serial de Tecidos/métodos , Adenocarcinoma Folicular/metabolismo , Adenocarcinoma Folicular/patologia , Carcinoma Neuroendócrino/metabolismo , Carcinoma Neuroendócrino/patologia , Estudos de Casos e Controles , Humanos , Câncer Papilífero da Tireoide/metabolismo , Câncer Papilífero da Tireoide/patologia , Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/metabolismo
3.
Am J Transplant ; 14(5): 1164-72, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24725967

RESUMO

There are no minimally invasive diagnostic metrics for acute kidney transplant rejection (AR), especially in the setting of the common confounding diagnosis, acute dysfunction with no rejection (ADNR). Thus, though kidney transplant biopsies remain the gold standard, they are invasive, have substantial risks, sampling error issues and significant costs and are not suitable for serial monitoring. Global gene expression profiles of 148 peripheral blood samples from transplant patients with excellent function and normal histology (TX; n = 46), AR (n = 63) and ADNR (n = 39), from two independent cohorts were analyzed with DNA microarrays. We applied a new normalization tool, frozen robust multi-array analysis, particularly suitable for clinical diagnostics, multiple prediction tools to discover, refine and validate robust molecular classifiers and we tested a novel one-by-one analysis strategy to model the real clinical application of this test. Multiple three-way classifier tools identified 200 highest value probesets with sensitivity, specificity, positive predictive value, negative predictive value and area under the curve for the validation cohort ranging from 82% to 100%, 76% to 95%, 76% to 95%, 79% to 100%, 84% to 100% and 0.817 to 0.968, respectively. We conclude that peripheral blood gene expression profiling can be used as a minimally invasive tool to accurately reveal TX, AR and ADNR in the setting of acute kidney transplant dysfunction.


Assuntos
Biomarcadores/sangue , Perfilação da Expressão Gênica , Rejeição de Enxerto/sangue , Rejeição de Enxerto/classificação , Falência Renal Crônica/cirurgia , Transplante de Rim , Complicações Pós-Operatórias/genética , Adulto , Área Sob a Curva , Reações Falso-Negativas , Feminino , Seguimentos , Rejeição de Enxerto/etiologia , Humanos , Falência Renal Crônica/complicações , Masculino , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos , Complicações Pós-Operatórias/sangue , Valor Preditivo dos Testes , Prognóstico , Estudos Prospectivos , Sensibilidade e Especificidade
4.
Cancers (Basel) ; 14(14)2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35884496

RESUMO

Classification of lymphoid neoplasms is based mainly on histologic, immunologic, and (rarer) genetic features. It has been supplemented by gene expression profiling (GEP) in the last decade. Despite the considerable success, particularly in associating lymphoma subtypes with specific transcriptional programs and classifier signatures of up- or downregulated genes, competing molecular classifiers were often proposed in the literature by different groups for the same classification tasks to distinguish, e.g., BL versus DLBCL or different DLBCL subtypes. Moreover, rarer sub-entities such as MYC and BCL2 "double hit lymphomas" (DHL), IRF4-rearranged large cell lymphoma (IRF4-LCL), and Burkitt-like lymphomas with 11q aberration pattern (mnBLL-11q) attracted interest while their relatedness regarding the major classes is still unclear in many respects. We explored the transcriptional landscape of 873 lymphomas referring to a wide spectrum of subtypes by applying self-organizing maps (SOM) machine learning. The landscape reveals a continuum of transcriptional states activated in the different subtypes without clear-cut borderlines between them and preventing their unambiguous classification. These states show striking parallels with single cell gene expression of the active germinal center (GC), which is characterized by the cyclic progression of B-cells. The expression patterns along the GC trajectory are discriminative for distinguishing different lymphoma subtypes. We show that the rare subtypes take intermediate positions between BL, DLBCL, and FL as considered by the 5th edition of the WHO classification of haemato-lymphoid tumors in 2022. Classifier gene signatures extracted from these states as modules of coregulated genes are competitive with literature classifiers. They provide functional-defined classifiers with the option of consenting redundant classifiers from the literature. We discuss alternative classification schemes of different granularity and functional impact as possible avenues toward personalization and improved diagnostics of GC-derived lymphomas.

5.
Eur Urol Oncol ; 2(1): 1-11, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30929837

RESUMO

BACKGROUND: The prostate cancer (PCa) diagnostic pathway is undergoing a radical change with the introduction of multiparametric magnetic resonance imaging (mpMRI), genomic testing, and different prostate biopsy techniques. It has been proposed that these tests should be used in a sequential manner to optimise risk stratification. OBJECTIVE: To characterise the genomic, epigenomic, and transcriptomic features of mpMRI-visible and -nonvisible PCa in clinically localised disease. DESIGN, SETTING, AND PARTICIPANTS: Multicore analysis of fresh prostate tissue sampled immediately after radical prostatectomy was performed for intermediate- to high-risk PCa. INTERVENTION: Low-pass whole-genome, exome, methylation, and transcriptome profiling of patient tissue cores taken from microscopically benign and cancerous areas in the same prostate. Circulating free and germline DNA was assessed from the blood of five patients. OUTCOME MEASUREMENT AND STATISTICAL ANALYSIS: Correlations between preoperative mpMRI and genomic characteristics of tumour and benign prostate samples were assessed. Gene profiles for individual tumour cores were correlated with existing genomic classifiers currently used for prognostication. RESULTS AND LIMITATIONS: A total of 43 prostate cores (22 tumour and 21 benign) were profiled from six whole prostate glands. Of the 22 tumour cores, 16 were tumours visible and six were tumours nonvisible on mpMRI. Intratumour genomic, epigenomic, and transcriptomic heterogeneity was found within mpMRI-visible lesions. This could potentially lead to misclassification of patients using signatures based on copy number or RNA expression. Moreover, three of the six cores obtained from mpMRI-nonvisible tumours harboured one or more genetic alterations commonly observed in metastatic castration-resistant PCa. No circulating free DNA alterations were found. Limitations include the small cohort size and lack of follow-up. CONCLUSIONS: Our study supports the continued use of systematic prostate sampling in addition to mpMRI, as avoidance of systematic biopsies in patients with negative mpMRI may mean that clinically significant tumours harbouring genetic alterations commonly seen in metastatic PCa are missed. Furthermore, there is inconsistency in individual genomics when genomic classifiers are applied. PATIENT SUMMARY: Our study shows that tumour heterogeneity within prostate tumours visible on multiparametric magnetic resonance imaging (mpMRI) can lead to misclassification of patients if only one core is used for genomic analysis. In addition, some cancers that were missed by mpMRI had genomic aberrations that are commonly seen in advanced metastatic prostate cancer. Avoiding biopsies in mpMRI-negative cases may mean that such potentially lethal cancers are missed.


Assuntos
Genômica/métodos , Imageamento por Ressonância Magnética Multiparamétrica/métodos , Neoplasias da Próstata/diagnóstico por imagem , Idoso , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias da Próstata/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA