Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Nano Lett ; 24(13): 3945-3951, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38506837

RESUMO

We present a spectroscopic investigation of the vibrational and optoelectronic properties of WS2 domes in the 0-0.65 GPa range. The pressure evolution of the system morphology, deduced by the combined analysis of Raman and photoluminescence spectra, revealed a significant variation in the dome's aspect ratio. The modification of the dome shape caused major changes in the mechanical properties of the system resulting in a sizable increase of the out-of-plane compressive strain while keeping the in-plane tensile strain unchanged. The variation of the strain gradients drives a nonlinear behavior in both the exciton energy and radiative recombination intensity, interpreted as the consequence of a hybridization mechanism between the electronic states of two distinct minima in the conduction band. Our results indicate that pressure and strain can be efficiently combined in low dimensional systems with unconventional morphology to obtain modulations of the electronic band structure not achievable in planar crystals.

2.
Nano Lett ; 23(23): 10848-10855, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-37967849

RESUMO

In nanophotonics and quantum optics, we aim to control and manipulate light with tailored nanoscale structures. Hybrid systems of nanostructures and atomically thin materials are of interest here, as they offer rich physics and versatility due to the interaction between photons, plasmons, phonons, and excitons. In this study, we explore the optical and electronic properties of a hybrid system, a naturally n-doped monolayer WS2 covering a gold disk. We demonstrate that the nonresonant excitation of the gold disk in the high absorption regime efficiently generates hot carriers via localized surface plasmon excitation, which n-dope the monolayer WS2 and enhance the photoluminescence emission by regulating the multiexciton population and stabilizing the neutral exciton emission. The results are relevant to the further development of nanotransistors in photonic circuits and optoelectronic applications.

3.
Nano Lett ; 21(17): 7261-7269, 2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34432477

RESUMO

Monolayer transition metal dichalcogenides have intrinsic spin-valley degrees of freedom, drawing broad interests due to their potential applications in information storage and processing. Here, we demonstrate the possibility of using cylindrical vector pumped beams, which are nonseparable in their polarization and spatial modes, to manipulate nonlinear valley-locked twisted-vortex emissions in monolayer tungsten disulfide (WS2). The second-harmonic (SH) photons from K and K' valleys are encoded with opposite optical vortices, thus allowing the SH beams to emerge as cylindrical vector beams with doubled topological orders compared to the fundamental beams. The conically refracted pumped beams allow us to generate the first-order SH cylindrical vector and full Poincaré beams via tuning the valley-locked emitted light field profiles. With fanshaped WS2 films breaking the axial symmetry of SH beams, the SH valley photons are routed to opposite directions. Our results pave the way to develop atomically thin nonlinear photonic devices and valleytronic nanodevices.

4.
Nanotechnology ; 32(50)2021 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-34488214

RESUMO

Tungsten Disulfide (WS2) films, as one of the most attractive members in the family of transition metal dichalcogenides, were synthesized typically on SiO2/Si substrate by confine-spaced chemical vapor deposition method. The whole process could be controlled efficiently by precursor concentration and fast thermal process. To be priority, the effect of fast heating-up to cooling-down process and source ratio-dependent rule for WS2structure have been systematically studied, leading to high-yield and fine structure of monolayer WS2films with standard triangular morphology and average edge length of 92.4µm. The growth time of the samples was regulated within 3 min, and the optimal source ratio of sulfur to tungsten oxide is about 200:3. The whole experimental duration was about 50 min, which is only about quarter in comparison to relevant reports. We assume one type of 'multi-nucleation dynamic process' to provide a potential way for fast synthesis of the samples. Finally, the good performance of as-fabricated field-effect transistor on WS2film was achieved, which exhibits high electron mobility of 4.62 cm2V-1s-1, fast response rate of 42 ms, and remarkable photoresponsivity of 3.7 × 10-3A W-1. Our work will provide a promising robust way for rapid synthesis of high-quality monolayer TMDs films and pave the way for the potential applications of TMDCs.

5.
Nano Lett ; 19(1): 189-196, 2019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-30500202

RESUMO

Polaritons are compositional light-matter quasiparticles that arise as a result of strong coupling between the vacuum field of a resonant optical cavity and electronic excitations in quantum emitters. Reaching such a regime is often hard, as it requires materials possessing high oscillator strengths to interact with the relevant optical mode. Two-dimensional transition metal dichalcogenides (TMDCs) have recently emerged as promising candidates for realization of strong coupling regime at room temperature. However, these materials typically provide coupling strengths in the range of 10-40 meV, which may be insufficient for reaching strong coupling with low quality factor resonators. Here, we demonstrate a universal scheme that allows a straightforward realization of strong coupling with 2D materials and beyond. By intermixing plasmonic excitations in nanoparticle arrays with excitons in a WS2 monolayer inside a resonant metallic microcavity, we fabricate a hierarchical system with the collective microcavity-plasmon-exciton Rabi splitting exceeding ∼500 meV at room temperature. Photoluminescence measurements of the coupled systems show dominant emission from the lower polariton branch, indicating the participation of excitons in the coupling process. Strong coupling has been recently suggested to affect numerous optical- and material-related properties including chemical reactivity, exciton transport, and optical nonlinearities. With the universal scheme presented here, strong coupling across a wide spectral range is within easy reach and therefore exploration of these exciting phenomena can be further pursued in a much broader class of materials.

6.
Nano Lett ; 18(3): 1777-1785, 2018 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-29369640

RESUMO

Formation of dressed light-matter states in optical structures, manifested as Rabi splitting of the eigen energies of a coupled system, is one of the key effects in quantum optics. In pursuing this regime with semiconductors, light is usually made to interact with excitons, electrically neutral quasiparticles of semiconductors; meanwhile interactions with charged three-particle states, trions, have received little attention. Here, we report on strong interaction between localized surface plasmons in silver nanoprisms and excitons and trions in monolayer tungsten disulfide (WS2). We show that the plasmon-exciton interactions in this system can be efficiently tuned by controlling the charged versus neutral exciton contribution to the coupling process. In particular, we show that a stable trion state emerges and couples efficiently to the plasmon resonance at low temperature by forming three bright intermixed plasmon-exciton-trion polariton states. Our findings open up a possibility to exploit electrically charged polaritons at the single nanoparticle level.

7.
Nano Lett ; 17(7): 4210-4216, 2017 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-28621953

RESUMO

We report a rare atom-like interaction between excitons in monolayer WS2, measured using ultrafast absorption spectroscopy. At increasing excitation density, the exciton resonance energy exhibits a pronounced redshift followed by an anomalous blueshift. Using both material-realistic computation and phenomenological modeling, we attribute this observation to plasma effects and an attraction-repulsion crossover of the exciton-exciton interaction that mimics the Lennard-Jones potential between atoms. Our experiment demonstrates a strong analogy between excitons and atoms with respect to interparticle interaction, which holds promise to pursue the predicted liquid and crystalline phases of excitons in two-dimensional materials.

8.
Nano Lett ; 17(12): 7471-7477, 2017 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-29076338

RESUMO

Because of the absence of native dangling bonds on the surface of the layered transition metal dichalcogenides (TMDCs), the surface of colloidal quantum dots (QDs) of TMDCs is exposed directly to the solvent environment. Therefore, the optical and electronic properties of TMDCS QDs are expected to have stronger influence from the solvent than usual surface-passivated QDs due to more direct solvent-QD interaction. Study of such solvent effect has been difficult in colloidal QDs of TMDC due to the large spectroscopic heterogeneity resulting from the heterogeneity of the lateral size or (and) thickness in ensemble. Here, we developed a new synthesis procedure producing the highly uniform colloidal monolayer WS2 QDs exhibiting well-defined photoluminescence (PL) spectrum free from ensemble heterogeneity. Using these newly synthesized monolayer WS2 QDs, we observed the strong influence of the aromatic solvents on the PL energy and intensity of monolayer WS2 QD beyond the simple dielectric screening effect, which is considered to result from the direct electronic interaction between the valence band of the QDs and molecular orbital of the solvent. We also observed the large effect of stacking/separation equilibrium on the PL spectrum dictated by the balance between inter QD and QD-solvent interactions. The new capability to probe the effect of the solvent molecules on the optical properties of colloidal TMDC QDs will be valuable for their applications in various liquid surrounding environments.

9.
Sci Rep ; 14(1): 3860, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360891

RESUMO

Monolayer tungsten disulfide (1L-WS2) is a direct bandgap atomic-layered semiconductor material with strain tunable optical and optoelectronic properties among the monolayer transition metal dichalcogenides (1L-TMDs). Here, we demonstrate biaxial strain tuned upconversion photoluminescence (UPL) from exfoliated 1L-WS2 flakes transferred on a flexible polycarbonate cruciform substrate. When the biaxial strain applied to 1L-WS2 increases from 0 to 0.51%, it is observed that the UPL peak position is redshifted by up to 60 nm/% strain, while the UPL intensity exhibits exponential growth with the upconversion energy difference varying from - 303 to - 120 meV. The measured power dependence of UPL from 1L-WS2 under biaxial strain reveals the one photon involved multiphonon-mediated upconversion mechanism. The demonstrated results provide new opportunities in advancing TMD-based optical upconversion devices for future flexible photonics and optoelectronics.

10.
J Mol Model ; 30(4): 112, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38538864

RESUMO

CONTEXT: This study investigates the dynamic stability of monolayers MoS2, WS2, and MoS2/WS2 van der Waals heterostructures (vdWHs) and the influence of shear strain on their electronic properties. The computational results of the binding energy and phonon dispersion demonstrate the excellent dynamic stability of MoS2/WS2 vdWHs. The MoS2/WS2 vdWH, with a type-II band alignment and an indirect bandgap, reduces electron-hole recombination, enhancing the efficiency and performance of optoelectronic devices. Under shear strain, the bandgap size and type of monolayers MoS2, WS2, and MoS2/WS2 vdWHs were effectively modulated, along with the interlayer charge redistribution in the MoS2/WS2 vdWHs. This work reveals the tunability of the electronic properties of monolayers MoS2, WS2, and MoS2/WS2 vdWHs under shear strain, offering new possibilities and solutions for developing optoelectronic devices, sensors, and related fields. METHODS: This work employed the CASTEP module within the Materials Studio software package for first-principles calculations. Ultrasoft pseudopotentials were employed during geometry optimizations to account for ion-electron interactions using the GGA-PBE functional for exchange-correlation potentials. The electronic configurations of the S, Mo, and W atoms were chosen as their typical arrangements: (3s2p4), (4s2p6d55s1), and (5s2p6d46s2), respectively. A vacuum layer of 20 Å was added to avoid interactions between the atomic layers. A cutoff energy of 500 eV was set for structural optimization and self-consistent calculations, with k-point grids of 6 × 6 × 1 and 9 × 9 × 1. During the structural optimization process, the energy convergence criterion was set to 1 × 10-5 eV, and the thresholds for interatomic forces and stresses were set to 0.01 eV/Å and 0.01 GPa, respectively. Grimmer's DFT-D2 correction accounted for the interlayer vdW interactions in the MoS2/WS2 vdWH, while the phonon dispersion was calculated using the linear response method.

11.
Nanomaterials (Basel) ; 14(7)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38607148

RESUMO

Micro/nano photonic barcoding has emerged as a promising technology for information security and anti-counterfeiting applications owing to its high security and robust tamper resistance. However, the practical application of conventional micro/nano photonic barcodes is constrained by limitations in encoding capacity and identification verification (e.g., broad emission bandwidth and the expense of pulsed lasers). Herein, we propose high-capacity photonic barcode labels by leveraging continuous-wave (CW) pumped monolayer tungsten disulfide (WS2) lasing. Large-area, high-quality monolayer WS2 films were grown via a vapor deposition method and coupled with external cavities to construct optically pumped microlasers, thus achieving an excellent CW-pumped lasing with a narrow linewidth (~0.39 nm) and a low threshold (~400 W cm-2) at room temperature. Each pixel within the photonic barcode labels consists of closely packed WS2 microlasers of varying sizes, demonstrating high-density and nonuniform multiple-mode lasing signals that facilitate barcode encoding. Notably, CW operation and narrow-linewidth lasing emission could significantly simplify detection. As proof of concept, a 20-pixel label exhibits a high encoding capacity (2.35 × 10108). This work may promote the advancement of two-dimensional materials micro/nanolasers and offer a promising platform for information encoding and security applications.

12.
Nanomaterials (Basel) ; 13(1)2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36616106

RESUMO

Optical functions and transitions are essential for a material to reveal the light-matter interactions and promote its applications. Here, we propose a quantitative strategy to systematically identify the critical point (CP) optical transitions of 2D semiconductors by combining the spectroscopic ellipsometry (SE) and DFT calculations. Optical functions and CPs are determined by SE, and connected to DFT band structure and projected density of states via equal-energy and equal-momentum lines. The combination of SE and DFT provides a powerful tool to investigate the CP optical transitions, including the transition energies and positions in Brillouin zone (BZ), and the involved energy bands and carries. As an example, the single-crystal monolayer WS2 is investigated by the proposed method. Results indicate that six excitonic-type CPs can be quantitatively distinguished in optical function of the monolayer WS2 over the spectral range of 245-1000 nm. These CPs are identified as direct optical transitions from three highest valence bands to three lowest conduction bands at high symmetry points in BZ contributed by electrons in S-3p and W-5d orbitals. Results and discussion on the monolayer WS2 demonstrate the effectiveness and advantages of the proposed method, which is general and can be easily extended to other materials.

13.
J Hazard Mater ; 443(Pt B): 130299, 2023 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-36356526

RESUMO

Antibiotic residues cause increasing concern in environmental ecology and public health, which needs efficient analysis strategy for monitoring and control. In this study, a fast, specific, and ultrasensitive sensor based on field-effect transistor (FET) has been proposed for the detection of ampicillin (AMP). The sensor involves monolayer tungsten disulfide (WS2) nanosheet as the sensing channel, single-stranded DNA (ssDNA) as the sensing probe, and gold nanoparticle (Au NP) as the linker. The WS2/Au/ssDNA FET sensor responds rapidly to AMP in a wide linear detection range (10-12-10-6 M) and has low limit of detection (0.556 pM), which meets the permissible standards of AMP in water and food. The sensing mechanism study suggests that the excellent sensor response results from the increased number of negative charges in the Debye length and the consequent accumulation of holes in WS2 channel after the addition of AMP. Moreover, satisfactory sensing performance was confirmed in real water samples, indicating the potential application of the proposed method in practical AMP detection. The reported FET sensing strategy provides new insights in antibiotic analysis for risk assessment and control.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Antibacterianos/química , Ouro/química , Técnicas Biossensoriais/métodos , Nanopartículas Metálicas/química , Água , Monofosfato de Adenosina
14.
Polymers (Basel) ; 15(13)2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37447438

RESUMO

Improving the residual char of polypropylene (PP) is difficult due to the preferential complete combustion. Here, we designed a combination catalyst that not only provides physical barrier effects, but also dramatically promotes catalytic charring activity. We successfully synthesized WS2 monolayer sheets decorated with isolated Ni atoms that bond covalently to sulfur vacancies on the basal planes via thiourea. Subsequently, PP blends composed of 8 wt.% Ni-decorated WS2, NiO, and activated carbon (AC) were obtained (ENi-SWS2-AC-PP). Combining the physical barrier effects of WS2 monolayer sheets with the excellent catalytic carbonization ability of the ENi-SWS2-AC combination catalyst, the PP blends showed a remarkable improvement in flame retardancy, with the yield of residual char reaching as high as 41.6 wt.%. According to scanning electron microscopy (SEM) and transmission electron microscopy (TEM) observations, it was revealed that the microstructure of residual char contained a large number of carbon nanotubes. The production of a large amount of residual char not only reduced the release of pyrolytic products, but also formed a thermal shield preventing oxygen and heat transport. Compared to pure PP, the peak heat release rate (pHRR) and total heat release rate (THR) of ENi-SWS2-AC-PP were reduced by 46.32% and 26.03%, respectively. Furthermore, benefiting from the highly dispersed WS2, the tensile strength and Young's modulus of ENi-SWS2-AC-PP showed similar values to pure PP, without sacrificing the toughness.

15.
ACS Nano ; 17(15): 14545-14554, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37494826

RESUMO

Coherent optical manipulation of electronic bandstructures via Floquet Engineering is a promising means to control quantum systems on an ultrafast time scale. However, the ultrafast switching on/off of the driving field comes with questions regarding the limits of the Floquet formalism (which is defined for an infinite periodic drive) through the switching process and to what extent the transient changes can be driven adiabatically. Experimentally addressing these questions has been difficult, in large part due to the absence of an established technique to measure coherent dynamics through the duration of the pulse. Here, using multidimensional coherent spectroscopy we explicitly excite, control, and probe a coherent superposition of excitons in the K and K' valleys in monolayer WS2. With a circularly polarized, red-detuned pump pulse, the degeneracy of the K and K' excitons can be lifted, and the phase of the coherence rotated. We directly measure phase rotations greater than π during the 100 fs driving pulse and show that this can be described by a combination of the AC-Stark shift of excitons in one valley and the Bloch-Siegert shift of excitons in the opposite valley. Despite showing a smooth evolution of the phase that directly follows the intensity envelope of the nonresonant pump pulse, the process is not perfectly adiabatic. By measuring the magnitude of the macroscopic coherence as it evolves before, during, and after the nonresonant pump pulse we show that there is additional decoherence caused by power broadening in the presence of the nonresonant pump. This nonadiabaticity arises as a result of interactions with the otherwise adiabatic Floquet states and may be a problem for many applications, such as manipulating qubits in quantum information processing; however, these measurements also suggest ways such effects can be minimized or eliminated.

16.
ACS Nano ; 17(3): 2529-2536, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36646115

RESUMO

The ability to assemble layers of two-dimensional (2D) materials to form permutations of van der Waals heterostructures provides significant opportunities in materials design and synthesis. Interlayer interactions can enable desired properties and functionality, and understanding such interactions is essential to that end. Here we report formation of interlayer exciton-phonon bound states in Bi2Se3/WS2 heterostructures, where the Bi2Se3 A1(3) surface phonon, a mode particularly susceptible to electron-phonon coupling, is imprinted onto the excitonic emission of the WS2. The exciton-phonon bound state (or exciton-phonon quasiparticle) presents itself as evenly separated peaks superposed on the WS2 excitonic photoluminescence spectrum, whose periodic spacing corresponds to the A1(3) surface phonon energy. Low-temperature polarized Raman spectroscopy of Bi2Se3 reveals intense surface phonons and local symmetry breaking that allows the A1(3) surface phonon to manifest in otherwise forbidden scattering geometries. Our work advances knowledge of the complex interlayer van der Waals interactions and facilitates technologies that combine the distinctive transport and optical properties from separate materials into one device for possible spintronics, valleytronics, and quantum computing applications.

17.
ACS Appl Mater Interfaces ; 14(40): 45716-45724, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36183271

RESUMO

Although substantial efforts have been made, controllable synthesis of p-type WS2 remains a challenge. In this work, we employ NaCl as a seeding promoter to realize vapor-liquid-solid (VLS) growth of p-type WS2. Morphological evolution, including a one-dimensional (1D) nanowire to two-dimensional (2D) planar domain and 2D shape transition of WS2 domains, can be well-controlled by the growth temperature and sulfur introduction time. A high growth temperature is required to enable planar growth of 2D WS2, and a sulfur-rich environment is found to facilitate the growth of high-quality WS2. Raman and photoluminescence (PL) mappings demonstrate uniform crystallinity and high quantum efficiency of VLS-grown WS2. Moreover, monolayer WS2-based field-effect transistors (FETs) are fabricated, showing p-type conducting behavior, which is different from previous reported n-type FETs from WS2 grown by other methods. First-principles calculations show that the p-type behavior originates from the substitution of Na at the W site, which will form an additional acceptor level above the valence band maximum (VBM). This facile VLS growth method opens the avenue to realize the p-n WS2 homojunctions and p/n-WS2-based heterojunctions for monolayer wearable electronic, photonic, optoelectronic, and biosensing devices and should also be a great benefit to the development of 2D complementary metal-oxide-semiconductor (CMOS) circuit applications.

18.
Sci Bull (Beijing) ; 66(5): 449-456, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36654182

RESUMO

A harmonic vortex beam is a typical vector beam with a helical wavefront at harmonic frequencies (e.g., second and third harmonics). It provides an additional degree of freedom beyond spin- and orbital-angular momentum, which may greatly increase the capacity for communicating and encoding information. However, conventional harmonic vortex beam generators suffer from complex designs and a low nonlinear conversion efficiency. Here, we propose and experimentally demonstrate the generation of a large second-harmonic (SH) vortex beam with quasi-nonlinear spin-orbit interaction (SOI). High-quality SH vortex beams with large topological charges up to 28 are realized experimentally. This indicated that the quasi-angular-momentum of a plasmonic spiral phase plate at the excitation wavelength (topological charge, q) could be imprinted on the harmonic signals from the attached WS2 monolayer. The generated harmonic vortex beam has a topological charge of ln=2nq (n is the harmonic order). The results may open new avenues for generating harmonic optical vortices for optical communications and enables novel multi-functional hybrid metasurface devices to manipulate harmonic beams.

19.
ACS Appl Mater Interfaces ; 13(38): 46164-46170, 2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34533939

RESUMO

Two-dimensional semiconductors exhibit strong light emission under optical or electrical pumping due to quantum confinement and large exciton binding energies. The regulation of the light emission shows great application potential in next-generation optoelectronic devices. Herein, by the physical vapor deposition strategy, we synthesize monolayer hexagonal-shaped WS2, and its photoluminescence intensity mapping show three-fold symmetric patterns with alternating bright and dark regions. Regardless of the length of the edges, all domains with S-terminated edges show lower photoluminescence intensity, while all regions with W-terminated edges exhibit higher photoluminescence intensity. The photoluminescence segmentation mechanism is studied in detail by employing Raman spectroscopy, atomic force microscopy, high-resolution transmission electron microscopy, and Kelvin probe force microscopy, and it is found to originate from different strain distributions in the S-terminated region and the W-terminated region. The optical band gap determined by the photoluminescence in the dark region is ∼2 meV lower than that in the bright region, implying that more strain is stored in the S-terminated region than in the W-terminated region. The photoluminescence segmentation vanishes in transferred hexagonal-shaped WS2 from the initial substrate to a fresh silicon substrate, further confirming the physical mechanism. Our results provide guidance for tuning the optical properties of two-dimensional semiconductors by controllable strain engineering.

20.
Nanoscale Res Lett ; 15(1): 102, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32382833

RESUMO

Hydrogen is a clean energy with high efficiency, while the storage and transport problems still prevent its extensive use. Because of the large specific surface area and unique electronic structure, two-dimensional materials have great potential in hydrogen storage. Particularly, monolayer 2H-WS2 has been proven to be suitable for hydrogen storage. But there are few studies concerning the other two phases of WS2 (1T, 1T') in hydrogen storage. Here, we carried out first-principle calculations to investigate the hydrogen adsorption behaviors of all the three phases of WS2. Multiple hydrogen adsorption studies also evaluate the hydrogen storage abilities of these materials. Comprehensive analysis results show that the 1T'-WS2 has better hydrogen storage performance than the 2H-WS2, which means phase engineering could be an effective way to improve hydrogen storage performance. This paper provides a reference for the further study of hydrogen storage in two-dimensional materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA