Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Genomics ; 19(1): 755, 2018 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-30340511

RESUMO

BACKGROUND: Previous studies demonstrate the usefulness of using multiple tools and methods for improving the accuracy of motif detection. Over the past years, numerous motif discovery pipelines have been developed. However, they typically report only the top ranked results either from individual motif finders or from a combination of multiple tools and algorithms. RESULTS: Here we present MODSIDE, a motif discovery pipeline and similarity detector. The pipeline integrated four de novo motif finders: ChIPMunk, MEME, Weeder, and XXmotif. It also incorporated a motif similarity detection tool MOTIFSIM. MODSIDE was designed for delivering not only the predictive results from individual motif finders but also the comparison results for multiple tools. The results include the common significant motifs from multiple tools, the motifs detected by some tools but not by others, and the best matches for each motif in the motif collection of multiple tools. MODSIDE also possesses other useful features for merging similar motifs and clustering motifs into motif trees. CONCLUSIONS: We evaluated MODSIDE and its adopted motif finders on 16 benchmark datasets. The statistical results demonstrate MODSIDE achieves better accuracy than individual motif finders. We also compared MODSIDE with two popular motif discovery pipelines: MEME-ChIP and RSAT peak-motifs. The comparison results reveal MODSIDE attains similar performance as RSAT peak-motifs but better accuracy than MEME-ChIP. In addition, MODSIDE is able to deliver various comparison results that are not offered by MEME-ChIP, RSAT peak-motifs, and other existing motif discovery pipelines.


Assuntos
Motivos de Aminoácidos , Biologia Computacional/métodos , Software , Animais , Humanos , Camundongos , Alinhamento de Sequência
2.
Biol Proced Online ; 20: 23, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30574025

RESUMO

BACKGROUND: Previous studies show various results obtained from different motif finders for an identical dataset. This is largely due to the fact that these tools use different strategies and possess unique features for discovering the motifs. Hence, using multiple tools and methods has been suggested because the motifs commonly reported by them are more likely to be biologically significant. RESULTS: The common significant motifs from multiple tools can be obtained by using MOTIFSIM tool. In this work, we evaluated the performance of MOTIFSIM in three aspects. First, we compared the pair-wise comparison technique of MOTIFSIM with the un-gapped Smith-Waterman algorithm and four common distance metrics: average Kullback-Leibler, average log-likelihood ratio, Chi-Square distance, and Pearson Correlation Coefficient. Second, we compared the performance of MOTIFSIM with RSAT Matrix-clustering tool for motif clustering. Lastly, we evaluated the performances of nineteen motif finders and the reliability of MOTIFSIM for identifying the common significant motifs from multiple tools. CONCLUSIONS: The pair-wise comparison results reveal that MOTIFSIM attains better performance than the un-gapped Smith-Waterman algorithm and four distance metrics. The clustering results also demonstrate that MOTIFSIM achieves similar or even better performance than RSAT Matrix-clustering. Furthermore, the findings indicate if the motif detection does not require a special tool for detecting a specific type of motif then using multiple motif finders and combining with MOTIFSIM for obtaining the common significant motifs, it improved the results for DNA motif detection.

3.
J Comput Biol ; 24(5): 450-459, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27606547

RESUMO

We developed the cloud-based MOTIFSIM on Amazon Web Services (AWS) cloud. The tool is an extended version from our web-based tool version 2.0, which was developed based on a novel algorithm for detecting similarity in multiple DNA motif data sets. This cloud-based version further allows researchers to exploit the computing resources available from AWS to detect similarity in multiple large-scale DNA motif data sets resulting from the next-generation sequencing technology. The tool is highly scalable with expandable AWS.


Assuntos
DNA/genética , Análise de Sequência de DNA/métodos , Algoritmos , Computação em Nuvem , DNA/química , Bases de Dados Genéticas , Motivos de Nucleotídeos , Navegador
4.
J Comput Biol ; 24(9): 895-905, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28632401

RESUMO

Finding binding site motifs plays an important role in bioinformatics as it reveals the transcription factors that control the gene expression. The development for motif finders has flourished in the past years with many tools have been introduced to the research community. Although these tools possess exceptional features for detecting motifs, they report different results for an identical data set. Hence, using multiple tools is recommended because motifs reported by several tools are likely biologically significant. However, the results from multiple tools need to be compared for obtaining common significant motifs. MOTIFSIM web tool and command-line tool were developed for this purpose. In this work, we present several technical improvements as well as additional features to further support the motif analysis in our new release MOTIFSIM 2.1.


Assuntos
Motivos de Nucleotídeos , Alinhamento de Sequência/métodos , Análise de Sequência de DNA/métodos , Software , Animais , Humanos , Filogenia
5.
Biotechniques ; 59(1): 26-33, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26156781

RESUMO

Currently, there are a number of motif detection tools available that possess unique functionality. These tools often report different motifs, and therefore use of multiple tools is generally advised since common motifs reported by multiple tools are more likely to be biologically significant. However, results produced by these different tools need to be compared and existing similarity detection tools only allow comparison between two data sets. Here, we describe a motif similarity detection tool (MOTIFSIM) possessing a web-based, user-friendly interface that is capable of detecting similarity from multiple DNA motif data sets concurrently. Results can either be viewed online or downloaded. Users may also download and run MOTIFSIM as a command-line tool in stand-alone mode. The web tool, along with its command-line version, user manuals, and source codes, are freely available at http://biogrid-head.engr.uconn.edu/motifsim/.


Assuntos
Conjuntos de Dados como Assunto , Internet , Motivos de Nucleotídeos , Software , Algoritmos , RNA Polimerase II/química , Interface Usuário-Computador , Fatores de Transcrição de p300-CBP/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA