Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Am J Physiol Regul Integr Comp Physiol ; 327(2): R173-R187, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38860288

RESUMO

Vagal afferents to the gastrointestinal tract are crucial for the regulation of food intake, signaling negative feedback that contributes to satiation and positive feedback that produces appetition and reward. Vagal afferents to the small intestinal mucosa contribute to this regulation by sensing luminal stimuli and reporting this information to the brain. These afferents respond to mechanical, chemical, thermal, pH, and osmolar stimuli, as well as to bacterial products and immunogens. Surprisingly, little is known about how these stimuli are transduced by vagal mucosal afferents or how their transduction is organized among these afferents' terminals. Furthermore, the effects of stimulus concentration ranges or physiological stimuli on vagal activity have not been examined for some of these stimuli. Also, detection of luminal stimuli has rarely been examined in rodents, which are most frequently used for studying small intestinal innervation. Here we review what is known about stimulus detection by vagal mucosal afferents and illustrate the complexity of this detection using nutrients as an exemplar. The accepted model proposes that nutrients bind to taste receptors on enteroendocrine cells (EECs), which excite them, causing the release of hormones that stimulate vagal mucosal afferents. However, evidence reviewed here suggests that although this model accounts for many aspects of vagal signaling about nutrients, it cannot account for all aspects. A major goal of this review is therefore to evaluate what is known about nutrient absorption and detection and, based on this evaluation, identify candidate mucosal cells and structures that could cooperate with EECs and vagal mucosal afferents in stimulus detection.


Assuntos
Mucosa Intestinal , Intestino Delgado , Nervo Vago , Animais , Nervo Vago/fisiologia , Mucosa Intestinal/inervação , Mucosa Intestinal/metabolismo , Humanos , Intestino Delgado/inervação , Intestino Delgado/metabolismo , Vias Aferentes/fisiologia , Paladar/fisiologia , Neurônios Aferentes/fisiologia
2.
Eur J Neurol ; 29(7): 2097-2108, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35322505

RESUMO

BACKGROUND AND PURPOSE: The pathogenesis of diabetic gastroparesis due to visceral neuropathy involves multidimensional mechanisms with limited exploration of gastric mucosal innervation. This study aimed to examine quantitatively this topic and its relationship with gastroparesis symptoms and gastric emptying in diabetes. METHODS: We prospectively enrolled 22 patients with type 2 diabetes and gastroparesis symptoms and 25 age- and gender-matched healthy controls for comparison. The assessments included: (i) neuropathology with quantification of gastric mucosal innervation density (MID) on endoscopic biopsy; (ii) clinical manifestations based on the Gastroparesis Cardinal Symptom Index (GCSI) questionnaire; and (iii) functional tests of gastric emptying scintigraphy (GES). RESULTS: In patients with diabetes, stomach fullness, bloating and feeling excessively full after meals constituted the most common GCSI symptoms. Seven patients with diabetes (32%) had prolonged gastric emptying patterns. In diabetes, gastric MID was significantly lower in all the regions examined compared with the controls: antrum (294.8 ± 237.0 vs. 644.0 ± 222.0 mm/mm3 ; p < 0.001), body (292.2 ± 239.0 vs. 652.6 ± 260.9 mm/mm3 ; p < 0.001), and fundus (238.0 ± 109.1 vs. 657.2 ± 332.8 mm/mm3 ; p < 0.001). Gastric MID was negatively correlated with gastroparesis symptoms and total scores on the GCSI (p < 0.001). Furthermore, gastric MID in the fundus was negatively correlated with fasting glucose and glycated hemoglobin levels. Gastric emptying variables, including half emptying time and gastric retention, were prolonged in patients with diabetes, and gastric retention at 3 h was correlated with fasting glucose level. CONCLUSION: In diabetes, gastric MID was reduced and GES parameters were prolonged. Both were correlated with gastroparesis symptoms and glycemic control. These findings provide pathology and functional biomarkers for diabetic visceral neuropathy of gastroparesis and underlying pathophysiology.


Assuntos
Diabetes Mellitus Tipo 2 , Neuropatias Diabéticas , Gastroparesia , Diabetes Mellitus Tipo 2/complicações , Esvaziamento Gástrico/fisiologia , Gastroparesia/complicações , Gastroparesia/diagnóstico por imagem , Glucose , Humanos
3.
Dysphagia ; 35(3): 471-478, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31468191

RESUMO

The vagal afferent nerves regulate swallowing and esophageal motor reflexes. However, there are still gaps in the understanding of vagal afferent innervation of the esophageal mucosa. Anatomical studies found that the vagal afferent mucosal innervation is dense in the upper esophageal sphincter area but rare in more distal segments of the esophagus. In contrast, electrophysiological studies concluded that the vagal afferent nerve fibers also densely innervate mucosa in more distal esophagus. We hypothesized that the transfection of vagal afferent neurons with adeno-associated virus vector encoding green fluorescent protein (AAV-GFP) allows to visualize vagal afferent nerve fibers in the esophageal mucosa in the mouse. AAV-GFP was injected into the vagal jugular/nodose ganglia in vivo to sparsely label vagal afferent nerve fibers. The esophageal tissue was harvested 4-6 weeks later, the GFP signal was amplified by immunostaining, and confocal optical sections of the entire esophagi were obtained. We found numerous GFP-labeled fibers in the mucosa throughout the whole body of the esophagus. The GFP-labeled mucosal fibers were located just beneath the epithelium, branched repeatedly, had mostly longitudinal orientation, and terminated abruptly without forming terminal structures. The GFP-labeled mucosal fibers were concentrated in random areas of various sizes in which many fibers could be traced to a single parental axon. We conclude that the vagus nerves provide a robust afferent innervation of the mucosa throughout the whole body of the esophagus in the mouse. Vagal mucosal fibers may contribute to the sensing of intraluminal content and regulation of swallowing and other reflexes.


Assuntos
Mucosa Esofágica/inervação , Esôfago/inervação , Neurônios Aferentes/fisiologia , Nervo Vago/fisiologia , Animais , Deglutição/fisiologia , Camundongos , Modelos Animais
4.
Neurogastroenterol Motil ; 33(9): e14140, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33939232

RESUMO

BACKGROUND: The type 3 adenylyl cyclase (AC3) enzyme is involved in the synthesis of cyclic adenosine monophosphate (cAMP). It is primarily expressed in the central nervous system (CNS) and plays a crucial role in neurogenesis and neural dendritic arborization. However, the AC3's functional role in the gastrointestinal tract remains ambiguous. METHODS: AC3 expression in enteric tissue of AC3+/+ mice was investigated using immunohistochemistry and RT-PCR. AC3 knock-out mice (AC3-/- ) were used to examine the effect of AC3 on the enteric nervous system (ENS) function and the number of cilia and apoptotic cells. Additionally, total gastrointestinal transit time and colonic motility were compared between the AC3-/- and AC3+/+ groups of mice. KEY RESULTS: AC3 was predominately expressed in the myenteric plexus of the large intestine. Colonic-bead expulsion analysis showed accelerated propulsion in the large intestine of the AC3-/- mice. The AC3-/- mice demonstrated reduced nerve fibers and enteric glial cells count in colonic mucosa compared to the AC3+/+ mice. Furthermore, AC3-/- mice exhibited increased cellular apoptosis and reduced ARL13B+ cilium cells in the colonic lamina propria compared to the AC3+/+ mice. CONCLUSIONS: In AC3-/- mice, innervation of the lamina propria in the colonic mucosa was reduced and colonic propulsion was accelerated. AC3 is crucial for the development and function of the adult neural network of ENS. AC3 deficiency caused atrophy in the colonic mucosal neural network of mice.


Assuntos
Adenilil Ciclases/metabolismo , Sistema Nervoso Entérico/enzimologia , Mucosa Intestinal/inervação , Animais , Motilidade Gastrointestinal/fisiologia , Camundongos , Camundongos Knockout
5.
Auton Neurosci ; 233: 102811, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33932866

RESUMO

Vagal afferents form the primary gut-to-brain neural axis, communicating signals that regulate gastrointestinal (GI) function and promote satiation, appetition and reward. Neurotrophin-4 (NT-4) is essential for the survival of vagal smooth muscle afferents of the small intestine, but not the stomach. Here we took advantage of near-complete labeling of GI vagal mucosal afferents in Nav1.8cre-Rosa26tdTomato transgenic mice to determine whether these afferents depend on NT-4 for survival. We quantified the density and distribution of vagal afferent terminals in the stomach and small intestine mucosa and their central terminals in the solitary tract nucleus (NTS) and area postrema in NT-4 knockout (KO) and control mice. NT-4KO mice exhibited a 75% reduction in vagal afferent terminals in proximal duodenal villi and a 55% decrease in the distal ileum, whereas, those in the stomach glands remained intact. Vagal crypt afferents were also reduced in some regions of the small intestine, but to a lesser degree. Surprisingly, NT-4KO mice exhibited an increase in labeled terminals in the medial NTS. These findings, combined with previous results, suggest NT-4 is essential for survival of a large proportion of all classes of vagal afferents that innervate the small intestine, but not those that supply the stomach. Thus, NT-4KO mice could be valuable for distinguishing gastric and intestinal vagal afferent regulation of GI function and feeding. The apparent plasticity of central vagal afferent terminals - an increase in their density - could have compensated for loss of peripheral terminals by maintaining near-normal levels of satiety signaling.


Assuntos
Estômago , Nervo Vago , Animais , Mucosa Intestinal , Intestino Delgado , Camundongos , Fatores de Crescimento Neural , Neurônios Aferentes
6.
J Comp Neurol ; 528(5): 816-839, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31618460

RESUMO

Vagal afferents innervating the small intestinal mucosa regulate feeding, gastrointestinal (GI) digestive, and immune functions. Their anatomical-functional characterization has been impeded by the inability to selectively label and manipulate them. Nav 1.8-Cre-tdTomato mice label 80% of nodose and dorsal root ganglia neurons. Here, the origin of these neuron's terminals and their distribution in the small intestinal mucosa were examined by quantitatively comparing tdTomato-labeled innervation in nonoperated (control), subdiaphragmatic vagotomy (VAGX), and sham-operated mice. Control mice exhibited a large proximal-to-distal decrease and a moderate mesentery-to-antimesentery decrease in villus innervation. VAGX reduced this innervation to a greater degree proximally (91-93%) than distally (65-72%), resulting in flat proximal-distal distributions. Therefore, estimates of vagal villus afferent distributions (control minus VAGX) paralleled control distributions, but were slightly reduced in magnitude. Compared with villus afferents, crypt innervation exhibited a muted proximal-to-distal decrease in control mice and a smaller loss after VAGX (45-48%). Sham-operated mice exhibited similar distributions of villus and crypt afferents as control mice, suggesting surgery did not contribute to the effects of VAGX. Most crypt and villus afferent terminals along the entire proximal-distal small intestinal axis had similar morphology to those previously reported in the proximal duodenum, but the density of terminal branches varied. Our findings suggest the majority of small intestinal mucosal innervation labeled in Nav 1.8-Cre-tdTomato mice is vagal in origin. Therefore, these mice will be valuable for studying vagal mucosal afferent morphology, interactions with other GI elements, plasticity, and function.


Assuntos
Mucosa Intestinal/inervação , Intestino Delgado/inervação , Neurônios Aferentes/citologia , Nervo Vago/citologia , Animais , Camundongos , Camundongos Endogâmicos C57BL , Vagotomia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA