Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Skeletal Radiol ; 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39120685

RESUMO

OBJECTIVE: To determine the accuracy of photon-counting-detector CT (PCD-CT) at deriving bone morphometric indices and demonstrate utility in vivo in the distal radius. METHODS: Ten cadaver wrists were scanned using PCD-CT and high-resolution peripheral quantitative CT (HRpQCT). Correlation between PCD-CT and HRpQCT morphometric indices was determined. Agreement was assessed by Lin's concordance correlation coefficient (Lin's CCC). Wrist PCD-CTs of patients between 02/2022 and 08/2023 were also evaluated for clinical utility. Morphometric indices of the in vivo distal radii were extracted and compared between patients with or without osteoporosis. RESULTS: In cadavers, strong correlation between PCD-CT and HRpQCT was observed for cortical thickness (Spearman correlation, ρ, 0.85), trabecular spacing (ρ = 0.98), and trabecular bone volume fraction (ρ = 0.68). Moderate negative correlation (ρ = - 0.49) was observed for trabecular thickness. PCD-CT shows good agreement to HRpQCT for cortical thickness, trabecular spacing, and trabecular bone volume fraction (Lin's CCC = 0.80, 0.94, and 0.86, respectively) but poor agreement (Lin's CCC = - 0.1) for trabecular thickness. In forty participants (31 adults and 9 pediatric), bone morphometrics indices for cortical thickness, trabecular thickness, trabecular spacing, and trabecular bone volume fraction were 0.99 mm (IQR, 0.89-1.06), 0.38 mm (IQR, 0.25-0.40), 0.82 mm (IQR, 0.72-1.05), and 0.28 (IQR, 0.25-0.33), respectively. Patients with osteoporosis had statistically significantly larger trabecular spacing (p = 0.025) and lower trabecular volumetric bone mineral density (p = 0.042). CONCLUSION: This study demonstrates the agreement of PCD-CT to HRpQCT in cadavers of most cortical and bone morphometrics examined and provide in vivo quantitative metrics of bone microarchitecture from routine clinical PCD-CT images of the distal radius.

2.
J Environ Manage ; 368: 122142, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39137642

RESUMO

Assessing and analyzing the complementary characteristics of renewable energy (RE) is crucial for designing, operating, and optimizing multi-energy complementary systems (MECSs). However, unified and precise quantitative descriptions of the complementary and stability characteristics among various energy outputs in MECSs have lacked attention and research. Here, this study innovatively proposed a mathematical model for the multi-energy complementarity index (MECI), which considers the complementarity rates of multiple energy outputs during zero and non-zero output periods, and a mathematical model for the multi-energy volatility index (MEVI), which accounts for fluctuation thresholds and the overall volatility of output processes. An evaluation system for multi-energy complementarity characteristics qualitative analysis has been established. The natural output processes of RE at three MECSs in China were applied in the case calculations and verification. Results show that the hydropower rated discharge (Qrating) has a significant negative correlation with MECI, with the MECI decreasing by an average of 0.0046 for every 5 m³/s increase in Qrating. The relationship between the Qrating and MEVI shows an overall negative correlation with local fluctuations. Notably, The MECI of the BeiPan River MECSs exhibits significant seasonal characteristics, with the MEVI in summer (0.378) and autumn (0.395) higher than those in spring (0.132) and winter (0.160), closely related to the natural seasonal variations of the three energy sources: water, wind, and solar. We believe that the study can assist in evaluating and making decisions on the multi-energy complementarity characteristics of RE bases in the future, making a significant contribution to achieving dual carbon goals.


Assuntos
Energia Renovável , China , Modelos Teóricos , Estações do Ano
3.
Entropy (Basel) ; 26(4)2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38667885

RESUMO

Surrounded by the Shandong Peninsula, the Bohai Sea and Yellow Sea possess vast marine energy resources. An analysis of actual meteorological data from these regions indicates significant seasonality and intra-day uncertainty in wind and photovoltaic power generation. The challenge of scheduling to leverage the complementary characteristics of various renewable energy sources for maintaining grid stability is substantial. In response, we have integrated wave energy with offshore photovoltaic and wind power generation and propose a day-ahead and intra-day multi-time-scale rolling optimization scheduling strategy for the complementary dispatch of these three energy sources. Using real meteorological data from this maritime area, we employed a CNN-LSTM neural network to predict the power generation and load demand of the area on both day-ahead 24 h and intra-day 1 h time scales, with the DDPG algorithm applied for refined electricity management through rolling optimization scheduling of the forecast data. Simulation results demonstrate that the proposed strategy effectively meets load demands through complementary scheduling of wave power, wind power, and photovoltaic power generation based on the climatic characteristics of the Bohai and Yellow Sea regions, reducing the negative impacts of the seasonality and intra-day uncertainty of these three energy sources on the grid. Additionally, compared to the day-ahead scheduling strategy alone, the day-ahead and intra-day rolling optimization scheduling strategy achieved a reduction in system costs by 16.1% and 22% for a typical winter day and a typical summer day, respectively.

4.
Entropy (Basel) ; 26(8)2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39202168

RESUMO

To meet the challenges of energy sustainability, the integrated energy system (IES) has become a key component in promoting the development of innovative energy systems. Accurate and reliable multivariate load prediction is a prerequisite for IES optimal scheduling and steady running, but the uncertainty of load fluctuation and many influencing factors increase the difficulty of forecasting. Therefore, this article puts forward a multi-energy load prediction approach of the IES, which combines the fennec fox optimization algorithm (FFA) and hybrid kernel extreme learning machine. Firstly, the comprehensive weight method is used to combine the entropy weight method and Pearson correlation coefficient, fully considering the information content and correlation, selecting the key factors affecting the prediction, and ensuring that the input features can effectively modify the prediction results. Secondly, the coupling relationship between the multi-energy load is learned and predicted using the hybrid kernel extreme learning machine. At the same time, the FFA is used for parameter optimization, which reduces the randomness of parameter setting. Finally, the approach is utilized for the measured data at Arizona State University to verify its effectiveness in multi-energy load forecasting. The results indicate that the mean absolute error (MAE) of the proposed method is 0.0959, 0.3103 and 0.0443, respectively. The root mean square error (RMSE) is 0.1378, 0.3848 and 0.0578, respectively. The weighted mean absolute percentage error (WMAPE) is only 1.915%. Compared to other models, this model has a higher accuracy, with the maximum reductions on MAE, RMSE and WMAPE of 0.3833, 0.491 and 2.8138%, respectively.

5.
Small ; : e2308428, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-38072813

RESUMO

Nanogenerators for acoustic energy harvesting are still in the early stage of development, and many challenges such as the optimization of device structure and the design of efficient and sensitive materials need to be addressed. To solve the above-mentioned problems, herein, advancement in synthesized multiferroic material for hybridizing the nanogenerator and efficient harvesting of various energies such as acoustic, mechanical, and vibrational energies is reported. Initially, bismuth ferrate (BiFeO3 , BFO)-based composite films are prepared with high ferroelectric and dielectric coefficients. The hybrid nanogenerator (HNG) based on a 3D-printed structure has the highest electrical output which is further improved depending on the BFO loading concentration in the composite film. The 0.5 wt% BFO-loaded PVDF-based HNG offers the enhanced open circuit voltage, short circuit current, and charge density values of ≈30 V, ≈1 µA, and ≈10 µC/m2 , respectively. The optimized HNG is employed to harvest mechanical energy from everyday human life. Furthermore, the HNG layers are used in the fabrication of a multi-energy harvester/sensor (MEH/S) which can harvest/sense various vibrational and acoustic energies under different acoustic frequencies and amplitudes, respectively. The harvested energy from the MEH/S is tested to power portable electronics.

6.
Entropy (Basel) ; 25(9)2023 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-37761642

RESUMO

To improve the accuracy of short-term multi-energy load prediction models for integrated energy systems, the historical development law of the multi-energy loads must be considered. Moreover, understanding the complex coupling correlation of the different loads in the multi-energy systems, and accounting for other load-influencing factors such as weather, may further improve the forecasting performance of such models. In this study, a two-stage fuzzy optimization method is proposed for the feature selection and identification of the multi-energy loads. To enrich the information content of the prediction input feature, we introduced a copula correlation feature analysis in the proposed framework, which extracts the complex dynamic coupling correlation of multi-energy loads and applies Akaike information criterion (AIC) to evaluate the adaptability of the different copula models presented. Furthermore, we combined a NARX neural network with Bayesian optimization and an extreme learning machine model optimized using a genetic algorithm (GA) to effectively improve the feature fusion performances of the proposed multi-energy load prediction model. The effectiveness of the proposed short-term prediction model was confirmed by the experimental results obtained using the multi-energy load time-series data of an actual integrated energy system.

7.
Sensors (Basel) ; 22(18)2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36146284

RESUMO

The objective of this paper is to propose a local electricity and carbon trading method for interconnected multi-energy microgrids. A local electricity market and a local carbon market are established, allowing microgrids to trade electricity and carbon allowance within the microgrid network. Specifically, excessive electricity and carbon allowance of a microgrid can be shared with other microgrids that require them. A local electricity trading problem and a local carbon trading problem are formulated for multi-energy microgrids using the Nash bargaining theory. Each Nash bargaining problem can be decomposed into two subproblems, including an energy/carbon scheduling problem and a payment bargaining problem. By solving the subproblems of the Nash bargaining problems, the traded amounts of electricity/carbon allowance between microgrids and the corresponding payments will be determined. In addition, to enable secure information interactions and trading payments, we introduce an electricity blockchain and a carbon blockchain to record the trading data for microgrids. The novelty of the usage of the blockchain technology lies in using a notary mechanism-based cross-chain interaction method to achieve value transfer between blockchains. The simulation results show that the proposed local electricity and carbon trading method has great performance in lowering total payments and carbon emissions for microgrids.


Assuntos
Blockchain , Hepatopatia Gordurosa não Alcoólica , Carbono , Simulação por Computador , Eletricidade , Humanos
8.
Philos Trans A Math Phys Eng Sci ; 379(2204): 20200198, 2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34218669

RESUMO

This work considers synergistic multi-spectral CT reconstruction where information from all available energy channels is combined to improve the reconstruction of each individual channel. We propose to fuse these available data (represented by a single sinogram) to obtain a polyenergetic image which keeps structural information shared by the energy channels with increased signal-to-noise ratio. This new image is used as prior information during a channel-by-channel minimization process through the directional total variation. We analyse the use of directional total variation within variational regularization and iterative regularization. Our numerical results on simulated and experimental data show improvements in terms of image quality and in computational speed. This article is part of the theme issue 'Synergistic tomographic image reconstruction: part 2'.


Assuntos
Algoritmos , Interpretação de Imagem Radiográfica Assistida por Computador/estatística & dados numéricos , Tomografia Computadorizada por Raios X/estatística & dados numéricos , Simulação por Computador , Humanos , Imagens de Fantasmas , Razão Sinal-Ruído
9.
Radiologe ; 61(Suppl 1): 1-10, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33598788

RESUMO

Over the last decade, a fundamentally new type of computed tomography (CT) detectors has proved its superior capabilities in both physical and preclinical evaluations and is now approaching the stage of clinical practice. These detectors are able to discriminate single photons and quantify their energy and are hence called photon-counting detectors. Among the promising benefits of this technology are improved radiation dose efficiency, increased contrast-to-noise ratio, reduced metal artifacts, improved spatial resolution, simultaneous multi-energy acquisitions, and the prospect of multi-phase imaging within a single acquisition using multiple contrast agents. Taking the conventional energy-integrating detectors as a reference, the authors demonstrate the technical principles of this new technology and provide phantom and patient images acquired by a whole-body photon-counting CT. These images serve as a basis for discussing the potential future of clinical CT.


Assuntos
Fótons , Física , Humanos , Tomografia , Tomografia Computadorizada por Raios X
10.
Sensors (Basel) ; 22(1)2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-35009566

RESUMO

To achieve the real-time application of a dynamic programming (DP) control strategy, we propose a predictive energy management strategy (PEMS) based on full-factor trip information, including vehicle speed, slip ratio and slope. Firstly, the prediction model of the full-factor trip information is proposed, which provides an information basis for global optimization energy management. To improve the prediction's accuracy, the vehicle speed is predicted based on the state transition probability matrix generated in the same driving scene. The characteristic parameters are extracted by a feature selection method taken as the basis for the driving condition's identification. Similar to speed prediction, regarding the uncertain route at an intersection, the slope prediction is modelled as a Markov model. On the basis of the predicted speed and the identified maximum adhesion coefficient, the slip ratio is predicted based on a neural network. Then, a predictive energy management strategy is developed based on the predictive full-factor trip information. According to the statistical rules of DP results under multiple standard driving cycles, the reference SOC trajectory is generated to ensure global sub-optimality, which determines the feasible state domain at each prediction horizon. Simulations are performed under different types of driving conditions (Urban Dynamometer Driving Schedule, UDDS and World Light Vehicle Test Cycle, WLTC) to verify the effectiveness of the proposed strategy.

11.
Sensors (Basel) ; 21(7)2021 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-33918163

RESUMO

Dual and multi energy X-ray transmission imaging (DE-/ME-XRT) are powerful tools to acquire quantitative material characteristics of diverse samples without destruction. As those X-ray imaging techniques are based on the projection onto the imaging plane, only two-dimensional data can be obtained. To acquire three-dimensional information and a complete examination on topology and spatial trends of materials, computed tomography (CT) can be used. In combination, these methods may offer a robust non-destructive testing technique for research and industrial applications. For example, the iron ore mining and processing industry requires the ratio of economic iron minerals to siliceous waste material for resource and reserve estimations, and for efficient sorting prior to beneficiation, to avoid equipment destruction due to highly abrasive quartz. While XRT provides information concerning the thickness, areal density and mass fraction of iron and the respective background material, CT may deliver size, distribution and orientation of internal structures. Our study shows that the data provided by XRT and CT is reliable and, together with data processing, can be successfully applied for distinguishing iron oxide rich parts from waste. Furthermore, heavy element bearing minerals such as baryte, uraninite, galena and monazite can be detected.

12.
Microsc Microanal ; 25(1): 70-76, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30869576

RESUMO

Using a commercial X-ray tomography instrument, we have obtained reconstructions of a graded-index optical fiber with voxels of edge length 1.05 µm at 12 tube voltages. The fiber manufacturer created a graded index in the central region by varying the germanium concentration from a peak value in the center of the core to a very small value at the core-cladding boundary. Operating on 12 tube voltages, we show by a singular value decomposition that there are only two singular vectors with significant weight. Physically, this means scans beyond two tube voltages contain largely redundant information. We concentrate on an analysis of the images associated with these two singular vectors. The first singular vector is dominant and images of the coefficients of the first singular vector at each voxel look are similar to any of the single-energy reconstructions. Images of the coefficients of the second singular vector by itself appear to be noise. However, by averaging the reconstructed voxels in each of several narrow bands of radii, we can obtain values of the second singular vector at each radius. In the core region, where we expect the germanium doping to go from a peak value at the fiber center to zero at the core-cladding boundary, we find that a plot of the two coefficients of the singular vectors forms a line in the two-dimensional space consistent with the dopant decreasing linearly with radial distance from the core center. The coating, made of a polymer rather than silica, is not on this line indicating that the two-dimensional results are sensitive not only to the density but also to the elemental composition.

13.
J Xray Sci Technol ; 26(6): 1011-1027, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30248067

RESUMO

BACKGROUND: High dose efficiency of photon counting detector based spectral CT (PCD-SCT) and its value in some clinical diagnosis have been well acknowledged. However, it has not been widely adopted in practical use for medical diagnosis and security inspection. OBJECTIVE: To evaluate the influence on PCD-SCT from multiple aspects including the number of energy channels, k-edge materials, energy thresholding, basis functions in spectral information decomposition, and the combined optimal setting for these parameters and configurations. METHODS: Basis material decomposition after spatial reconstruction is applied for PCD-SCT. A "one-step" synthesis method, merging decomposition with synthesis, is proposed to obtain virtual monochromatic images. An I-RMSE is computed using the bias part of I-RMSE to describe the difference of a synthesized signal from ground truth and the standard deviation part of I-RMSE to express the noise level. In addition, virtual monochromatic images commonly used in the medical area are also synthesized. Both numerical simulations and practical experiments are conducted for validation. RESULTS: Results indicated that the I-RMSE for matters significantly reduced with an increased number of energy channels compared with dual-energy channel. The maximum reduction is 6% for triple-, 18% for quadruple-and 24% for quintuple-energy, respectively. However, the improvement is not linear, and also slows down after the number of energy channels reaches a certain number. Contrast agents of high concentration can introduce up to 50% error to surrounding matters. Moreover, different energy partitions influence the total error, which demonstrates the necessity of energy threshold optimization. Last, the optimal basis-material combination varies according to targeted imaging matters and the interested monochromatic energies. CONCLUSIONS: Gain from more energy channels could be significant with the increase of energy channel number. Introduction of contrast agents in scanned objects will increase overall error in spectral CT imaging. Energy thresholding optimization is beneficial for information recovery. Moreover, the choice of basis materials could also be important to obtain low noise results. With these studies of the effect from various configurations for PCD-SCT, one may optimize the configuration of PCD-SCT accordingly.


Assuntos
Imagens de Fantasmas , Tomografia Computadorizada por Raios X/instrumentação , Tomografia Computadorizada por Raios X/métodos , Simulação por Computador , Desenho de Equipamento , Fótons , Reprodutibilidade dos Testes
14.
J Xray Sci Technol ; 22(2): 147-63, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24699344

RESUMO

Different from the single-energy CT (SECT), multi-energy CT (MECT) acquires projection data at different energy spectra, which makes that the MECT has more sparsity among the data of separate energy and over energy. In order to maximize utilization of all these sparse characteristics, this paper proposed a new tensor PRISM model to consistently treat a priori knowledge of the low rank, intensity and sparsity with the higher-dimensional tensor technique. The priori knowledge of low rank corresponds to the stationary background and similarity over the energy, and the intensity and sparsity represents the rest of image features at single energy. Then, the regularization and convex minimization problem was solved by tensor unfolding and an extended tensor-based split-Bregman algorithm. Different from the previous PRISM algorithm, the new algorithm mixed and treated different constraints consistently. Numerical experiments have shown that our tensor PRISM approach performs much better than the popular l1 regularization algorithm in terms of image quality for MECT.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Simulação por Computador , Imagens de Fantasmas
15.
J Xray Sci Technol ; 22(2): 241-51, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24699350

RESUMO

For complicated structural components characterized by wide X-ray attenuation ranges, the conventional fixed-energy imaging mode cannot obtain all structural information using a single tube voltage. This limitation results in information shortage, because the effective thickness of components along the orientation of the X-ray penetration exceeds the limit of the dynamic range of the X-ray imaging system. To solve this problem, multi-energy image sequence fusion technology has been advanced. In this new method, the tube voltage is adjusted several times by matching the voltage and the effective thickness to obtain all the effective local information on an object. Then, the subset sequences in the multi-energy image sequence are extracted based on the recursive template, and that are fused to reconstruct the full projection information based on linear weighting. An accompanying experiment demonstrates that the new technology can extend the dynamic range of X-ray imaging and provide a complete representation of the internal structure of complicated structural components.


Assuntos
Intensificação de Imagem Radiográfica/métodos , Radiografia/métodos , Raios X
16.
Phys Med Biol ; 69(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38876111

RESUMO

Objective.Active bone marrow (ABM) can serve as both an organ at risk and a target in external beam radiotherapy.18F-fluorothymidine (FLT) PET is the current gold standard for identifying proliferative ABM but it is not approved for human use, and PET scanners are not always available to radiotherapy clinics. Identifying ABM through other, more accessible imaging modalities will allow more patients to receive treatment specific to their ABM distribution. Multi-energy CT (MECT) and fat-fraction MRI (FFMRI) show promise in their ability to characterize bone marrow adiposity, but these methods require validation for identifying proliferative ABM.Approach.Six swine subjects were imaged using FFMRI, fast-kVp switching (FKS) MECT and sequential-scanning (SS) MECT to identify ABM volumes relative to FLT PET-derived ABM volumes. ABM was contoured on FLT PET images as the region within the bone marrow with a SUV above the mean. Bone marrow was then contoured on the FFMRI and MECT images, and thresholds were applied within these contours to determine which threshold produced the best agreement with the FLT PET determined ABM contour. Agreement between contours was measured using the Dice similarity coefficient (DSC).Main results.FFMRI produced the best estimate of the PET ABM contour. Compared to FLT PET ABM volumes, the FFMRI, SS MECT and FKS MECT ABM contours produced average peak DSC of 0.722 ± 0.080, 0.619 ± 0.070, and 0.464 ± 0.080, respectively. The ABM volume was overestimated by 40.51%, 97.63%, and 140.13% by FFMRI, SS MECT and FKS MECT, respectively.Significance.This study explored the ability of FFMRI and MECT to identify the proliferative relative to ABM defined by FLT PET. Of the methods investigated, FFMRI emerged as the most accurate approximation to FLT PET-derived active marrow contour, demonstrating superior performance by both DSC and volume comparison metrics. Both FFMRI and SS MECT show promise for providing patient-specific ABM treatments.


Assuntos
Medula Óssea , Estudos de Viabilidade , Imageamento por Ressonância Magnética , Tomografia Computadorizada por Raios X , Medula Óssea/diagnóstico por imagem , Animais , Imageamento por Ressonância Magnética/métodos , Suínos , Proliferação de Células , Tomografia por Emissão de Pósitrons , Processamento de Imagem Assistida por Computador/métodos , Tecido Adiposo/diagnóstico por imagem
17.
Talanta ; 272: 125787, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38401267

RESUMO

Multi-signal calibrations have been recently exploited in molecular spectrochemical analysis alternatively to traditional calibration methods, improving analytical frequency and accuracy. The application of these strategies is simple and minimizes efficiently matrix effects by analyzing two calibration solutions comprising sample plus standard (S1), and sample plus blank (S2). The plot of the signals obtained with S1 and S2 at multiple settings (e.g. different wavelengths) yield a slope that can be related to the analyte concentration in the sample. Similarly, transient signals could also be related to the analyte concentration exploiting a similar strategy. Thus, in this work, two multi-signal approaches developed in flow-based systems are proposed, based on the responses at multiple wavelengths (online multi-energy calibration, OMEC), and on the dispersion profile of the samples, herein denominated multi-dispersion calibration (MDC). The calibrations were carried out with sample solutions after 2-fold dilution with a standard solution and with water. The feasibility of OMEC and MDC were demonstrated using KMnO4 solutions (without chemical reactions) under continuous and pulsed flow regimes. The applicability of this strategy was also demonstrated by the spectrophotometric determination of urea in milk and pet potty spray in a multi-pumping flow system, based on the color change of bromothymol blue after catalyzed hydrolysis by urease from jack beans (Canavalia ensiformis). MDC and OMEC were compared with external calibrations (EC) and classical standard addition. The limits of detection for urea were estimated at 13 mg L-1, 16 mg L-1, and 10 mg L-1 using MDC, MEC and EC, respectively. Recoveries from 93 to 101%, and the agreement of sample analyzes with the reference procedure demonstrated the good accuracy achieved by the proposed methods. Therefore, it was demonstrated the feasibility of MDC and OMEC for analytical purposes in a simple and efficient way with the advantages of flow-based manifolds.

18.
Heliyon ; 10(1): e23013, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38148814

RESUMO

Emerging from the development of single-energy Computed Tomography (CT) and Dual-Energy Computed Tomography, Multi-Energy Computed Tomography (MECT) is a promising tool allowing advanced material and tissue decomposition and thereby enabling the use of multiple contrast materials in preclinical research. The scope of this work was to evaluate whether a usual preclinical micro-CT system is applicable for the decomposition of different materials using MECT together with a matrix-inversion method and how different changes of the measurement-environment affect the results. A matrix-inversion based algorithm to differentiate up to five materials (iodine, iron, barium, gadolinium, residual material) by applying four different acceleration voltages/energy levels was established. We carried out simulations using different ratios and concentrations (given in fractions of volume units, VU) of the four different materials (plus residual material) at different noise-levels for 30 keV, 40 keV, 50 keV, 60 keV, 80 keV and 100 keV (monochromatic). Our simulation results were then confirmed by using region of interest-based measurements in a phantom-study at corresponding acceleration voltages. Therefore, different mixtures of contrast materials were scanned using a micro-CT. Voxel wise evaluation of the phantom imaging data was conducted to confirm its usability for future imaging applications and to estimate the influence of varying noise-levels, scattering, artifacts and concentrations. The analysis of our simulations showed the smallest deviation of 0.01 (0.003-0.15) VU between given and calculated concentrations of the different contrast materials when using an energy-combination of 30 keV, 40 keV, 50 keV and 100 keV for MECT. Subsequent MECT phantom measurements, however, revealed a combination of acceleration voltages of 30 kV, 40 kV, 60 kV and 100 kV as most effective for performing material decomposition with a deviation of 0.28 (0-1.07) mg/ml. The feasibility of our voxelwise analyses using the proposed algorithm was then confirmed by the generation of phantom parameter-maps that matched the known contrast material concentrations. The results were mostly influenced by the noise-level and the concentrations used in the phantoms. MECT using a standard micro-CT combined with a matrix inversion method is feasible at four different imaging energies and allows the differentiation of mixtures of up to four contrast materials plus an additional residual material.

19.
Sci Rep ; 14(1): 22513, 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39341833

RESUMO

In this paper, a high-gain low-switching-stress coupled-inductor with high voltage step-up voltage multiplier cells quadratic boost converter (VMC-QBC) is proposed. The turn ratio of the coupled inductors and the switch duty cycle increase the dynamic gain, and the two degrees of freedom adjustment and modularity of the voltage multiplier cells (VMC) make the structure more flexible. The use of the same drive signal for both switches makes control easier. While achieving multi-stage boosting and multiplication boosting from low to medium duty cycle, the passive clamping circuit absorbs the energy leaked by the coupled inductor, thus reducing the stress on the switching tube and alleviating the diode reverse recovery problem. A non-ideal model with parasitic parameters is developed to analyse the real voltage gain and the converter losses to give design guidelines. A 300 W prototype is designed and tested. The state space model of the converter is established and the working principle is analysed. Compared to other high-gain quadratic boost converters, the proposed converter has continuous input current, common ground characteristics, and high voltage gain at low to medium duty cycles to accommodate integrated multi-energy storage systems.

20.
Phys Med Biol ; 69(18)2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39137803

RESUMO

Objective.Multi-energy CT conducted by photon-counting detector has a wide range of applications, especially in multiple contrast agents imaging. However, static multi-energy (SME) CT imaging suffers from higher statistical noise because of increased energy bins with static energy thresholds. Our team has proposed a dynamic dual-energy (DDE) CT detector model and the corresponding iterative reconstruction algorithm to solve this problem. However, rigorous and detailed analysis of the statistical noise characterization in this DDE CT was lacked.Approach.Starting from the properties of the Poisson random variable, this paper analyzes the noise characterization of the DDE CT and compares it with the SME CT. It is proved that the multi-energy CT projections and reconstruction images calculated from the proposed DDE CT algorithm have less statistical noise than that of the SME CT.Main results.Simulations and experiments verify that the expectations of the multi-energy CT projections calculated from DDE CT are the same as those of the SME projections. Still, the variance of the former is smaller. We further analyze the convergence of the iterative DDE CT algorithm through simulations and prove that the derived noise characterization can be realized under different CT imaging configurations.Significance.The low statistical noise characteristics demonstrate the value of DDE CT imaging technology.


Assuntos
Processamento de Imagem Assistida por Computador , Razão Sinal-Ruído , Tomografia Computadorizada por Raios X , Tomografia Computadorizada por Raios X/métodos , Processamento de Imagem Assistida por Computador/métodos , Algoritmos , Imagens de Fantasmas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA