Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 260
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(5): e2204427120, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36693105

RESUMO

Physical inactivity is a scourge to human health, promoting metabolic disease and muscle wasting. Interestingly, multiple ecological niches have relaxed investment into physical activity, providing an evolutionary perspective into the effect of adaptive physical inactivity on tissue homeostasis. One such example, the Mexican cavefish Astyanax mexicanus, has lost moderate-to-vigorous activity following cave colonization, reaching basal swim speeds ~3.7-fold slower than their river-dwelling counterpart. This change in behavior is accompanied by a marked shift in body composition, decreasing total muscle mass and increasing fat mass. This shift persisted at the single muscle fiber level via increased lipid and sugar accumulation at the expense of myofibrillar volume. Transcriptomic analysis of laboratory-reared and wild-caught cavefish indicated that this shift is driven by increased expression of pparγ-the master regulator of adipogenesis-with a simultaneous decrease in fast myosin heavy chain expression. Ex vivo and in vivo analysis confirmed that these investment strategies come with a functional trade-off, decreasing cavefish muscle fiber shortening velocity, time to maximal force, and ultimately maximal swimming speed. Despite this, cavefish displayed a striking degree of muscular endurance, reaching maximal swim speeds ~3.5-fold faster than their basal swim speeds. Multi-omic analysis suggested metabolic reprogramming, specifically phosphorylation of Pgm1-Threonine 19, as a key component enhancing cavefish glycogen metabolism and sustained muscle contraction. Collectively, we reveal broad skeletal muscle changes following cave colonization, displaying an adaptive skeletal muscle phenotype reminiscent to mammalian disuse and high-fat models while simultaneously maintaining a unique capacity for sustained muscle contraction via enhanced glycogen metabolism.


Assuntos
Characidae , Animais , Humanos , Characidae/genética , Evolução Biológica , Glicogênio , Músculos , México , Cavernas , Mamíferos
2.
J Biol Chem ; : 107855, 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39369989

RESUMO

Thioesterase superfamily member 2 (Them2), a long-chain fatty acyl-CoA thioesterase that is highly expressed in oxidative tissues, interacts with phosphatidylcholine transfer protein (PC-TP) to regulate hepatic lipid and glucose metabolism and to suppress insulin signaling. High-fat diet (HFD)-fed mice lacking Them2 globally or specifically in skeletal muscle, but not liver, exhibit reduced hepatic steatosis and insulin resistance. Here, we report that the capacity of Them2 in skeletal muscle to promote hepatic steatosis and insulin resistance depends on both its catalytic activity and interaction with PC-TP. Two residues of Them2 catalytic site were mutated (N50A/D65A) to produce the inactive enzyme while maintaining its homotetrameric structure and interaction with PC-TP. Restoration of skeletal muscle expression in Them2-/- mice using recombinant adeno-associated virus revealed that wild-type (WT), but not N50A/D65A Them2, promoted HFD-induced weight gain and hepatic steatosis. This was accompanied by greater impairment of insulin sensitivity in WT compared with N50A/D65A Them2. Pharmacological inhibition or genetic ablation of PC-TP attenuated these effects. In reductionist experiments, conditioned medium collected from WT primary cultured myotubes promoted excess lipid accumulation in oleic acid-treated primary cultured hepatocytes relative to Them2-/- myotubes, which was attributable to secreted extracellular vesicles (EV). Reconstitution of Them2 expression in Them2-/- myotubes affirmed the requirements for catalytic activity and PC-TP interactions for EV to promote lipid accumulation in hepatocytes. These studies provide valuable mechanistic insights whereby Them2 in skeletal muscle promotes hepatic steatosis and establish both Them2 and PC-TP as represent attractive targets for managing metabolic dysfunction-associated steatotic liver disease.

3.
Mol Med ; 30(1): 80, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858657

RESUMO

BACKGROUND: Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease that commonly results from a high-calorie diet and sedentary lifestyle, leading to insulin resistance and glucose homeostasis perturbation. Physical activity is recommended as one first-line treatment in T2DM, but it leads to contrasted results. We hypothesized that, instead of applying standard exercise protocols, the prescription of personalized exercise programs specifically designed to reverse the potential metabolic alterations in skeletal muscle could result in better results. METHODS: To test this hypothesis, we drew the metabolic signature of the fast-twitch quadriceps muscle, based on a combined unbiased NMR spectroscopy and RT-qPCR study, in several T2DM mouse models of different genetic background (129S1/SvImJ, C57Bl/6J), sex and aetiology (high-fat diet (HFD) or HFD/Streptozotocin (STZ) induction or transgenic MKR (FVB-Tg Ckm-IGF1R*K1003R)1Dlr/J) mice. Three selected mouse models with unique muscular metabolic signatures were submitted to three different swimming-based programs, designed to address each metabolic specificity. RESULTS: We found that depending on the genetic background, the sex, and the mode of T2DM induction, specific muscular adaptations occurred, including depressed glycolysis associated with elevated PDK4 expression, shift to ß-oxidation, or deregulation of amino-acid homeostasis. Interestingly, dedicated swimming-based exercises designed to restore specific metabolic alterations in muscle were found optimal in improving systemic T2DM hallmarks, including a significant reduction in insulin resistance, the improvement of glucose homeostasis, and a delay in sensorimotor function alterations. CONCLUSION: The muscle metabolism constitutes an important clue for the design of precision exercises with potential clinical implications for T2DM patients.


Assuntos
Diabetes Mellitus Tipo 2 , Modelos Animais de Doenças , Músculo Esquelético , Condicionamento Físico Animal , Animais , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/terapia , Diabetes Mellitus Tipo 2/genética , Músculo Esquelético/metabolismo , Camundongos , Masculino , Feminino , Dieta Hiperlipídica/efeitos adversos , Camundongos Endogâmicos C57BL , Resistência à Insulina , Metaboloma , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/terapia , Camundongos Transgênicos , Metabolômica/métodos
4.
J Transl Med ; 22(1): 675, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39039509

RESUMO

BACKGROUND: Effects of preoperative drinks on muscle metabolism are unclear despite general recommendations. The aim of the present study was therefore to compare metabolic effects of a preoperative oral nutrition drink, recommended by protocols for enhanced recovery after surgery (ERAS), compared to overnight preoperative peripheral total parenteral nutrition (PPN) on skeletal muscle metabolism in patients aimed at major gastrointestinal cancer surgery. METHODS: Patients were randomized, based on diagnosis and clinical characteristics, to receive either a commercial carbohydrate-rich nutrition drink (Drink); or overnight (12 h) peripheral parenteral nutrition (PPN) as study regimens; compared to isotone Ringer-acetate as Control regimen. Arterial blood- and abdominal muscle tissue specimens were collected at start of surgery. Blood chemistry included substrate- and hormone concentrations. Muscle mRNA transcript analyses were performed by microarray and evaluated for changes in gene activities by Gene Ontology algorithms. RESULTS: Patient groups were comparable in all measured preoperative assessments. The Nutrition Drink had significant metabolic alterations on muscle glucose metabolism (p < 0.05), without any significant effects on amino acid- and protein metabolism. PPN showed similar significant effects on glucose metabolism as Drinks (p < 0.05), but indicated also major positive effects on amino acid- (p < 0.001) and protein anabolism (p < 0.05), particularly by inhibition of muscle protein degradation, related to both ubiquitination of proteins and autophagy/lysosome pathways (p < 0.05). CONCLUSION: Conventional overnight preoperative PPN seems effective to induce and support improved muscle protein metabolism in patients aimed at major cancer surgery while preoperative oral carbohydrate loading, according to ERAS-protocols, was ineffective to improve skeletal muscle catabolism and should therefore not be recommended before major cancer surgery. Trial registration Clinical trials.gov: NCT05080816, Registered June 10th 2021- Retrospectively registered. https://clinicaltrials.gov/study/NCT05080816.


Assuntos
Glucose , Músculo Esquelético , Humanos , Músculo Esquelético/metabolismo , Masculino , Feminino , Glucose/metabolismo , Idoso , Pessoa de Meia-Idade , Cuidados Pré-Operatórios , Ontologia Genética , Pesquisa Translacional Biomédica , Dieta da Carga de Carboidratos , Proteínas Musculares/metabolismo , Neoplasias/cirurgia , Nutrição Parenteral Total , Administração Oral
5.
Am J Physiol Regul Integr Comp Physiol ; 326(4): R297-R310, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38372126

RESUMO

The cold and hypoxic conditions at high altitude necessitate high metabolic O2 demands to support thermogenesis while hypoxia reduces O2 availability. Skeletal muscles play key roles in thermogenesis, but our appreciation of muscle plasticity and adaptation at high altitude has been hindered by past emphasis on only a small number of muscles. We examined this issue in deer mice (Peromyscus maniculatus). Mice derived from both high-altitude and low-altitude populations were born and raised in captivity and then acclimated as adults to normoxia or hypobaric hypoxia (12 kPa O2 for 6-8 wk). Maximal activities of citrate synthase (CS), cytochrome c oxidase (COX), ß-hydroxyacyl-CoA dehydrogenase (HOAD), hexokinase (HK), pyruvate kinase (PK), and lactate dehydrogenase (LDH) were measured in 20 muscles involved in shivering, locomotion, body posture, ventilation, and mastication. Principal components analysis revealed an overall difference in muscle phenotype between populations but no effect of hypoxia acclimation. High-altitude mice had greater activities of mitochondrial enzymes and/or lower activities of PK or LDH across many (but not all) respiratory, limb, core and mastication muscles compared with low-altitude mice. In contrast, chronic hypoxia had very few effects across muscles. Further examination of CS in the gastrocnemius showed that population differences in enzyme activity stemmed from differences in protein abundance and mRNA expression but not from population differences in CS amino acid sequence. Overall, our results suggest that evolved increases in oxidative capacity across many skeletal muscles, at least partially driven by differences in transcriptional regulation, may contribute to high-altitude adaptation in deer mice.NEW & NOTEWORTHY Most previous studies of muscle plasticity and adaptation in high-altitude environments have focused on a very limited number of skeletal muscles. Comparing high-altitude versus low-altitude populations of deer mice, we show that a large number of muscles involved in shivering, locomotion, body posture, ventilation, and mastication exhibit greater mitochondrial enzyme activities in the high-altitude population. Therefore, evolved increases in mitochondrial oxidative capacity across skeletal muscles contribute to high-altitude adaptation.


Assuntos
Altitude , Peromyscus , Animais , Peromyscus/fisiologia , Hipóxia/metabolismo , Músculo Esquelético/metabolismo , Aclimatação , Fenótipo
6.
Eur J Appl Physiol ; 124(6): 1795-1805, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38231229

RESUMO

This study aimed to investigate the effects of a 4-week live high train low (LHTL; FiO2 ~ 13.5%), intervention, followed by a tapering phase, on muscle glycogen concentration. Fourteen physically active males (28 ± 6 years, 81.6 ± 15.4 kg, 179 ± 5.2 cm) were divided into a control group (CON; n = 5), and the group that performed the LHTL, which was exposed to hypoxia (LHTL; n = 9). The subjects trained using a one-legged knee extension exercise, which enabled four experimental conditions: leg training in hypoxia (TLHYP); leg control in hypoxia (CLHYP, n = 9); leg trained in normoxia (TLNOR, n = 5), and leg control in normoxia (CLNOR, n = 5). All participants performed 18 training sessions lasting between 20 and 45 min [80-200% of intensity corresponding to the time to exhaustion (TTE) reached in the graded exercise test]. Additionally, participants spent approximately 10 h day-1 in either a normobaric hypoxic environment (14.5% FiO2; ~ 3000 m) or a control condition (i.e., staying in similar tents on ~ 530 m). Thereafter, participants underwent a taper protocol consisting of six additional training sessions with a reduced training load. SpO2 was lower, and the hypoxic dose was higher in LHTL compared to CON (p < 0.001). After 4 weeks, glycogen had increased significantly only in the TLNOR and TLHYP groups and remained elevated after the taper (p < 0.016). Time to exhaustion in the LHTL increased after both the 4-week training period and the taper compared to the baseline (p < 0.001). Although the 4-week training promoted substantial increases in muscle glycogen content, TTE increased in LHTL condition.


Assuntos
Glicogênio , Músculo Esquelético , Humanos , Masculino , Glicogênio/metabolismo , Músculo Esquelético/fisiologia , Músculo Esquelético/metabolismo , Adulto , Hipóxia/metabolismo , Exercício Físico/fisiologia , Consumo de Oxigênio/fisiologia , Adulto Jovem
7.
Sensors (Basel) ; 24(11)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38894105

RESUMO

Combining proton and phosphorus magnetic resonance spectroscopy offers a unique opportunity to study the oxidative and glycolytic components of metabolism in working muscle. This paper presents a 7 T proton calf coil design that combines dipole and loop elements to achieve the high performance necessary for detecting metabolites with low abundance and restricted visibility, specifically lactate, while including the option of adding a phosphorus array. We investigated the transmit, receive, and parallel imaging performance of three transceiver dipoles with six pair-wise overlap-decoupled standard or twisted pair receive-only coils. With a higher SNR and more efficient transmission decoupling, standard loops outperformed twisted pair coils. The dipoles with standard loops provided a four-fold-higher image SNR than a multinuclear reference coil comprising two proton channels and 32% more than a commercially available 28-channel proton knee coil. The setup enabled up to three-fold acceleration in the right-left direction, with acceptable g-factors and no visible aliasing artefacts. Spectroscopic phantom measurements revealed a higher spectral SNR for lactate with the developed setup than with either reference coil and fewer restrictions in voxel placement due to improved transmit homogeneity. This paper presents a new use case for dipoles and highlights their advantages for the integration in multinuclear calf coils.


Assuntos
Imageamento por Ressonância Magnética , Músculo Esquelético , Imagens de Fantasmas , Humanos , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/química , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Razão Sinal-Ruído , Ácido Láctico/química , Ácido Láctico/metabolismo
8.
Int J Mol Sci ; 25(15)2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39125786

RESUMO

Glucagon-like peptide-1 receptor agonists (GLP-1 RA) are novel antihyperglycemic agents. By acting through the central nervous system, they increase satiety and reduce food intake, thus lowering body weight. Furthermore, they increase the secretion of insulin while decreasing the production of glucagon. However, recent studies suggest a more complex metabolic impact through the interaction with various other tissues. In our present review, we aim to provide a summary of the effects of GLP-1 RA on serum lipids, adipose tissue, and muscle metabolism. It has been found that GLP-1 RA therapy is associated with decreased serum cholesterol levels. Epicardial adipose tissue thickness, hepatic lipid droplets, and visceral fat volume were reduced in obese patients with cardiovascular disease. GLP-1 RA therapy decreased the level of proinflammatory adipokines and reduced the expression of inflammatory genes. They have been found to reduce endoplasmic reticulum stress in adipocytes, leading to better adipocyte function and metabolism. Furthermore, GLP-1 RA therapy increased microvascular blood flow in muscle tissue, resulting in increased myocyte metabolism. They inhibited muscle atrophy and increased muscle mass and function. It was also observed that the levels of muscle-derived inflammatory cytokines decreased, and insulin sensitivity increased, resulting in improved metabolism. However, some clinical trials have been conducted on a very small number of patients, which limits the strength of these observations.


Assuntos
Tecido Adiposo , Agonistas do Receptor do Peptídeo 1 Semelhante ao Glucagon , Animais , Humanos , Tecido Adiposo/metabolismo , Tecido Adiposo/efeitos dos fármacos , Agonistas do Receptor do Peptídeo 1 Semelhante ao Glucagon/farmacologia , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipídeos/sangue , Músculo Esquelético/metabolismo , Músculo Esquelético/efeitos dos fármacos , Músculos/metabolismo , Músculos/efeitos dos fármacos
9.
J Physiol ; 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37606604

RESUMO

Endurance exercise performance is known to be closely associated with the three physiological pillars of maximal O2 uptake ( V ̇ O 2 max $\dot{V}_{{\rm O}_{2}{\rm max}}$ ), economy or efficiency during submaximal exercise, and the fractional utilisation of V ̇ O 2 max $\dot{V}_{{\rm O}_{2}{\rm max}}$ (linked to metabolic/lactate threshold phenomena). However, while 'start line' values of these variables are collectively useful in predicting performance in endurance events such as the marathon, it is not widely appreciated that these variables are not static but are prone to significant deterioration as fatiguing endurance exercise proceeds. For example, the 'critical power' (CP), which is a composite of the highest achievable steady-state oxidative metabolic rate and efficiency (O2 cost per watt), may fall by an average of 10% following 2 h of heavy intensity cycle exercise. Even more striking is that the extent of this deterioration displays appreciable inter-individual variability, with changes in CP ranging from <1% to ∼32%. The mechanistic basis for such differences in fatigue resistance or 'physiological resilience' are not resolved. However, resilience may be important in explaining superlative endurance performance and it has implications for the physiological evaluation of athletes and the design of interventions to enhance performance. This article presents new information concerning the dynamic plasticity of the three 'traditional' physiological variables and argues that physiological resilience should be considered as an additional component, or fourth dimension, in models of endurance exercise performance.

10.
Am J Physiol Regul Integr Comp Physiol ; 324(6): R720-R734, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36939210

RESUMO

Interval training has been found to lower glucose concentrations and increase insulin sensitivity in males but not in females, which may be due to inherent sex-based differences in metabolism. Twenty-four (12/sex) participants completed a bout of high-intensity interval exercise (HIIE, 10 × 1 min at 90% HRmax) to evaluate whether sex influenced the physiological effects of HIIE on postexercise glycemic control during an oral glucose tolerance test (OGTT). Given that body anthropometrics influence postprandial glucose, data were also expressed as a function of the normalized glucose dose. In addition, we examined whether sex differences in postexercise glycemic control were related to sex differences in muscle metabolism and/or insulin signaling proteins. HIIE increased insulin sensitivity in both sexes as characterized by the Matsuda (P = 0.03, ηp2= 0.20) and HOMA-IR (P = 0.047, ηp2 = 0.17) indices. HIIE also lowered insulin concentration during the OGTT (P = 0.04, ηp2 = 0.18) as compared with control. When normalized for glucose dose relative to lean mass, glucose area under the curve (AUC) was lower in females than in males (P ≤ 0.001, ηp2 = 0.47). TBC1D1 Ser237 phosphorylation increased in males, but not in females, postexercise (P = 0.03, ηp2 = 0.19). There was no difference in total insulin signaling protein content, muscle glycogen utilization, or AMPK activation during exercise between the sexes. These findings indicate that when the glucose dose is normalized for differences in body composition glycemic handling is better in females and that an acute bout of HIIE improves insulin sensitivity equally in healthy males and females.


Assuntos
Treinamento Intervalado de Alta Intensidade , Resistência à Insulina , Humanos , Feminino , Masculino , Fosforilação , Exercício Físico/fisiologia , Resistência à Insulina/fisiologia , Insulina/metabolismo , Glucose/metabolismo , Glicemia/metabolismo , Proteínas Ativadoras de GTPase/metabolismo
11.
NMR Biomed ; 36(12): e5031, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37797947

RESUMO

In this second part of a two-part paper, we intend to demonstrate the impact of the previously proposed advanced quality control pipeline. To understand its benefit and challenge the proposed methodology in a real scenario, we chose to compare the outcome when applying it to the analysis of two patient populations with significant but highly different types of fatigue: COVID-19 and multiple sclerosis (MS). 31 P-MRS was performed on a 3 T clinical MRI, in 19 COVID-19 patients, 38 MS patients, and 40 matched healthy controls. Dynamic acquisitions using an MR-compatible ergometer ran over a rest (40 s), exercise (2 min), and a recovery phase (6 min). Long and short TR acquisitions were also made at rest for T1 correction. The advanced data quality control pipeline presented in Part 1 is applied to the selected patient cohorts to investigate its impact on clinical outcomes. We first used power and sample size analysis to estimate objectively the impact of adding the quality control score (QCS). Then, comparisons between patients and healthy control groups using the validated QCS were performed using unpaired t tests or Mann-Whitney tests (p < 0.05). The application of the QCS resulted in increased statistical power, changed the values of several outcome measures, and reduced variability (standard deviation). A significant difference was found between the T1PCr and T1Pi values of MS patients and healthy controls. Furthermore, the use of a fixed correction factor led to systematically higher estimated concentrations of PCr and Pi than when using individually corrected factors. We observed significant differences between the two patient populations and healthy controls for resting [PCr]-MS only, [Pi ], [ADP], [H2 PO4 - ], and pH-COVID-19 only, and post-exercise [PCr], [Pi ], and [H2 PO4 - ]-MS only. The dynamic indicators τPCr , τPi , ViPCr , and Vmax were reduced for COVID-19 and MS patients compared with controls. Our results show that QCS in dynamic 31 P-MRS studies results in smaller data variability and therefore impacts study sample size and power. Although QCS resulted in discarded data and therefore reduced the acceptable data and subject numbers, this rigorous and unbiased approach allowed for proper assessment of muscle metabolites and metabolism in patient populations. The outcomes include an increased metabolite T1 , which directly affects the T1 correction factor applied to the amplitudes of the metabolite, and a prolonged τPCr , indicating reduced muscle oxidative capacity for patients with MS and COVID-19.


Assuntos
COVID-19 , Metabolismo Energético , Humanos , Espectroscopia de Ressonância Magnética/métodos , Fosfocreatina/metabolismo , Metabolismo Energético/fisiologia , Músculo Esquelético/metabolismo , COVID-19/metabolismo
12.
NMR Biomed ; 36(12): e5025, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37797948

RESUMO

Implementing a standardized phosphorus-31 magnetic resonance spectroscopy (31 P-MRS) dynamic acquisition protocol to evaluate skeletal muscle energy metabolism and monitor muscle fatigability, while being compatible with various longitudinal clinical studies on diversified patient cohorts, requires a high level of technicality and expertise. Furthermore, processing data to obtain reliable results also demands a great degree of expertise from the operator. In this two-part article, we present an advanced quality control approach for data acquired using a dynamic 31 P-MRS protocol. The aim is to provide decision support to the operator to assist in data processing and obtain reliable results based on objective criteria. We present here, in part 1, an advanced data quality control (QC) approach of a dynamic 31 P-MRS protocol. Part 2 is an impact study that will demonstrate the added value of the QC approach to explore data derived from two clinical populations that experience significant fatigue, patients with coronavirus disease 2019 and multiple sclerosis. In part 1, 31 P-MRS was performed using 3-T clinical MRI in 175 subjects from clinical and healthy control populations conducted in a University Hospital. An advanced data QC score (QCS) was developed using multiple objective criteria. The criteria were based on current recommendations from the literature enriched by new proposals based on clinical experience. The QCS was designed to indicate valid and corrupt data and guide necessary objective data editing to extract as much valid physiological data as possible. Dynamic acquisitions using an MR-compatible ergometer ran over a rest (40 s), exercise (2 min), and a recovery phase (6 min). Using QCS enabled rapid identification of subjects with data anomalies, allowing the user to correct the data series or reject them partially or entirely, as well as identify fully valid datasets. Overall, the use of the QCS resulted in the automatic classification of 45% of the subjects, including 58 participants who had data with no criterion violation and 21 participants with violations that resulted in the rejection of all dynamic data. The remaining datasets were inspected manually with guidance, allowing acceptance of full datasets from an additional 80 participants and recovery phase data from an additional 16 subjects. Overall, more anomalies occurred with patient data (35% of datasets) compared with healthy controls (15% of datasets). In conclusion, the QCS ensures a standardized data rejection procedure and rigorous objective analysis of dynamic 31 P-MRS data obtained from patients. This methodology contributes to efforts made to standardize 31 P-MRS practices that have been underway for a decade, with the goal of making it an empowered tool for clinical research.


Assuntos
Músculo Esquelético , Fósforo , Humanos , Fósforo/química , Músculo Esquelético/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Metabolismo Energético , Imageamento por Ressonância Magnética , Fosfocreatina/metabolismo
13.
Muscle Nerve ; 68(3): 250-256, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37226557

RESUMO

Metabolic myopathies are a set of rare inborn errors of metabolism leading to disruption in energy production. Relevant to skeletal muscle, glycogen storage disease and fatty acid oxidation defects can lead to exercise intolerance, rhabdomyolysis, and weakness in children and adults, distinct from the severe forms that involve multiple-organ systems. These nonspecific, dynamic symptoms along with conditions that mimic metabolic myopathies can make diagnosis challenging. Clinicians can shorten the time to diagnosis by recognizing the typical clinical phenotypes and performing next generation sequencing. With improved access and affordability of molecular testing, clinicians need to be well-versed in resolving variants of uncertain significance relevant to metabolic myopathies. Once identified, patients can improve quality of life, safely engage in exercise, and reduce episodes of rhabdomyolysis by modifying diet and lifestyle habits.


Assuntos
Erros Inatos do Metabolismo , Miopatias Mitocondriais , Doenças Musculares , Rabdomiólise , Humanos , Qualidade de Vida , Doenças Musculares/diagnóstico , Doenças Musculares/genética , Doenças Musculares/terapia , Erros Inatos do Metabolismo/diagnóstico , Erros Inatos do Metabolismo/metabolismo , Músculo Esquelético/metabolismo , Miopatias Mitocondriais/diagnóstico
14.
Cell Mol Life Sci ; 79(6): 321, 2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35622133

RESUMO

BACKGROUND: Skeletal muscles (SkM) are mechanosensitive, with mechanical unloading resulting in muscle-devastating conditions and altered metabolic properties. However, it remains unexplored whether these atrophic conditions affect SkM mechanosensors and molecular clocks, both crucial for their homeostasis and consequent physiological metabolism. METHODS: We induced SkM atrophy through 14 days of hindlimb suspension (HS) in 10 male C57BL/6J mice and 10 controls (CTR). SkM histology, gene expressions and protein levels of mechanosensors, molecular clocks and metabolism-related players were examined in the m. Gastrocnemius and m. Soleus. Furthermore, we genetically reduced the expression of mechanosensors integrin-linked kinase (Ilk1) and kindlin-2 (Fermt2) in myogenic C2C12 cells and analyzed the gene expression of mechanosensors, clock components and metabolism-controlling genes. RESULTS: Upon hindlimb suspension, gene expression levels of both core molecular clocks and mechanosensors were moderately upregulated in m. Gastrocnemius but strongly downregulated in m. Soleus. Upon unloading, metabolism- and protein biosynthesis-related genes were moderately upregulated in m. Gastrocnemius but downregulated in m. Soleus. Furthermore, we identified very strong correlations between mechanosensors, metabolism- and circadian clock-regulating genes. Finally, genetically induced downregulations of mechanosensors Ilk1 and Fermt2 caused a downregulated mechanosensor, molecular clock and metabolism-related gene expression in the C2C12 model. CONCLUSIONS: Collectively, these data shed new lights on mechanisms that control muscle loss. Mechanosensors are identified to crucially control these processes, specifically through commanding molecular clock components and metabolism.


Assuntos
Relógios Biológicos , Mecanorreceptores , Músculo Esquelético , Atrofia Muscular , Animais , Relógios Biológicos/genética , Relógios Biológicos/fisiologia , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Expressão Gênica , Elevação dos Membros Posteriores , Masculino , Mecanorreceptores/metabolismo , Mecanotransdução Celular/genética , Mecanotransdução Celular/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , Doenças Musculares/genética , Doenças Musculares/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo
15.
Int J Mol Sci ; 24(23)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38069273

RESUMO

Fibroblast growth factor 21 (FGF21) plays a vital role in normal eukaryotic organism development and homeostatic metabolism under the influence of internal and external factors such as endogenous hormone changes and exogenous stimuli. Over the last few decades, comprehensive studies have revealed the key role of FGF21 in regulating many fundamental metabolic pathways, including the muscle stress response, insulin signaling transmission, and muscle development. By coordinating these metabolic pathways, FGF21 is thought to contribute to acclimating to a stressful environment and the subsequent recovery of cell and tissue homeostasis. With the emphasis on FGF21, we extensively reviewed the research findings on the production and regulation of FGF21 and its role in muscle metabolism. We also emphasize how the FGF21 metabolic networks mediate mitochondrial dysfunction, glycogen consumption, and myogenic development and investigate prospective directions for the functional exploitation of FGF21 and its downstream effectors, such as the mammalian target of rapamycin (mTOR).


Assuntos
Fatores de Crescimento de Fibroblastos , Transdução de Sinais , Estudos Prospectivos , Fatores de Crescimento de Fibroblastos/metabolismo , Músculos/metabolismo
16.
Int J Mol Sci ; 24(6)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36982383

RESUMO

The molecular mechanisms linking obstructive sleep apnea (OSA) with type 2 diabetes mellitus (T2DM) remain unclear. This study investigated the effect of OSA on skeletal muscle lipid oxidation in nondiabetic controls and in type 2 diabetes (T2DM) patients. Forty-four participants matched for age and adiposity were enrolled: nondiabetic controls (control, n = 14), nondiabetic patients with severe OSA (OSA, n = 9), T2DM patients with no OSA (T2DM, n = 10), and T2DM patients with severe OSA (T2DM + OSA, n = 11). A skeletal muscle biopsy was performed; gene and protein expressions were determined and lipid oxidation was analyzed. An intravenous glucose tolerance test was performed to investigate glucose homeostasis. No differences in lipid oxidation (178.2 ± 57.1, 161.7 ± 22.4, 169.3 ± 50.9, and 140.0 ± 24.1 pmol/min/mg for control, OSA, T2DM, and T2DM+OSA, respectively; p > 0.05) or gene and protein expressions were observed between the groups. The disposition index, acute insulin response to glucose, insulin resistance, plasma insulin, glucose, and HBA1C progressively worsened in the following order: control, OSA, T2DM, and T2DM + OSA (p for trend <0.05). No association was observed between the muscle lipid oxidation and the glucose metabolism variables. We conclude that severe OSA is not associated with reduced muscle lipid oxidation and that metabolic derangements in OSA are not mediated through impaired muscle lipid oxidation.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Insulinas , Apneia Obstrutiva do Sono , Humanos , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Voluntários Saudáveis , Polissonografia , Apneia Obstrutiva do Sono/metabolismo , Glucose/metabolismo , Músculos/metabolismo , Lipídeos
17.
Am J Physiol Cell Physiol ; 323(2): C606-C616, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35785986

RESUMO

The impact of aerobic training on human skeletal muscle cell (HSkMC) mitochondrial metabolism is a significant research gap, critical to understanding the mechanisms by which exercise augments skeletal muscle metabolism. We therefore assessed mitochondrial content and capacity in fully differentiated CD56+ HSkMCs from lean active (LA) and sedentary individuals with obesity (OS) at baseline, as well as lean/overweight sedentary individuals (LOS) at baseline and following an 18-day aerobic training intervention. Participants had in vivo skeletal muscle PCr recovery rate by 31P-MRS (mitochondrial oxidative kinetics) and cardiorespiratory fitness (V̇o2max) assessed at baseline. Biopsies of the vastus lateralis were performed for the isolation of skeletal muscle stem cells. LOS individuals repeated all assessments posttraining. HSkMCs were evaluated for mitochondrial respiratory capacity by high-resolution respirometry. Data were normalized to two indices of mitochondrial content (CS activity and OXPHOS protein expression) and a marker of total cell count (quantity of DNA). LA individuals had significantly higher V̇o2max than OS and LOS-Pre training; however, no differences were observed in skeletal muscle mitochondrial capacity, nor in carbohydrate- or fatty acid-supported HSkMC respiratory capacity. Aerobic training robustly increased in vivo skeletal muscle mitochondrial capacity of LOS individuals, as well as carbohydrate-supported HSkMC respiratory capacity. Indices of mitochondrial content and total cell count were similar among the groups and did not change with aerobic training. Our findings demonstrate that bioenergetic changes induced with aerobic training in skeletal muscle in vivo are retained in HSkMCs in vitro without impacting mitochondrial content, suggesting that training improves intrinsic skeletal muscle mitochondrial capacity.


Assuntos
Mitocôndrias Musculares , Músculo Esquelético , Carboidratos , Exercício Físico/fisiologia , Humanos , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Células-Tronco
18.
J Physiol ; 600(4): 949-962, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33481251

RESUMO

KEY POINTS: Multiple clinical studies report that acute hyperglycaemia (induced by mixed meal or oral glucose) decreases arterial vascular function in healthy humans. Feeding, however, impacts autonomic output, blood pressure, and insulin and incretin secretion, which may themselves alter vascular function. No prior studies have examined the effect of acute hyperglycaemia on both macro- and microvascular function while controlling plasma insulin concentrations. Macrovascular and microvascular functional responses to euglycaemia and hyperglycaemia were compared. Octreotide was infused throughout both protocols to prevent endogenous insulin release. Acute hyperglycaemia (induced by intravenous glucose) enhanced brachial artery flow-mediated dilatation, increased skeletal muscle microvascular blood volume and flow, and expanded cardiac muscle microvascular blood volume. Compared to other published findings, the results suggest that vascular responses to acute hyperglycaemia differ based on the study population (i.e. normal weight vs. overweight/obese) and/or glucose delivery method (i.e. intravenous vs. oral glucose). ABSTRACT: High glucose concentrations acutely provoke endothelial cell oxidative stress and are suggested to trigger diabetes-related macro- and microvascular injury in humans. Multiple clinical studies report that acute hyperglycaemia (induced by mixed meal or oral glucose) decreases arterial vascular function in healthy humans. Feeding, however, impacts autonomic output, blood pressure, and insulin and incretin secretion, which may each independently alter vascular function and obscure the effect of acute hyperglycaemia per se. Surprisingly, no studies have examined the acute effects of intravenous glucose-induced hyperglycaemia on both macro- and microvascular function while controlling plasma insulin concentrations. In this randomized study of healthy young adults, we compared macrovascular (i.e. brachial artery flow-mediated dilatation, carotid-femoral pulse wave velocity and post-ischaemic brachial artery flow velocity) and microvascular (heart and skeletal muscle perfusion by contrast-enhanced ultrasound) functional responses to euglycaemia and hyperglycaemia. Octreotide was infused throughout both protocols to prevent endogenous insulin release. Acute intravenous glucose-induced hyperglycaemia enhanced brachial artery flow-mediated dilatation (P = 0.004), increased skeletal muscle microvascular blood volume and flow (P = 0.001), and expanded cardiac muscle microvascular blood volume (P = 0.014). No measure of vascular function changed during octreotide-maintained euglycaemia. Our findings suggest that unlike meal-provoked acute hyperglycaemia, 4 h of intravenous glucose-induced hyperglycaemia enhances brachial artery flow-mediated dilatation, provokes cardiac and skeletal muscle microvascular function, and does not impair aortic stiffness. Previous findings of acute large artery vascular dysfunction during oral glucose or mixed meal ingestion may be due to differences in study populations and meal-induced humoral or neural factors beyond hyperglycaemia per se. (ClinicalTrials.gov number NCT03520569.).


Assuntos
Hiperglicemia , Glicemia , Humanos , Insulina , Músculo Esquelético , Análise de Onda de Pulso
19.
J Biol Chem ; 297(3): 101023, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34343564

RESUMO

Ammonia is a cytotoxic molecule generated during normal cellular functions. Dysregulated ammonia metabolism, which is evident in many chronic diseases such as liver cirrhosis, heart failure, and chronic obstructive pulmonary disease, initiates a hyperammonemic stress response in tissues including skeletal muscle and in myotubes. Perturbations in levels of specific regulatory molecules have been reported, but the global responses to hyperammonemia are unclear. In this study, we used a multiomics approach to vertically integrate unbiased data generated using an assay for transposase-accessible chromatin with high-throughput sequencing, RNA-Seq, and proteomics. We then horizontally integrated these data across different models of hyperammonemia, including myotubes and mouse and human muscle tissues. Changes in chromatin accessibility and/or expression of genes resulted in distinct clusters of temporal molecular changes including transient, persistent, and delayed responses during hyperammonemia in myotubes. Known responses to hyperammonemia, including mitochondrial and oxidative dysfunction, protein homeostasis disruption, and oxidative stress pathway activation, were enriched in our datasets. During hyperammonemia, pathways that impact skeletal muscle structure and function that were consistently enriched were those that contribute to mitochondrial dysfunction, oxidative stress, and senescence. We made several novel observations, including an enrichment in antiapoptotic B-cell leukemia/lymphoma 2 family protein expression, increased calcium flux, and increased protein glycosylation in myotubes and muscle tissue upon hyperammonemia. Critical molecules in these pathways were validated experimentally. Human skeletal muscle from patients with cirrhosis displayed similar responses, establishing translational relevance. These data demonstrate complex molecular interactions during adaptive and maladaptive responses during the cellular stress response to hyperammonemia.


Assuntos
Genômica , Hiperamonemia/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Proteômica , Transcriptoma , Animais , Citometria de Fluxo , Humanos , Hiperamonemia/genética , Immunoblotting/métodos , Camundongos , Reação em Cadeia da Polimerase em Tempo Real , Reprodutibilidade dos Testes
20.
J Biol Chem ; 296: 100131, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33262218

RESUMO

TGR5, a G protein-coupled bile acid receptor, is expressed in various tissues and regulates several physiological processes. In the skeletal muscle, TGR5 activation is known to induce muscle hypertrophy; however, the effects on glucose and lipid metabolism are not well understood, despite the fact that the skeletal muscle plays a major role in energy metabolism. Here, we demonstrate that skeletal muscle-specific TGR5 transgenic (Tg) mice exhibit increased glucose utilization, without altering the expression of major genes related to glucose and lipid metabolism. Metabolite profiling analysis by capillary electrophoresis time-of-flight mass spectrometry showed that glycolytic flux was activated in the skeletal muscle of Tg mice, leading to an increase in glucose utilization. Upon long-term, high-fat diet challenge, blood glucose clearance was improved in Tg mice without an accompanying increase in insulin sensitivity in skeletal muscle and a reduction of body weight. Moreover, Tg mice showed improved age-associated glucose intolerance. These results strongly suggest that TGR5 ameliorated glucose metabolism disorder that is caused by diet-induced obesity and aging by enhancing the glucose metabolic capacity of the skeletal muscle. Our study demonstrates that TGR5 activation in the skeletal muscle is effective in improving glucose metabolism and may be beneficial in developing a novel strategy for the prevention or treatment of hyperglycemia.


Assuntos
Glicemia/metabolismo , Metabolismo Energético , Intolerância à Glucose/prevenção & controle , Resistência à Insulina , Músculo Esquelético/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Dieta Hiperlipídica , Intolerância à Glucose/etiologia , Intolerância à Glucose/metabolismo , Intolerância à Glucose/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptores Acoplados a Proteínas G/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA