Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(20): e2217635120, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37155847

RESUMO

Myelin repair is an unrealized therapeutic goal in the treatment of multiple sclerosis (MS). Uncertainty remains about the optimal techniques for assessing therapeutic efficacy and imaging biomarkers are required to measure and corroborate myelin restoration. We analyzed myelin water fraction imaging from ReBUILD, a double-blind, randomized placebo-controlled (delayed treatment) remyelination trial, that showed a significant reduction in VEP latency in patients with MS. We focused on brain regions rich in myelin. Fifty MS subjects in two arms underwent 3T MRI at baseline and months 3 and 5. Half of the cohort was randomly assigned to receive treatment from baseline through 3 mo, whereas the other half received treatment from 3 mo to 5 mo post-baseline. We computed myelin water fraction changes occurring in normal-appearing white matter of corpus callosum, optic radiations, and corticospinal tracts. An increase in myelin water fraction was documented in the normal-appearing white matter of the corpus callosum, in correspondence with the administration of the remyelinating treatment clemastine. This study provides direct, biologically validated imaging-based evidence of medically induced myelin repair. Moreover, our work strongly suggests that significant myelin repair occurs outside of lesions. We therefore propose myelin water fraction within the normal-appearing white matter of the corpus callosum as a biomarker for clinical trials looking at remyelination.


Assuntos
Esclerose Múltipla , Remielinização , Substância Branca , Humanos , Corpo Caloso/diagnóstico por imagem , Corpo Caloso/patologia , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/patologia , Encéfalo/patologia , Bainha de Mielina/patologia , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Imageamento por Ressonância Magnética/métodos , Água , Biomarcadores
2.
Neuroimage ; 297: 120689, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38880311

RESUMO

A new MRI technique is presented for three-dimensional fast simultaneous whole brain mapping of myelin water fraction (MWF), T1, proton density (PD), R2*, magnetic susceptibility (QSM), and B1 transmit field (B1+). Phantom and human (N = 9) datasets were acquired using a dual-flip-angle blipped multi-gradient-echo (DFA-mGRE) sequence with a stack-of-stars (SOS) trajectory. Images were reconstructed using a subspace-based algorithm with a locally low-rank constraint. A novel joint-sparsity-constrained multicomponent T2*-T1 spectrum estimation (JMSE) algorithm is proposed to correct for the T1 saturation effect and B1+/B1- inhomogeneities in the quantification of MWF. A tissue-prior-based B1+ estimation algorithm was adapted for B1 correction in the mapping of T1 and PD. In the phantom study, measurements obtained at an acceleration factor (R) of 12 using prospectively under-sampled SOS showed good consistency (R2 > 0.997) with Cartesian reference for R2*/T1app/M0app. In the in vivo study, results of retrospectively under-sampled SOS with R = 6, 12, 18, showed good quality (structure similarity index measure > 0.95) compared with those of fully-sampled SOS. Besides, results of prospectively under-sampled SOS with R = 12 showed good consistency (intraclass correlation coefficient > 0.91) with Cartesian reference for T1/PD/B1+/MWF/QSM/R2*, and good reproducibility (coefficient of variation < 7.0 %) in the test-retest analysis for T1/PD/B1+/MWF/R2*. This study has demonstrated the feasibility of simultaneous whole brain multiparametric mapping with a two-minute scan using the DFA-mGRE SOS sequence, which may overcome a major obstacle for neurological applications of multiparametric MRI.


Assuntos
Encéfalo , Imagens de Fantasmas , Humanos , Masculino , Adulto , Encéfalo/diagnóstico por imagem , Algoritmos , Feminino , Processamento de Imagem Assistida por Computador/métodos , Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética Multiparamétrica/métodos
3.
J Neurochem ; 168(9): 2243-2263, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38973579

RESUMO

Myelin water fraction (MWF) imaging has emerged as a promising magnetic resonance imaging (MRI) biomarker for investigating brain function and composition. This comprehensive review synthesizes the current state of knowledge on MWF as a biomarker of human cerebral aging, neurodegenerative diseases, and risk factors influencing myelination. The databases used include Web of Science, Scopus, Science Direct, and PubMed. We begin with a brief discussion of the theoretical foundations of MWF imaging, including its basis in MR physics and the mathematical modeling underlying its calculation, with an overview of the most adopted MRI methods of MWF imaging. Next, we delve into the clinical and research applications that have been explored to date, highlighting its advantages and limitations. Finally, we explore the potential of MWF to serve as a predictive biomarker for neurological disorders and identify future research directions for optimizing MWF imaging protocols and interpreting MWF in various contexts. By harnessing the power of MWF imaging, we may gain new insights into brain health and disease across the human lifespan, ultimately informing novel diagnostic and therapeutic strategies.


Assuntos
Envelhecimento , Biomarcadores , Imageamento por Ressonância Magnética , Bainha de Mielina , Doenças Neurodegenerativas , Humanos , Bainha de Mielina/metabolismo , Doenças Neurodegenerativas/diagnóstico por imagem , Doenças Neurodegenerativas/metabolismo , Envelhecimento/metabolismo , Biomarcadores/metabolismo , Fatores de Risco , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Água/metabolismo
4.
Magn Reson Med ; 91(6): 2278-2293, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38156945

RESUMO

PURPOSE: This study aims to develop a high-resolution whole-brain multi-parametric quantitative MRI approach for simultaneous mapping of myelin-water fraction (MWF), T1, T2, and proton-density (PD), all within a clinically feasible scan time. METHODS: We developed 3D visualization of short transverse relaxation time component (ViSTa)-MRF, which combined ViSTa technique with MR fingerprinting (MRF), to achieve high-fidelity whole-brain MWF and T1/T2/PD mapping on a clinical 3T scanner. To achieve fast acquisition and memory-efficient reconstruction, the ViSTa-MRF sequence leverages an optimized 3D tiny-golden-angle-shuffling spiral-projection acquisition and joint spatial-temporal subspace reconstruction with optimized preconditioning algorithm. With the proposed ViSTa-MRF approach, high-fidelity direct MWF mapping was achieved without a need for multicompartment fitting that could introduce bias and/or noise from additional assumptions or priors. RESULTS: The in vivo results demonstrate the effectiveness of the proposed acquisition and reconstruction framework to provide fast multi-parametric mapping with high SNR and good quality. The in vivo results of 1 mm- and 0.66 mm-isotropic resolution datasets indicate that the MWF values measured by the proposed method are consistent with standard ViSTa results that are 30× slower with lower SNR. Furthermore, we applied the proposed method to enable 5-min whole-brain 1 mm-iso assessment of MWF and T1/T2/PD mappings for infant brain development and for post-mortem brain samples. CONCLUSIONS: In this work, we have developed a 3D ViSTa-MRF technique that enables the acquisition of whole-brain MWF, quantitative T1, T2, and PD maps at 1 and 0.66 mm isotropic resolution in 5 and 15 min, respectively. This advancement allows for quantitative investigations of myelination changes in the brain.


Assuntos
Bainha de Mielina , Água , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Imagens de Fantasmas , Processamento de Imagem Assistida por Computador/métodos
5.
Magn Reson Med ; 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39370873

RESUMO

PURPOSE: To compare the myelin water fraction (MWF) measurements between 3 T and 7 T and between in vivo and ex vivo human brains, and to investigate the relationship between multi-echo gradient-echo (mGRE)-based 3D MWF and myelin content using histological staining, which has not been validated in the human brain. METHODS: In this study, we performed 3D mGRE-based MWF measurements on five ex vivo human brain hemispheres and five healthy volunteers at 3 T and 7 T with 1 mm isotropic resolution. The data were fitted with the T 2 * $$ {\mathrm{T}}_2^{\ast } $$ based on a three compartment complex-valued model to estimate MWF. We obtained myelin basic protein (MBP) staining from two tissue blocks and co-registered the MWF map and histology image for voxel-wise correlation between the two. RESULTS: The MWF values measured from 7 T were overall higher than 7 T, but data between the two field strength demonstrated high correlations both in vivo (r = 0.88) and ex vivo (r = 0.83) across 19 white matter regions. Moreover, the MWF measurements showed a good agreement between in vivo and ex vivo assessments at 3 T (r = 0.61) and 7 T (r = 0.54). Based on MBP staining, the MWF values exhibited strong positive correlations with myelin content on both 3 T (r = 0.68 and r = 0.78 for the two tissue blocks) and 7 T (r = 0.64 and r = 0.82 for the two tissue blocks). CONCLUSION: The findings demonstrated that the mGRE-based MWF mapping can be used to quantify myelin content in the human brain, despite the field-strength dependency of the measurements.

6.
NMR Biomed ; 37(6): e5114, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38390667

RESUMO

A quantitative biomarker for myelination, such as myelin water fraction (MWF), would boost the understanding of normative and pathological neurodevelopment, improving patients' diagnosis and follow-up. We quantified the fraction of a rapidly relaxing pool identified as MW using multicomponent three-dimensional (3D) magnetic resonance fingerprinting (MRF) to evaluate white matter (WM) maturation in typically developing (TD) children and alterations in leukodystrophies (LDs). We acquired DTI and 3D MRF-based R1, R2 and MWF data of 15 TD children and 17 LD patients (9 months-12.5 years old) at 1.5 T. We computed normative maturation curves in corpus callosum and corona radiata and performed WM tract profile analysis, comparing MWF with R1, R2 and fractional anisotropy (FA). Normative maturation curves demonstrated a steep increase for all tissue parameters in the first 3 years of age, followed by slower growth for MWF while R1, R2R2 and FA reached a plateau. Unlike FA, MWF values were similar for regions of interest (ROIs) with different degrees of axonal packing, suggesting independence from fiber bundle macro-organization and higher myelin specificity. Tract profile analysis indicated a specific spatial pattern of myelination in the major fiber bundles, consistent across subjects. LD were better distinguished from TD by MWF rather than FA, showing reduced MWF with respect to age-matched controls in both ROI-based and tract analysis. In conclusion, MRF-based MWF provides myelin-specific WM maturation curves and is sensitive to alteration due to LDs, suggesting its potential as a biomarker for WM disorders. As MRF allows fast simultaneous acquisition of relaxometry and MWF, it can represent a valuable diagnostic tool to study and follow up developmental WM disorders in children.


Assuntos
Bainha de Mielina , Substância Branca , Humanos , Substância Branca/diagnóstico por imagem , Bainha de Mielina/metabolismo , Criança , Masculino , Feminino , Pré-Escolar , Lactente , Imagem de Tensor de Difusão , Água/química , Água Corporal , Imageamento por Ressonância Magnética
7.
MAGMA ; 37(5): 887-898, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38581455

RESUMO

OBJECTIVE: To clarify the relationship between myelin water fraction (MWF) and R1⋅R2* and to develop a method to calculate MWF directly from parameters derived from QPM, i.e., MWF converted from QPM (MWFQPM). MATERIALS AND METHODS: Subjects were 12 healthy volunteers. On a 3 T MR scanner, dataset was acquired using spoiled gradient-echo sequence for QPM. MWF and R1⋅R2* maps were derived from the multi-gradient-echo (mGRE) dataset. Volume-of-interest (VOI) analysis using the JHU-white matter (WM) atlas was performed. All the data in the 48 WM regions measured VOI were plotted, and quadratic polynomial approximations of each region were derived from the relationship between R1·R2* and the two-pool model-MWF. The R1·R2* map was converted to MWFQPM map. MWF atlas template was generated using converted to MWF from R1·R2* per WM region. RESULTS: The mean MWF and R1·R2* values for the 48 WM regions were 11.96 ± 6.63%, and 19.94 ± 4.59 s-2, respectively. A non-linear relationship in 48 regions of the WM between MWF and R1·R2* values was observed by quadratic polynomial approximation (R2 ≥ 0.963, P < 0.0001). DISCUSSION: MWFQPM map improved image quality compared to the mGRE-MWF map. Myelin water atlas template derived from MWFQPM may be generated with combined multiple WM regions.


Assuntos
Voluntários Saudáveis , Imageamento por Ressonância Magnética , Bainha de Mielina , Água , Substância Branca , Humanos , Bainha de Mielina/química , Substância Branca/diagnóstico por imagem , Adulto , Masculino , Imageamento por Ressonância Magnética/métodos , Feminino , Água/química , Processamento de Imagem Assistida por Computador/métodos , Adulto Jovem , Encéfalo/diagnóstico por imagem , Água Corporal/diagnóstico por imagem , Mapeamento Encefálico/métodos , Algoritmos
8.
J Transl Med ; 21(1): 914, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-38102606

RESUMO

BACKGROUND: Magnetic resonance fingerprinting (MRF) enables fast myelin quantification via the myelin water fraction (MWF), offering a noninvasive method to assess brain development and disease. However, MRF-derived MWF lacks histological evaluation and remains unexamined in relation to leukodystrophy. This study aimed to access MRF-derived MWF through histology in mice and establish links between myelin, development, and leukodystrophy in mice and children, demonstrating its potential applicability in animal and human studies. METHODS: 3D MRF was performed on normal C57BL/6 mice with different ages, megalencephalic leukoencephalopathy with subcortical cyst 1 wild type (MLC1 WT, control) mice, and MLC 1 knock-out (MLC1 KO, leukodystrophy) mice using a 3 T MRI. MWF values were analyzed from 3D MRF data, and histological myelin quantification was carried out using immunohistochemistry to anti-proteolipid protein (PLP) in the corpus callosum and cortex. The associations between 'MWF and PLP' and 'MWF and age' were evaluated in C57BL/6 mice. MWF values were compared between MLC1 WT and MLC1 KO mice. MWF of normal developing children were retrospectively collected and the association between MWF and age was assessed. RESULTS: In 35 C57BL/6 mice (age range; 3 weeks-48 weeks), MWF showed positive relations with PLP immunoreactivity in the corpus callosum (ß = 0.0006, P = 0.04) and cortex (ß = 0.0005, P = 0.006). In 12-week-old C57BL/6 mice MWF showed positive relations with PLP immunoreactivity (ß = 0.0009, P = 0.003, R2 = 0.54). MWF in the corpus callosum (ß = 0.0022, P < 0.001) and cortex (ß = 0.0010, P < 0.001) showed positive relations with age. Seven MLC1 WT and 9 MLC1 KO mice showed different MWF values in the corpus callous (P < 0.001) and cortex (P < 0.001). A total of 81 children (median age, 126 months; range, 0-199 months) were evaluated and their MWF values according to age showed the best fit for the third-order regression model (adjusted R2 range, 0.44-0.94, P < 0.001). CONCLUSION: MWF demonstrated associations with histologic myelin quantity, age, and the presence of leukodystrophy, underscoring the potential of 3D MRF-derived MWF as a rapid and noninvasive quantitative indicator of brain myelin content in both mice and humans.


Assuntos
Bainha de Mielina , Doenças Neurodegenerativas , Criança , Humanos , Camundongos , Animais , Bainha de Mielina/patologia , Água/metabolismo , Estudos Retrospectivos , Camundongos Endogâmicos C57BL , Imageamento por Ressonância Magnética/métodos , Encéfalo/metabolismo
9.
J Magn Reson Imaging ; 58(1): 284-293, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36326302

RESUMO

BACKGROUND: Cerebral tissue integrity decline and cerebral blood flow (CBF) alteration are major aspects of motor and cognitive dysfunctions and neurodegeneration. However, little is known about the association between blood flow and brain microstructural integrity, especially in normal aging. PURPOSE: To assess the association between CBF and cerebral microstructural integrity. STUDY TYPE: Cross sectional. POPULATION: A total of 94 cognitively unimpaired adults (mean age 50.7 years, age range between 22 and 88 years, 56 Men). FIELD STRENGTH/SEQUENCE: A 3 T; pseudo-continuous arterial spin labeling (pCASL), diffusion tensor imaging (DTI), Bayesian Monte Carlo analysis of multicomponent driven equilibrium steady-state observation of T1 and T2 (BMC-mcDESPOT). ASSESSMENT: Lobar associations between CBF derived from pCASL, and longitudinal relaxation rate (R1 ), transverse relaxation rate (R2 ) and myelin water fraction (MWF) derived from BMC-mcDESPOT, or radial diffusivity (RD), axial diffusivity (AxD), mean diffusivity (MD) and fractional anisotropy (FA) derived from DTI were assessed. STATISTICAL TESTS: Multiple linear regression models were used using the mean region of interest (ROI) values for MWF, R1 , R2 , FA, MD, RD, or AxD as the dependent variable and CBF, age, age2 , and sex as the independent variables. A two-sided P value of <0.05 defined statistical significance. RESULTS: R1 , R2 , MWF, FA, MD, RD, and AxD parameters were associated with CBF in most of the cerebral regions evaluated. Specifically, higher CBF values were significantly associated with higher FA, MWF, R1 and R2 , or lower MD, RD and AxD values. DATA CONCLUSION: These findings suggest that cerebral tissue microstructure may be impacted by global brain perfusion, adding further evidence to the intimate relationship between cerebral blood supply and cerebral tissue integrity. EVIDENCE LEVEL: 4 TECHNICAL EFFICACY: Stage 4.


Assuntos
Imagem de Tensor de Difusão , Substância Branca , Adulto , Masculino , Humanos , Adulto Jovem , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Imagem de Tensor de Difusão/métodos , Teorema de Bayes , Estudos Transversais , Imageamento por Ressonância Magnética , Envelhecimento , Água , Circulação Cerebrovascular/fisiologia , Marcadores de Spin , Substância Branca/diagnóstico por imagem
10.
Neuroimage ; 247: 118727, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34813969

RESUMO

White matter (WM) microstructural properties change across the adult lifespan and with neuronal diseases. Understanding microstructural changes due to aging is paramount to distinguish them from neuropathological changes. Conducted on a large cohort of 147 cognitively unimpaired subjects, spanning a wide age range of 21 to 94 years, our study evaluated sex- and age-related differences in WM microstructure. Specifically, we used diffusion tensor imaging (DTI) magnetic resonance imaging (MRI) indices, sensitive measures of myelin and axonal density in WM, and myelin water fraction (MWF), a measure of the fraction of the signal of water trapped within the myelin sheets, to probe these differences. Furthermore, we examined regional correlations between MWF and DTI indices to evaluate whether the DTI metrics provide information complementary to MWF. While sexual dimorphism was, overall, nonsignificant, we observed region-dependent differences in MWF, that is, myelin content, and axonal density with age and found that both exhibit nonlinear, but distinct, associations with age. Furthermore, DTI indices were moderately correlated with MWF, indicating their good sensitivity to myelin content as well as to other constituents of WM tissue such as axonal density. The microstructural differences captured by our MRI metrics, along with their weak to moderate associations with MWF, strongly indicate the potential value of combining these outcome measures in a multiparametric approach. Furthermore, our results support the last-in-first-out and the gain-predicts-loss hypotheses of WM maturation and degeneration. Indeed, our results indicate that the posterior WM regions are spared from neurodegeneration as compared to anterior regions, while WM myelination follows a temporally symmetric time course across the adult life span.


Assuntos
Imagem de Tensor de Difusão , Substância Branca/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Envelhecimento , Mapeamento Encefálico , Estudos de Coortes , Feminino , Humanos , Longevidade , Masculino , Pessoa de Meia-Idade , Bainha de Mielina/patologia , Adulto Jovem
11.
Magn Reson Med ; 87(6): 2914-2921, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35014736

RESUMO

PURPOSE: Validation of quantitative MR measures for myelin imaging in the postmortem multiple sclerosis spinal cord. METHODS: Four fixed spinal cord samples were imaged first with a 3T clinical MR scanner to identify areas of interest for scanning, and then with a 7T small bore scanner using a multicomponent-driven equilibrium single-pulse observation of T1 and T2 protocol to produce apparent proton density, T1 , T2 , myelin water, intracellular water, and free-water fraction maps. After imaging, the cords were sectioned and stained with histological markers (hematoxylin and eosin, myelin basic protein, and neurofilament protein), which were quantitatively compared with the MR maps. RESULTS: Excellent correspondence was found between high-resolution MR parameter maps and histology, particularly for apparent proton density MRI and myelin basic protein staining. CONCLUSION: High-resolution quantitative MRI of the spinal cord provides biologically meaningful measures, and could be beneficial to diagnose and track multiple sclerosis lesions in the spinal cord.


Assuntos
Esclerose Múltipla , Humanos , Imageamento por Ressonância Magnética/métodos , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/patologia , Proteína Básica da Mielina , Bainha de Mielina/patologia , Prótons , Medula Espinal/diagnóstico por imagem , Água
12.
Magn Reson Med ; 87(5): 2521-2535, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34958690

RESUMO

PURPOSE: Multicomponent analysis of MRI T2 relaxation time (mcT2 ) is commonly used for estimating myelin content by separating the signal at each voxel into its underlying distribution of T2 values. This voxel-based approach is challenging due to the large ambiguity in the multi-T2 space and the low SNR of MRI signals. Herein, we present a data-driven mcT2 analysis, which utilizes the statistical strength of identifying spatially global mcT2 motifs in white matter segments before deconvolving the local signal at each voxel. METHODS: Deconvolution is done using a tailored optimization scheme, which incorporates the global mcT2 motifs without additional prior assumptions regarding the number of microscopic components. The end results of this process are voxel-wise myelin water fraction maps. RESULTS: Validations are shown for computer-generated signals, uniquely designed subvoxel mcT2 phantoms, and in vivo human brain. Results demonstrated excellent fitting accuracy, both for the numerical and the physical mcT2 phantoms, exhibiting excellent agreement between calculated myelin water fraction and ground truth. Proof-of-concept in vivo validation is done by calculating myelin water fraction maps for white matter segments of the human brain. Interscan stability of myelin water fraction values was also estimated, showing good correlation between scans. CONCLUSION: We conclude that studying global tissue motifs prior to performing voxel-wise mcT2 analysis stabilizes the optimization scheme and efficiently overcomes the ambiguity in the T2 space. This new approach can improve myelin water imaging and the investigation of microstructural compartmentation in general.


Assuntos
Bainha de Mielina , Água , Algoritmos , Encéfalo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/métodos , Bainha de Mielina/química , Água/química
13.
Magn Reson Med ; 88(3): 1380-1390, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35576121

RESUMO

PURPOSE: Myelin water fraction (MWF) is often obtained from a multiple echo spin echo (MESE) sequence using multi-component T2 fitting with non-negative least squares. This process fits many unknowns including B1+ to produce a T2 spectrum for each voxel. Presented is an alternative using a rapid B1+ mapping sequence to supply B1+ for the MWF fitting procedure. METHODS: Effects of B1+ errors on MWF calculations were modeled for 2D and 3D MESE using Bloch and extended phase graph simulations, respectively. Variations in SNR and relative refocusing widths were tested. Human brain experiments at 3 T used 2D MESE and an independent B1+ map. MWF maps were produced with the standard approach and with the use of the independent B1+ map. Differences in B1+ and mean MWF in specific brain regions were compared. RESULTS: For 2D MESE, MWF with the standard method was strongly affected by B1+ misestimations arising from limited SNR and response asymmetry around 180°, which decreased with increasing relative refocusing width. Using an independent B1+ map increased mean MWF and decreased coefficient of variation. Notable differences in vivo in 2D MESE were in areas of high B1+ such as thalamus and splenium where mean MWF increased by 88% and 31%, respectively (P < 0.001). Simulations also demonstrated the advantages of this approach for 3D MESE when SNR is <500. CONCLUSION: For 2D MESE, because of increased complexity of decay curves and limited SNR, supplying B1+ improves MWF results in peripheral and central brain regions where flip angles differ substantially from 180°.


Assuntos
Processamento de Imagem Assistida por Computador , Bainha de Mielina , Encéfalo/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Água
14.
Magn Reson Med ; 88(1): 492-500, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35225373

RESUMO

PURPOSE: Previously, an artificial neural network method was introduced to estimate quantitative myelin water fraction (MWF) using multi-echo gradient-echo data. However, the fiber orientation of white matter with respect to B0 could bias the quantification of MWF. Here, we developed an advanced workflow for MWF estimation that could improve the quantification of MWF. METHODS: To adopt fiber orientation effects, a complex-valued neural network with complex-valued operation was used. In addition, to compensate for the bias from different scan parameters, a signal model incorporating the T1 value was devised for training data generation. At the testing stage, a voxel-spread function approach was utilized for spatial B0 artifact correction. Finally, dropout-based variational inference was implemented for uncertainty estimates on the network model to provide a confidence interpretation of the output. RESULTS: According to simulation and in vivo analysis, the proposed method suggests improved quality of MWF estimation by correcting the bias and artifacts. The proposed complex-valued neural network approach can alleviate the dependency of fiber orientation effects compared to previous artificial neural network method. Uncertainty estimates provides information different from fitting error that can be used as a confidence level of the resulting MWF values. CONCLUSION: An improved MWF mapping using complex-valued neural network analysis has been proposed.


Assuntos
Bainha de Mielina , Substância Branca , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Redes Neurais de Computação , Água
15.
Magn Reson Med ; 87(6): 2979-2988, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35092094

RESUMO

PURPOSE: To develop a 3D UNET convolutional neural network for rapid extraction of myelin water fraction (MWF) maps from six-echo fast acquisition with spiral trajectory and T2 -prep data and to evaluate its accuracy in comparison with multilayer perceptron (MLP) network. METHODS: The MWF maps were extracted from 138 patients with multiple sclerosis using an iterative three-pool nonlinear least-squares algorithm (NLLS) without and with spatial regularization (srNLLS), which were used as ground-truth labels to train, validate, and test UNET and MLP networks as a means to accelerate data fitting. Network testing was performed in 63 patients with multiple sclerosis and a numerically simulated brain phantom at SNR of 200, 100 and 50. RESULTS: Simulations showed that UNET reduced the MWF mean absolute error by 30.1% to 56.4% and 16.8% to 53.6% over the whole brain and by 41.2% to 54.4% and 21.4% to 49.4% over the lesions for predicting srNLLS and NLLS MWF, respectively, compared to MLP, with better performance at lower SNRs. UNET also outperformed MLP for predicting srNLLS MWF in the in vivo multiple-sclerosis brain data, reducing mean absolute error over the whole brain by 61.9% and over the lesions by 67.5%. However, MLP yielded 41.1% and 51.7% lower mean absolute error for predicting in vivo NLLS MWF over the whole brain and the lesions, respectively, compared with UNET. The whole-brain MWF processing time using a GPU was 0.64 seconds for UNET and 0.74 seconds for MLP. CONCLUSION: Subsecond whole-brain MWF extraction from fast acquisition with spiral trajectory and T2 -prep data using UNET is feasible and provides better accuracy than MLP for predicting MWF output of srNLLS algorithm.


Assuntos
Esclerose Múltipla , Bainha de Mielina , Algoritmos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Humanos , Imageamento por Ressonância Magnética , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/patologia , Bainha de Mielina/patologia , Água
16.
J Magn Reson Imaging ; 55(2): 451-462, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34374158

RESUMO

BACKGROUND: The pathophysiology of rigidity in Parkinson's disease (PD) is poorly understood. Multi-sequence functional and structural brain MRI may further clarify the origin of this clinical characteristic. PURPOSE: To examine both joint and unique relationships of MRI-based functional and structural imaging modalities to rigidity and other clinical features of PD. STUDY TYPE: Retrospective cross-sectional study. POPULATION: 31 PD subjects (aged 68.0 ± 5.9 years, 21 males) with average disease duration 9.3 ± 5.4 years. FIELD STRENGTH/SEQUENCE: Multi-echo GRASE, diffusion-weighted echo planar imaging (EPI), and blood oxygen level dependent contrast EPI T2*-weighted sequences on a 3T scanner. ASSESSMENT: Myelin water fraction (MWF) and fractional anisotropy (FA) of 20 white-matter regions of interest (ROIs), and functional connectivity derived from resting-state fMRI among 56 ROIs were assessed. The Unified Parkinson's Disease Rating Scale-Part III, Montreal Cognitive Assessment, Beck Depression Index, and Apathy Rating Scales were used to assess motor and non-motor symptoms. STATISTICAL TESTS: Multiset canonical correlation analysis (MCCA) and canonical correlation analysis (CCA) were utilized to examine the joint and unique relationships of multiple imaging measures with clinical symptoms of PD. A permutation test was used to determine statistical significance (P < 0.05). RESULTS: MCCA revealed a single significant component jointly linking MWF, FA, and functional connectivity to age, bradykinesia, and leg agility, non-motor symptoms of cognition, depression, and apathy, but not rigidity (P = 0.77), tremor (P = 0.50 and 0.67 on the left and right side), or sex (P = 0.54). After controlling for this joint component, CCA found a unique significant association between MWF and rigidity, but no other associations were detected, including with FA (P = 0.87). DATA CONCLUSION: MWF, FA, and functional connectivity can serve as multi-sequence imaging markers to characterize many PD symptoms. However, rigidity in PD is additionally associated with widespread myelin changes. EVIDENCE LEVEL: 4 TECHNICAL EFFICACY: Stage 3.


Assuntos
Bainha de Mielina , Doença de Parkinson , Análise de Correlação Canônica , Estudos Transversais , Humanos , Imageamento por Ressonância Magnética , Masculino , Bainha de Mielina/metabolismo , Saturação de Oxigênio , Doença de Parkinson/diagnóstico por imagem , Estudos Retrospectivos
17.
Eur J Neurol ; 29(1): 237-246, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34402140

RESUMO

BACKGROUND: Magnetic resonance imaging (MRI) provides insight into various pathological processes in multiple sclerosis (MS) and may provide insight into patterns of damage among patients. OBJECTIVE: We sought to determine if MRI features have clinical discriminative power among a cohort of MS patients. METHODS: Ninety-six relapsing remitting and seven progressive MS patients underwent myelin water fraction (MWF) imaging and conventional MRI for cortical thickness and thalamic volume. Patients were clustered based on lesion level MRI features using an agglomerative hierarchical clustering algorithm based on principal component analysis (PCA). RESULTS: One hundred and three patients with 1689 MS lesions were analyzed. PCA on MRI features demonstrated that lesion MWF and volume distributions (characterized by 25th, 50th, and 75th percentiles) accounted for 87% of the total variability based on four principal components. The best hierarchical cluster confirmed two distinct patient clusters. The clustering features in order of importance were lesion median MWF, MWF 25th, MWF 75th, volume 75th percentiles, median individual lesion volume, total lesion volume, cortical thickness, and thalamic volume (all p values <0.01368). The clusters were associated with patient Expanded Disability Status Scale (EDSS) (n = 103, p = 0.0338) at baseline and at 5 years (n = 72, p = 0.0337). CONCLUSIONS: These results demonstrate that individual MRI features can identify two patient clusters driven by lesion-based values, and our unique approach is an analysis blinded to clinical variables. The two distinct clusters exhibit MWF differences, most likely representing individual remyelination capabilities among different patient groups. These findings support the concept of patient-specific pathophysiological processes and may guide future therapeutic approaches.


Assuntos
Esclerose Múltipla Crônica Progressiva , Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Encéfalo/patologia , Humanos , Imageamento por Ressonância Magnética/métodos , Esclerose Múltipla/complicações , Esclerose Múltipla Crônica Progressiva/complicações , Esclerose Múltipla Recidivante-Remitente/complicações , Bainha de Mielina/patologia
18.
Neuroimage ; 244: 118582, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34536538

RESUMO

Multi-echo T2 magnetic resonance images contain information about the distribution of T2 relaxation times of compartmentalized water, from which we can estimate relevant brain tissue properties such as the myelin water fraction (MWF). Regularized non-negative least squares (NNLS) is the tool of choice for estimating non-parametric T2 spectra. However, the estimation is ill-conditioned, sensitive to noise, and highly affected by the employed regularization weight. The purpose of this study is threefold: first, we want to underline that the apparently innocuous use of two alternative parameterizations for solving the inverse problem, which we called the standard and alternative regularization forms, leads to different solutions; second, to assess the performance of both parameterizations; and third, to propose a new Bayesian regularized NNLS method (BayesReg). The performance of BayesReg was compared with that of two conventional approaches (L-curve and Chi-square (X2) fitting) using both regularization forms. We generated a large dataset of synthetic data, acquired in vivo human brain data in healthy participants for conducting a scan-rescan analysis, and correlated the myelin content derived from histology with the MWF estimated from ex vivo data. Results from synthetic data indicate that BayesReg provides accurate MWF estimates, comparable to those from L-curve and X2, and with better overall stability across a wider signal-to-noise range. Notably, we obtained superior results by using the alternative regularization form. The correlations reported in this study are higher than those reported in previous studies employing the same ex vivo and histological data. In human brain data, the estimated maps from L-curve and BayesReg were more reproducible. However, the T2 spectra produced by BayesReg were less affected by over-smoothing than those from L-curve. These findings suggest that BayesReg is a good alternative for estimating T2 distributions and MWF maps.


Assuntos
Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Teorema de Bayes , Feminino , Técnicas Histológicas , Humanos , Análise dos Mínimos Quadrados , Masculino , Bainha de Mielina/metabolismo , Água/metabolismo , Adulto Jovem
19.
Neuroimage ; 226: 117626, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33301943

RESUMO

Myelin is vital for healthy neuronal development, and can therefore provide valuable information regarding neuronal maturation. Anatomical and diffusion weighted images (DWI) possess information related to the myelin content and the current study investigates whether quantitative myelin markers can be extracted from anatomical and DWI using neural networks. Thirteen volunteers (mean age 29y) are included, and for each subject, a residual neural network was trained using spatially undersampled reference myelin-water markers. The network is trained on a voxel-by-voxel basis, resulting in a large amount of training data for each volunteer. The inputs used are the anatomical contrasts (cT1w, cT2w), the standardized T1w/T2w ratio, estimates of the relaxation times (T1, T2) and their ratio (T1/T2), and common DWI metrics (FA, RD, MD, λ1, λ2, λ3). Furthermore, to estimate the added value of the DWI metrics, neural networks were trained using either the combined set (DWI, T1w and T2w) or only the anatomical (T1w and T2w) images. The reconstructed myelin-water maps are in good agreement with the reference myelin-water content in terms of the coefficient of variation (CoV) and the intraclass correlation coefficient (ICC). A 6-fold undersampling using both anatomical and DWI metrics resulted in ICC = 0.68 and CoV = 5.9%. Moreover, using twice the training data (3-fold undersampling) resulted in an ICC that is comparable to the reproducibility of the myelin-water imaging itself (CoV = 5.5% vs. CoV = 6.7% and ICC = 0.74 vs ICC = 0.80). To achieve this, beside the T1w, T2w images, DWI is required. This preliminary study shows the potential of machine learning approaches to extract specific myelin-content from anatomical and diffusion-weighted scans.


Assuntos
Água Corporal/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos , Aprendizado de Máquina , Imageamento por Ressonância Magnética/métodos , Bainha de Mielina , Redes Neurais de Computação , Neuroimagem/métodos , Adulto , Imagem de Difusão por Ressonância Magnética/métodos , Humanos
20.
Magn Reson Med ; 86(5): 2795-2809, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34216050

RESUMO

PURPOSE: To improve estimation of myelin water fraction (MWF) in the brain from multi-echo gradient-echo imaging data. METHODS: A systematic sensitivity analysis was first conducted to characterize the conventional exponential models used for MWF estimation. A new estimation method was then proposed for improved estimation of MWF from practical gradient-echo imaging data. The proposed method uses an extended signal model that includes a finite impulse response filter to compensate for practical signal variations. This new model also enables the use of prelearned parameter distributions as well as low-rank signal structures to improve parameter estimation. The resulting parameter estimation problem was solved optimally in the Bayesian sense. RESULTS: Our sensitivity analysis results showed that the conventional exponential models were very sensitive to measurement noise and modeling errors. Our simulation and experimental results showed that our proposed method provided a substantial improvement in reliability, reproducibility, and robustness of MWF estimates over the conventional methods. Clinical results obtained from stroke patients indicated that the proposed method, with its improved capability, could reveal the loss of myelin in lesions, demonstrating its translational potentials. CONCLUSION: This paper addressed the problem of robust MWF estimation from gradient-echo imaging data. A new method was proposed to provide improved MWF estimation in the presence of significant noise and modeling errors. The performance of the proposed method has been evaluated using both simulated and experimental data, showing significantly improved robustness over the existing methods. The proposed method may prove useful for quantitative myelin imaging in clinical applications.


Assuntos
Bainha de Mielina , Água , Teorema de Bayes , Humanos , Imageamento por Ressonância Magnética , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA