Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Biochem Biophys Res Commun ; 488(4): 573-577, 2017 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-28533092

RESUMO

P-glycoprotein (P-gp, ABCB1) is an ABC drug pump that is clinically important because it is involved in multidrug resistance. Many studies have used purified P-gp in detergent (n-dodecyl-ß-D-maltoside; DM) micelles to map the locations of the drug-binding sites. A potential problem is that DM could be a substrate and affect binding of drugs to P-gp. To test whether DM was a substrate of P-gp, we used an assay involving drug-rescue of the immature 150 kDa misprocessed P-gp mutant (L1260A) to show that DM is not substrate. By contrast, the detergents Triton X-100 or NP-35 were substrates because they rescued the L1260A P-gp mutant such that the major product was the mature 170 kDa protein. Cross-linking of mutant A80C/R741C in membranes can only be inhibited by the P-gp substrate tariquidar. We show that cross-linking A80C/R741C mutant was also inhibited by tariquidar in the presence of excess DM. This result suggests that the presence of DM did not affect the tariquidar-binding site. Similarly, the presence of DM did not alter the locations of other drug-binding sites since the thiol reactive forms of the substrates verapamil or rhodamine labeled the same sites in transmembrane segments 5 (I306C for verapamil) and 6 (F343C for rhodamine) whether P-gp was in native membranes or in detergent micelles. These results suggest that the presence of DM does not alter the locations of the P-gp drug-binding sites and that the detergent purified protein is suitable for mapping their locations using biochemical or structural assays.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/química , Adenosina Trifosfatases/metabolismo , Detergentes/química , Glucosídeos/química , Micelas , Quinolinas/farmacologia , Rodaminas/farmacologia , Verapamil/farmacologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Sítios de Ligação/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Membrana Celular/enzimologia , Ativação Enzimática/efeitos dos fármacos , Humanos
2.
Photosynth Res ; 133(1-3): 163-173, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28258466

RESUMO

The structure of monomeric and trimeric photosystem I (PS I) of Thermosynechococcus elongatus BP1 (T. elongatus) was investigated by small-angle X-ray scattering (SAXS). The scattering data reveal that the protein-detergent complexes possess radii of gyration of 58 and 78 Å in the cases of monomeric and trimeric PS I, respectively. The results also show that the samples are monodisperse, virtually free of aggregation, and contain empty detergent micelles. The shape of the protein-detergent complexes can be well approximated by elliptical cylinders with a height of 78 Å. Monomeric PS I in buffer solution exhibits minor and major radii of the elliptical cylinder of about 50 and 85 Å, respectively. In the case of trimeric PS I, both radii are equal to about 110 Å. The latter model can be shown to accommodate three elliptical cylinders equal to those describing monomeric PS I. A structure reconstitution also reveals that the protein-detergent complexes are larger than their respective crystal structures. The reconstituted structures are larger by about 20 Å mainly in the region of the hydrophobic surfaces of the monomeric and trimeric PS I complexes. This seeming contradiction can be resolved by the addition of a detergent belt constituted by a monolayer of dodecyl-ß-D-maltoside molecules. Assuming a closest possible packing, a number of roughly 1024 and 1472 detergent molecules can be determined for monomeric and trimeric PS I, respectively. Taking the monolayer of detergent molecules into account, the solution structure can be almost perfectly modeled by the crystal structures of monomeric and trimeric PS I.


Assuntos
Proteínas de Bactérias/química , Complexo de Proteína do Fotossistema I/química , Multimerização Proteica , Espalhamento a Baixo Ângulo , Synechococcus/metabolismo , Difração de Raios X , Detergentes/química , Modelos Moleculares , Complexo de Proteína do Fotossistema I/metabolismo , Soluções , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
3.
J Membr Biol ; 249(4): 523-38, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27072138

RESUMO

We investigate the phase transition stages for detergent-mediated liposome solubilization of bio-mimetic membranes with the motivation of integrating membrane-bound Photosystem I into bio-hybrid opto-electronic devices. To this end, the interaction of two non-ionic detergents n-dodecyl-ß-D-maltoside (DDM) and Triton X-100 (TX-100) with two types of phospholipids, namely DPhPC (1,2-diphytanoyl-sn-glycero-3-phosphocholine) and DPPG (1,2-dipalmitoyl-sn-glycero-3-phospho-(1'-rac-glycerol)), are examined. Specifically, solubilization processes for large unilamellar liposomes are studied with the aid of turbidity measurements, dynamic light scattering, and cryo-transmission electron microscopy imaging. Our results indicate that the solubilization process is well depicted by a three-stage model, wherein the lamellar-to-micellar transitions for DPhPC liposomes are dictated by the critical detergent/phospholipid ratios. The solubilization of DPhPC by DDM is devoid of formation of a "gel-like" phase. Furthermore, our results indicate that DDM is a stable candidate for DPhPC solubilization and proteoliposome formation. Finally, although the solubilization of DPPG with DDM indicated the familiar three-stage process, the same process with TX-100 indicate structural deformation of vesicles into complex network of kinetically trapped micro- and nanostructured arrangements of lipid bilayers.


Assuntos
Detergentes/química , Lipídeos/química , Lipossomos/química , Transição de Fase , Lipossomos/ultraestrutura , Micelas , Estrutura Molecular , Fosfatidilgliceróis/química , Solubilidade/efeitos dos fármacos , Tensoativos/farmacologia
4.
Biochim Biophys Acta ; 1838(1 Pt A): 34-42, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23811229

RESUMO

A great number of membrane proteins have proven difficult to crystallise for use in X-ray crystallographic structural determination or too complex for NMR structural studies. Circular dichroism (CD) is a fast and relatively easy spectroscopic technique to study protein conformational behaviour. In this review examples of the applications of CD and synchrotron radiation CD (SRCD) to membrane protein ligand binding interaction studies are discussed. The availability of SRCD has been an important advancement in recent progress, most particularly because it can be used to extend the spectral region in the far-UV region (important for increasing the accuracy of secondary structure estimations) and for working with membrane proteins available in only small quantities for which SRCD has facilitated molecular recognition studies. Such studies have been accomplished by probing in the near-UV region the local tertiary structure of aromatic amino acid residues upon addition of chiral or non-chiral ligands using long pathlength cells of small volume capacity. In particular, this review describes the most recent use of the technique in the following areas: to obtain quantitative data on ligand binding (exemplified by the FsrC membrane sensor kinase receptor); to distinguish between functionally similar drugs that exhibit different mechanisms of action towards membrane proteins (exemplified by secretory phospholipase A2); and to identify suitable detergent conditions to observe membrane protein-ligand interactions using stabilised proteins (exemplified by the antiseptic transporter SugE). Finally, the importance of characterising in solution the conformational behaviour and ligand binding properties of proteins in both far- and near-UV regions is discussed. This article is part of a Special Issue entitled: Structural and biophysical characterisation of membrane protein-ligand binding.


Assuntos
Dicroísmo Circular/métodos , Proteínas de Membrana/metabolismo , Preparações Farmacêuticas/metabolismo , Ligantes , Concentração Osmolar
5.
Biochim Biophys Acta ; 1840(1): 34-40, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24005236

RESUMO

BACKGROUND: F1FO ATP synthases catalyze the synthesis of ATP from ADP and inorganic phosphate driven by ion motive forces across the membrane. A number of ATP synthases have been characterized to date. The one from the hyperthermophilic bacterium Aquifex aeolicus presents unique features, i.e. a putative heterodimeric stalk. To complement previous work on the native form of this enzyme, we produced it heterologously in Escherichia coli. METHODS: We designed an artificial operon combining the nine genes of A. aeolicus ATP synthase, which are split into four clusters in the A. aeolicus genome. We expressed the genes and purified the enzyme complex by affinity and size-exclusion chromatography. We characterized the complex by native gel electrophoresis, Western blot, and mass spectrometry. We studied its activity by enzymatic assays and we visualized its structure by single-particle electron microscopy. RESULTS: We show that the heterologously produced complex has the same enzymatic activity and the same structure as the native ATP synthase complex extracted from A. aeolicus cells. We used our expression system to confirm that A. aeolicus ATP synthase possesses a heterodimeric peripheral stalk unique among non-photosynthetic bacterial F1FO ATP synthases. CONCLUSIONS: Our system now allows performing previously impossible structural and functional studies on A. aeolicus F1FO ATP synthase. GENERAL SIGNIFICANCE: More broadly, our work provides a valuable platform to characterize many other membrane protein complexes with complicated stoichiometry, i.e. other respiratory complexes, the nuclear pore complex, or transporter systems.


Assuntos
Escherichia coli/enzimologia , Bactérias Gram-Negativas/enzimologia , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Proteínas Recombinantes/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Western Blotting , Catálise , Cromatografia em Gel , Hidrólise , Imunoglobulina G/imunologia , ATPases Mitocondriais Próton-Translocadoras/genética , ATPases Mitocondriais Próton-Translocadoras/imunologia , Fragmentos de Peptídeos/imunologia , Coelhos , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
6.
Biochim Biophys Acta ; 1838(1 Pt A): 43-55, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23665295

RESUMO

Surface plasmon resonance (SPR) spectroscopy is a rapidly developing technique for the study of ligand binding interactions with membrane proteins, which are the major molecular targets for validated drugs and for current and foreseeable drug discovery. SPR is label-free and capable of measuring real-time quantitative binding affinities and kinetics for membrane proteins interacting with ligand molecules using relatively small quantities of materials and has potential to be medium-throughput. The conventional SPR technique requires one binding component to be immobilised on a sensor chip whilst the other binding component in solution is flowed over the sensor surface; a binding interaction is detected using an optical method that measures small changes in refractive index at the sensor surface. This review first describes the basic SPR experiment and the challenges that have to be considered for performing SPR experiments that measure membrane protein-ligand binding interactions, most importantly having the membrane protein in a lipid or detergent environment that retains its native structure and activity. It then describes a wide-range of membrane protein systems for which ligand binding interactions have been characterised using SPR, including the major drug targets G protein-coupled receptors, and how challenges have been overcome for achieving this. Finally it describes some recent advances in SPR-based technology and future potential of the technique to screen ligand binding in the discovery of drugs. This article is part of a Special Issue entitled: Structural and biophysical characterisation of membrane protein-ligand binding.


Assuntos
Descoberta de Drogas , Proteínas de Membrana/metabolismo , Ressonância de Plasmônio de Superfície/métodos , Ligantes , Ligação Proteica , Receptores Acoplados a Proteínas G/metabolismo
7.
Molecules ; 20(10): 19343-60, 2015 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-26512635

RESUMO

The photodynamics of Coumarin 6 have been investigated in three nonionic micellar assemblies, i.e., n-dodecyl-ß-D-maltoside (ß-C12G2), p-tert-octyl-phenoxy polyethylene (9.5) ether (Triton X-100 or TX100) and n-dodecyl-hexaethylene-glycol (C12E6), to assess their potential use as encapsulation vehicles for hydrophobic drugs. To evaluate the effect of the micellar size and hydration, the study used a broad temperature range (293.15-323.15 K). The data presented here include steady-state absorption and emission spectra of the probe, dynamic light scattering, together with fluorescence lifetimes and both steady-state, as well as time-resolved fluorescence anisotropies. The time-resolved fluorescence anisotropy data were analyzed on the basis of the well-established two-step model. Our data reveal that the molecular probe in all of the cases is solubilized in the hydration layer of micelles, where it would sense a relatively polar environment. However, the probe was found to undergo a slower rotational reorientation when solubilized in the alkylpolyglycoside surfactant, as a result of a more compact microenvironment around the probe. The behavior of the parameters of the reorientation dynamics with temperature was analyzed on the basis of both micellar hydration and the head-group flexibility of the surfactants.


Assuntos
Cumarínicos/química , Corantes Fluorescentes/química , Tiazóis/química , Corantes , Polarização de Fluorescência , Interações Hidrofóbicas e Hidrofílicas , Micelas , Conformação Molecular , Tamanho da Partícula , Temperatura , Viscosidade
8.
Biochim Biophys Acta ; 1828(9): 2015-25, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23735543

RESUMO

Bacteria use type IV secretion systems to transfer genetic material and proteins from donor to recipient cells, using proteins encoded by conjugative plasmids. Among those proteins the so-called Type IV Coupling Protein plays a central role in the process. One of the best studied members of this family is TrwB, the conjugative coupling protein of R388 plasmid. Previous studies indicated that the transmembrane domain of TrwB plays a role beyond the mere anchoring of the protein to the membrane. TrwB has also been shown to interact with other conjugative proteins, such as the VirB10-like protein of R388 TrwE. The goal of this study is to elucidate the role of the different domains of TrwB and TrwE in their biological function, and in both self- and TrwB-TrwE interactions. To this aim, a series of TrwB and TrwE deletion mutant proteins were constructed. Conjugation and interaction studies revealed that the transmembrane domain of TrwB, and particularly its second transmembrane helix, is needed for TrwB self-interaction and for R388 conjugative transfer and that there are contacts between TrwB and TrwE in the membrane. On the contrary, the lack of the TMD of TrwE does not completely abolish R388 conjugation although the interaction between TrwE-TrwB is lost. These results identify protein-protein interactions inside the membrane needed for T4SS function.


Assuntos
Membrana Celular/química , Conjugação Genética/genética , Proteínas de Ligação a DNA/química , Proteínas de Escherichia coli/química , Escherichia coli/química , Membrana Celular/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Mutação , Plasmídeos , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Transporte Proteico
9.
Biochim Biophys Acta ; 1834(10): 2045-56, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23777860

RESUMO

Human peripheral cannabinoid receptor CB2, a G protein-coupled receptor (GPCR) involved in regulation of immune response has become an important target for pharmaceutical drug development. Structural and functional studies on CB2 may benefit from immobilization of the purified and functional receptor onto a suitable surface at a controlled density and, preferably in a uniform orientation. The goal of this project was to develop a generic strategy for preparation of functional recombinant CB2 and immobilization at solid interfaces. Expression of CB2 as a fusion with Rho-tag (peptide composed of the last nine amino acids of rhodopsin) in E. coli was evaluated in terms of protein levels, accessibility of the tag, and activity of the receptor. The structural integrity of CB2 was tested by ligand binding to the receptor solubilized in detergent micelles, captured on tag-specific monoclonal 1D4 antibody-coated resin. Highly pure and functional CB2 was obtained by sequential chromatography on a 1D4- and Ni-NTA-resin and its affinity to the 1D4 antibody characterized by surface plasmon resonance (SPR). Either the purified receptor or fusion CB2 from the crude cell extract was captured onto a 1D4-coated CM4 chip (Biacore) in a quantitative fashion at uniform orientation as demonstrated by the SPR signal. Furthermore, the accessibility of the extracellular surface of immobilized CB2 and the affinity of interaction with a novel monoclonal antibody NAA-1 was studied by SPR. In summary, we present an integral strategy for purification, surface immobilization, ligand- and antibody binding studies of functional cannabinoid receptor CB2.


Assuntos
Proteínas Imobilizadas/química , Receptor CB2 de Canabinoide/química , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Detergentes/química , Escherichia coli/genética , Expressão Gênica , Humanos , Proteínas Imobilizadas/genética , Cinética , Ligantes , Micelas , Análise Serial de Proteínas , Receptor CB2 de Canabinoide/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Rodopsina/química , Rodopsina/genética , Termodinâmica
10.
J Labelled Comp Radiopharm ; 57(14): 737-43, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25491565

RESUMO

This work reports the first synthesis of uniformly deuterated n-dodecyl-ß-D-maltoside (d39-DDM). DDM is a mild non-ionic detergent often used in the extraction and purification of membrane proteins and for solubilizing them in experimental studies of their structure, dynamics and binding of ligands. We required d39-DDM for solubilizing large α-helical membrane proteins in samples for [(15)N-(1)H]TROSY (transverse relaxation-optimized spectroscopy) NMR experiments to achieve the highest sensitivity and best resolved spectra possible. Our synthesis of d39-DDM used d7-D-glucose and d25-n-dodecanol to introduce deuterium labelling into both the maltoside and dodecyl moieties, respectively. Two glucose molecules, one converted to a glycosyl acceptor with a free C4 hydroxyl group and one converted to a glycosyl donor substituted at C1 with a bromine in the α-configuration, were coupled together with an α(1 → 4) glycosidic bond to give maltose, which was then coupled with n-dodecanol by its substitution of a C1 bromine in the α-configuration to give DDM. (1)H NMR spectra were used to confirm a high level of deuteration in the synthesized d39-DDM and to demonstrate its use in eliminating interfering signals from TROSY NMR spectra of a 52-kDa sugar transport protein solubilized in DDM.


Assuntos
Proteínas de Ligação ao Cálcio/química , Detergentes/química , Detergentes/síntese química , Deutério/química , Glucosídeos/química , Glucosídeos/síntese química , Proteínas de Transporte de Monossacarídeos/química , Proteínas Periplásmicas de Ligação/química , Técnicas de Química Sintética , Espectroscopia de Ressonância Magnética , Peso Molecular , Solubilidade
11.
Comput Struct Biotechnol J ; 19: 1874-1888, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33995893

RESUMO

Globin-coupled sensors (GCS) usually consist of three domains: a sensor/globin, a linker, and a transmitter domain. The globin domain (GD), activated by ligand binding and/or redox change, induces an intramolecular signal transduction resulting in a response of the transmitter domain. Depending on the nature of the transmitter domain, GCSs can have different activities and functions, including adenylate and di-guanylate cyclase, histidine kinase activity, aerotaxis and/or oxygen sensing function. The gram-negative delta-proteobacterium Geobacter sulfurreducens expresses a protein with a GD covalently linked to a four transmembrane domain, classified, by sequence similarity, as GCS (GsGCS). While its GD is fully characterized, not so its transmembrane domain, which is rarely found in the globin superfamily. In the present work, GsGCS was characterized spectroscopically and by native ion mobility-mass spectrometry in combination with cryo-electron microscopy. Although lacking high resolution, the oligomeric state and the electron density map were valuable for further rational modeling of the full-length GsGCS structure. This model demonstrates that GsGCS forms a transmembrane domain-driven tetramer with minimal contact between the GDs and with the heme groups oriented outward. This organization makes an intramolecular signal transduction less likely. Our results, including the auto-oxidation rate and redox potential, suggest a potential role for GsGCS as redox sensor or in a membrane-bound e-/H+ transfer. As such, GsGCS might act as a player in connecting energy production to the oxidation of organic compounds and metal reduction. Database searches indicate that GDs linked to a four or seven helices transmembrane domain occur more frequently than expected.

12.
Biotechnol Rep (Amst) ; 21: e00295, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30568889

RESUMO

Cold-active lipases are gaining special attention nowadays as they are increasingly used in various industries such as fine chemical synthesis, food processing, and washer detergent. In the present study, an extracellular lipase gene from Yarrowia lipolytica (LIPY8) was cloned and expressed by baculovirus expression system. The recombinant lipase (LipY8p) was purified using chromatographic techniques, resulting in a purification factor of 25.7-fold with a specific activity of 1102.9U/mg toward olive oil. The apparent molecular mass of purified LipY8p was 40 kDa. The enzyme was most active at pH 7.5 and 17 °C. It exhibited maximum activity toward medium chain (C10) esters. The presence of transition metals such as Zn2+, Cu2+, and Ni2+ strongly inhibited the enzyme activity, which was enhanced by EDTA. The lipase activity was affected by detergents and was elevated by various organic solvents at 10% (v/v). These enzymatic properties make this lipase of considerable potential for biotechnological applications.

13.
Pharmaceutics ; 10(4)2018 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-30279382

RESUMO

The small intestinal epithelium constitutes a major permeability barrier for the oral administration of therapeutic drugs with poor bioavailability, and permeation enhancers (PEs) are required to increase the paracellular and/or transcellular uptake of such drugs. Many PEs act as surfactants by perturbing cell membrane integrity and causing permeabilization by leakage or endocytosis. The aim of the present work was to study the action of sodium cholate (NaC) and N-dodecyl-ß-D-maltoside (DDM), using a small intestinal mucosal explant system. At 2 mM, both NaC and DDM caused leakage into the enterocyte cytosol of the fluorescent probe Lucifer Yellow, but they also blocked the constitutive endocytotic pathway from the brush border. In addition, an increased paracellular passage of 3-kDa Texas Red Dextran into the lamina propria was observed. By electron microscopy, both PEs disrupted the hexagonal organization of microvilli of the brush border and led to the apical extrusion of vesicle-like and amorphous cell debris to the lumen. In conclusion, NaC and DDM acted in a multimodal way to increase the permeability of the jejunal epithelium both by paracellular and transcellular mechanisms. However, endocytosis, commonly thought to be an uptake mechanism that may be stimulated by PEs, was not involved in the transcellular process.

14.
Biochem Pharmacol ; 145: 27-33, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28837794

RESUMO

P-glycoprotein (P-gp) is an ATP-dependent drug pump that protects us from toxic agents and confers multidrug resistance. It has a tweezer-like structure with each arm consisting of a transmembrane domain (TMD) and a nucleotide-binding domain (NBD). Drug substrates bind to sites within the TMDs to activate ATPase activity by promoting a tweezer-like closing of the gap between the NBDs. The catalytic carboxylates may be critical for NBD movements because the E556Q(NBD1) or E1201Q(NBD2) mutation inhibited drug-stimulated ATPase activity. If the catalytic carboxylates were components of the mechanism to bring the NBDs together, then we predicted that insertion of a flexible cross-linker between the arms would increase ATPase activity of the mutants. We found that cross-linking (between L175C(TMD1) and N820C(TMD2)) with a short flexible cross-linker (7.8Å maximum) restored high levels of drug-stimulated ATPase activity of the E556Q or E1201Q mutants. Cross-linking with a longer cross-linker (22Å maximum) however, did not restore activity. Cross-linking could not rescue all ATPase deficient mutants. For example, cross-linking L175C/N820C with short or long cross-linkers did not activate the H-loop mutants H587A or H1232A or the Walker A K433M or K1076M mutants. The results suggest that the E556 and E1201 catalytic carboxylates are part of a spring-like mechanism that is required to facilitate movements between the open and closed conformations of P-gp during ATP hydrolysis.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Adenosina Trifosfatases/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/química , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Adenosina Trifosfatases/genética , Animais , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Transporte Biológico , Domínio Catalítico , Linhagem Celular , Cricetinae , Regulação Enzimológica da Expressão Gênica , Humanos , Modelos Moleculares , Mutação , Conformação Proteica , Vimblastina/metabolismo , Vimblastina/farmacologia
15.
Adv Pharm Bull ; 5(4): 497-505, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26819922

RESUMO

PURPOSE: Aggregation suppressing additives have been used to stabilize proteins during manufacturing and storage. Interferonß-1b is prone to aggregation because of being non-glycosylated. Aggregation behavior of albumin-free formulations of recombinant IFNß-1b was explored using additives such as n-dodecyl-ß-D-maltoside, Tween 20, arginine, glycine, trehalose and sucrose at different pH. METHODS: Fractional factorial design was applied to select major factors affecting aggregation in solutions. Box-Behnken technique was used to optimize the best concentration of additives and protein. RESULTS: Quadratic model was the best fitted model for particle size, OD350 and OD280/OD260. The optimal conditions of 0.2% n-Dodecyl-ß-D-maltoside, 70 mM arginine, 189 mM trehalose and protein concentration of 0.50 mg/ml at pH 4 were achieved. A potency value of 91% ± 5% was obtained for the optimized formulation. CONCLUSION: This study shows that the combination of n-Dodecyl-ß-D-maltoside, arginine and trehalose would demonstrate a significant stabilizing and anti-aggregating effect on the liquid formulation of interferonß-1b. It can not only reduce the manufacturing costs but will also ease patient compliance.

16.
Mater Sci Eng C Mater Biol Appl ; 53: 156-65, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26042703

RESUMO

Steady-state and time-resolved fluorescence together with circular dichroism (CD) spectroscopic studies was performed to examine the interactions between bovine serum albumin (BSA) and two alkylmaltoside surfactants, i.e. n-decyl-ß-D-maltoside (ß-C10G2) and n-dodecyl-ß-D-maltoside (ß-C12G2), having identical structures but different tail lengths. Changes in the intrinsic fluorescence of BSA from static as well as dynamic measurements revealed a weak protein-surfactant interaction and gave the corresponding binding curves, suggesting that the binding mechanism of surfactants to protein is essentially cooperative in nature. The behavior of both surfactants is similar, so that the differences detected were attributed to the more hydrophobic nature of ß-C12G2, which favors the adsorption of micelle-like aggregates onto the protein surface. These observations were substantially demonstrated by data derived from synchronous, three-dimensional and anisotropy fluorescence experiments. Changes in the secondary structure of the protein induced by the interaction with surfactants were analyzed by CD to determine the contents of α-helix and ß-strand. It was noted that whereas the addition of ß-C10G2 appears to stabilize the secondary structure of the protein, ß-C12G2 causes a marginal denaturation of BSA for a protein:surfactant molar ratio as high as 1 to 100.


Assuntos
Glucosídeos/química , Glucosídeos/metabolismo , Soroalbumina Bovina/química , Soroalbumina Bovina/metabolismo , Tensoativos/química , Tensoativos/metabolismo , Animais , Bovinos , Dicroísmo Circular , Estabilidade Proteica , Espectrometria de Fluorescência
17.
J Mol Biol ; 426(2): 403-11, 2014 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-24099674

RESUMO

Gram-negative bacteria, such as Escherichia coli, frequently utilize tripartite efflux complexes in the RND (resistance-nodulation-cell division) family to expel diverse toxic compounds from the cell. These complexes span both the inner and outer membranes of the bacterium via an α-helical, inner membrane transporter; a periplasmic membrane fusion protein; and a ß-barrel, outer membrane channel. One such efflux system, CusCBA, is responsible for extruding biocidal Cu(I) and Ag(I) ions. To remove these toxic ions, the CusC outer membrane channel must form a ß-barrel structural domain, which creates a pore and spans the entire outer membrane. We here report the crystal structures of wild-type CusC, as well as two CusC mutants, suggesting that the first N-terminal cysteine residue plays an important role in protein-membrane interactions and is critical for the insertion of this channel protein into the outer membrane. These structures provide insight into the mechanisms on CusC folding and transmembrane channel formation. It is found that the interactions between CusC and membrane may be crucial for controlling the opening and closing of this ß-barrel, outer membrane channel.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Dobramento de Proteína , Cristalografia por Raios X , Proteínas de Escherichia coli/genética , Proteínas de Membrana/genética , Modelos Biológicos , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Conformação Proteica
18.
FEBS Lett ; 587(15): 2340-5, 2013 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-23722112

RESUMO

Although type-1 NAD(P)H dehydrogenase (NDH) complex subunit constituents and physiological functions have been reported in plants and cyanobacteria, the biochemical properties of this enzyme are not clear. We used chromatographic isolation to purify and characterize a NADPH-active NDH from the cyanobacterium Thermosynechococcus elongatus. Ferredoxin (Fd) and ferredoxin-NADP(+) oxidoreductase (FNR) were co-eluted with NDH, implying the electron donation from NADPH to NDH via the interaction with FNR. We investigated the enzymatic properties of the complex. Furthermore, the activity is competitively inhibited by rotenone, suggesting that it possesses a quinone binding site, similar to mitochondria complex I.


Assuntos
Cianobactérias/enzimologia , NADH Desidrogenase/metabolismo , NADPH Desidrogenase/metabolismo , Cinética , NADH Desidrogenase/isolamento & purificação , NADPH Desidrogenase/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA