Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 211
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(4)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38400284

RESUMO

Prostate cancer (PCa) is the second most common cancer. In this paper, the isolation and properties of exosomes as potential novel liquid biopsy markers for early PCa liquid biopsy diagnosis are investigated using two prostate human cell lines, i.e., benign (control) cell line RWPE1 and carcinoma cell line 22Rv1. Exosomes produced by both cell lines are characterised by various methods including nanoparticle-tracking analysis, dynamic light scattering, scanning electron microscopy and atomic force microscopy. In addition, surface plasmon resonance (SPR) is used to study three different receptors on the exosomal surface (CD63, CD81 and prostate-specific membrane antigen-PMSA), implementing monoclonal antibodies and identifying the type of glycans present on the surface of exosomes using lectins (glycan-recognising proteins). Electrochemical analysis is used to understand the interfacial properties of exosomes. The results indicate that cancerous exosomes are smaller, are produced at higher concentrations, and exhibit more nega tive zeta potential than the control exosomes. The SPR experiments confirm that negatively charged α-2,3- and α-2,6-sialic acid-containing glycans are found in greater abundance on carcinoma exosomes, whereas bisecting and branched glycans are more abundant in the control exosomes. The SPR results also show that a sandwich antibody/exosomes/lectins configuration could be constructed for effective glycoprofiling of exosomes as a novel liquid biopsy marker.


Assuntos
Carcinoma , Exossomos , Masculino , Humanos , Exossomos/química , Biópsia Líquida , Carcinoma/metabolismo , Carcinoma/patologia , Lectinas/análise , Lectinas/metabolismo , Polissacarídeos/análise , Polissacarídeos/metabolismo
2.
BMC Med ; 21(1): 335, 2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37667227

RESUMO

BACKGROUND: Parkinson's disease is generally asymptomatic at earlier stages. At an early stage, there is an extensive progression in the neuropathological hallmarks, although, at this stage, diagnosis is not possible with currently available diagnostic methods. Therefore, the pressing need is for susceptibility risk biomarkers that can aid in better diagnosis and therapeutics as well can objectively serve to measure the endpoint of disease progression. The role of small extracellular vesicles (sEV) in the progression of neurodegenerative diseases could be potent in playing a revolutionary role in biomarker discovery. METHODS: In our study, the salivary sEV were efficiently isolated by chemical precipitation combined with ultrafiltration from subjects (PD = 70, healthy controls = 26, and prodromal PD = 08), followed by antibody-based validation with CD63, CD9, GAPDH, Flotillin-1, and L1CAM. Morphological characterization of the isolated sEV through transmission electron microscopy. The quantification of sEV was achieved by fluorescence (lipid-binding dye-labeled) nanoparticle tracking analysis and antibody-based (CD63 Alexa fluor 488 tagged sEV) nanoparticle tracking analysis. The total alpha-synuclein (α-synTotal) in salivary sEVs cargo was quantified by ELISA. The disease severity staging confirmation for n = 18 clinically diagnosed Parkinson's disease patients was done by 99mTc-TRODAT-single-photon emission computed tomography. RESULTS: We observed a significant increase in total sEVs concentration in PD patients than in the healthy control (HC), where fluorescence lipid-binding dye-tagged sEV were observed to be higher in PD (p = 0.0001) than in the HC using NTA with a sensitivity of 94.34%. In the prodromal PD cases, the fluorescence lipid-binding dye-tagged sEV concentration was found to be higher (p = 0.008) than in HC. This result was validated through anti-CD63 tagged sEV (p = 0.0006) with similar sensitivity of 94.12%. We further validated our findings with the ELISA based on α-synTotal concentration in sEV, where it was observed to be higher in PD (p = 0.004) with a sensitivity of 88.24%. The caudate binding ratios in 99mTc-TRODAT-SPECT represent a positive correlation with sEV concentration (r = 0.8117 with p = 0.0112). CONCLUSIONS: In this study, for the first time, we have found that the fluorescence-tagged sEV has the potential to screen the progression of disease with clinically acceptable sensitivity and can be a potent early detection method for PD.


Assuntos
Vesículas Extracelulares , Doença de Parkinson , Humanos , Doença de Parkinson/diagnóstico por imagem , Fluorescência , Diagnóstico Precoce , Anticorpos , Lipídeos
3.
Eur Biophys J ; 52(4-5): 379-386, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37133524

RESUMO

Determination of the size, density, and mass of viral particles can provide valuable information to support process and formulation studies in clinical development. Analytical ultracentrifugation (AUC), as a first principal method, has been shown to be a beneficial tool for the characterization of the non-enveloped adeno associated virus (AAV). Here, we demonstrate the suitability of AUC for the challenging characterization of a representative for enveloped viruses, which usually are expected to exhibit higher dispersity than non-enveloped viruses. Specifically, the vesicular stomatitis virus (VSV)-based oncolytic virus VSV-GP was used to evaluate potential occurrence of non-ideal sedimentation by testing different rotor speeds and loading concentrations. The partial specific volume was determined via density gradients and density contrast experiments. Additionally, nanoparticle tracking analysis (NTA) was used to determine the hydrodynamic diameter of VSV-GP particles to calculate their molecular weight via the Svedberg equation. Overall, this study demonstrates the applicability of AUC and NTA for the characterization of size, density, and molar mass of an enveloped virus, namely VSV-GP.


Assuntos
Terapia Viral Oncolítica , Vírus Oncolíticos , Estomatite Vesicular , Animais , Humanos , Terapia Viral Oncolítica/métodos , Hidrodinâmica , Vesiculovirus , Vírus da Estomatite Vesicular Indiana , Ultracentrifugação
4.
Transfus Med ; 33(5): 398-402, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37483014

RESUMO

BACKGROUND: Cryoprecipitate is used primarily to replenish fibrinogen levels in patients. Little is known about the presence of micro- or nano-sized particles in cryoprecipitate. Therefore, we aimed to quantify these particles and investigate some pre-analytical considerations. MATERIALS AND METHODS: Particle concentration and size distribution were determined in 10 cryoprecipitate units by nanoparticle tracking analysis (NTA). The effects of freeze-thawing cryoprecipitate and 0.45 µm filtration with either regenerated cellulose (RC) or polytetrafluoroethylene (PTFE) filters before sample analysis were examined. RESULTS: Neither the size nor concentration of particles were affected by two freeze/thaw cycles. PTFE filtration, but not RC filtration, significantly reduced particle mean and mode size compared to RC filtration and mode size compared to unfiltered cryoprecipitate. The 10 cryoprecipitate units had an average particle concentration of 2.50 × 1011 ± 1.10 × 1011 particles/mL, a mean particle size of 133.8 ± 7.5 nm and a mode particle size of 107.9 ± 11.1 nm. CONCLUSION: This study demonstrated that preanalytical filtration of cryoprecipitate units using RC filters was suitable for NTA. An additional freeze/thaw cycle did not impact NTA parameters, suggesting that aliquoting cryoprecipitate units prior to laboratory investigations is suitable for downstream analyses.


Assuntos
Fator VIII , Fibrinogênio , Nanopartículas , Humanos , Nanopartículas/análise , Tamanho da Partícula , Politetrafluoretileno , Fator VIII/química , Fibrinogênio/química , Filtração
5.
Int J Mol Sci ; 24(15)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37569604

RESUMO

Urinary extracellular vesicle (uEV) proteins may be used as specific markers of kidney damage in various pathophysiological conditions. The nanoparticle-tracking analysis (NTA) appears to be the most useful method for the analysis of uEVs due to its ability to analyze particles below 300 nm. The NTA method has been used to measure the size and concentration of uEVs and also allows for a deeper analysis of uEVs based on their protein composition using fluorescence measurements. However, despite much interest in the clinical application of uEVs, their analysis using the NTA method is poorly described and requires meticulous sample preparation, experimental adjustment of instrument settings, and above all, an understanding of the limitations of the method. In the present work, we demonstrate the usefulness of an NTA. We also present problems encountered during analysis with possible solutions: the choice of sample dilution, the method of the presentation and comparison of results, photobleaching, and the adjustment of instrument settings for a specific analysis. We show that the NTA method appears to be a promising method for the determination of uEVs. However, it is important to be aware of potential problems that may affect the results.


Assuntos
Vesículas Extracelulares , Nanopartículas , Sistema Urinário , Vesículas Extracelulares/metabolismo , Proteínas/metabolismo , Sistema Urinário/metabolismo , Biomarcadores/metabolismo
6.
Int J Mol Sci ; 24(11)2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37298585

RESUMO

Liver diseases represent a significant global health burden, necessitating the development of reliable biomarkers for early detection, prognosis, and therapeutic monitoring. Extracellular vesicles (EVs) have emerged as promising candidates for liver disease biomarkers due to their unique cargo composition, stability, and accessibility in various biological fluids. In this study, we present an optimized workflow for the identification of EVs-based biomarkers in liver disease, encompassing EVs isolation, characterization, cargo analysis, and biomarker validation. Here we show that the levels of microRNAs miR-10a, miR-21, miR-142-3p, miR-150, and miR-223 were different among EVs isolated from patients with nonalcoholic fatty liver disease and autoimmune hepatitis. In addition, IL2, IL8, and interferon-gamma were found to be increased in EVs isolated from patients with cholangiocarcinoma compared with healthy controls. By implementing this optimized workflow, researchers and clinicians can improve the identification and utilization of EVs-based biomarkers, ultimately enhancing liver disease diagnosis, prognosis, and personalized treatment strategies.


Assuntos
Vesículas Extracelulares , MicroRNAs , Hepatopatia Gordurosa não Alcoólica , Humanos , Fluxo de Trabalho , Vesículas Extracelulares/genética , Biomarcadores
7.
Int J Mol Sci ; 24(20)2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37894776

RESUMO

There are a variety of methods employed by laboratories for quantifying extracellular vesicles isolated from bacteria. As a result, the ability to compare results across published studies can lead to questions regarding the suitability of methods and buffers for accurately quantifying these vesicles. Within the literature, there are several common methods for vesicle quantification. These include lipid quantification using the lipophilic dye FM 4-64, protein quantification using microBCA, Qubit, and NanoOrange assays, or direct vesicle enumeration using nanoparticle tracking analysis. In addition, various diluents and lysis buffers are also used to resuspend and treat vesicles. In this study, we directly compared the quantification of a bacterial outer membrane vesicle using several commonly used methods. We also tested the impact of different buffers, buffer age, lysis method, and vesicle diluent on vesicle quantification. The results showed that buffer age had no significant effect on vesicle quantification, but the lysis method impacted the reliability of measurements using Qubit and NanoOrange. The microBCA assay displayed the least variability in protein concentration values and was the most consistent, regardless of the buffer or diluent used. MicroBCA also demonstrated the strongest correlation to the NTA-determined particle number across a range of vesicle concentrations. Overall, these results indicate that with appropriate diluent and buffer choice, microBCA vs. NTA standard curves could be generated and the microBCA assay used to estimate the particle number when NTA instrumentation is not readily available.


Assuntos
Vesículas Extracelulares , Reprodutibilidade dos Testes , Vesículas Extracelulares/metabolismo , Compostos Orgânicos/metabolismo , Bactérias Gram-Negativas
8.
J Appl Microbiol ; 133(2): 529-543, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35429090

RESUMO

AIMS: To measure the infectious titre (IT) decay rate for various bacteriophages as a function of storage container material. Additionally, parallel light scattering and infectious titre measurements reveal distinct mechanisms for IT loss, depending on phage. METHODS AND RESULTS: Suspensions of bacteriophages 44AHJD, P68 and gh-1 were stored in various labware. IT of each suspension was repeatedly measured over the course of 2 weeks. Large variability in IT decay was observed, with >4 log10 loss in glass and low-binding polypropylene. Incubation of polymer containers with Bovine Serum Albumin (BSA) resulted in a consistent reduction in IT decay. Aggregation state of phage suspensions was studied by nanoparticle tracking analysis (NTA), revealing highest aggregation in glass-stored suspensions and lowest after storage in BSA-treated containers. CONCLUSIONS: Glass and 'low-binding' containers may aggravate IT decay while BSA treatment may present an easy mitigation strategy. IT versus NTA titre diagrams highlight the importance of phage inactivation in combination with aggregation. SIGNIFICANCE AND IMPACT OF THE STUDY: Container material is a significant determinant of bacteriophage IT decay. It is therefore essential to confirm IT following storage and tailor choice of phage storage containers accordingly. Aggregation of phages and adsorption onto labware surfaces are not only the mechanisms accounting for IT loss but also biological instability.


Assuntos
Bacteriófagos , Nanopartículas , Adsorção , Bacteriófagos/fisiologia , Vidro
9.
Sens Actuators B Chem ; 373: 132638, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36124254

RESUMO

Stratifying patients according to disease severity has been a major hurdle during the COVID-19 pandemic. This usually requires evaluating the levels of several biomarkers, which may be cumbersome when rapid decisions are required. In this manuscript we show that a single nanoparticle aggregation test can be used to distinguish patients that require intensive care from those that have already been discharged from the intensive care unit (ICU). It consists of diluting a platelet-free plasma sample and then adding gold nanoparticles. The nanoparticles aggregate to a larger extent when the samples are obtained from a patient in the ICU. This changes the color of the colloidal suspension, which can be evaluated by measuring the pixel intensity of a photograph. Although the exact factor or combination of factors behind the different aggregation behavior is unknown, control experiments demonstrate that the presence of proteins in the samples is crucial for the test to work. Principal component analysis demonstrates that the test result is highly correlated to biomarkers of prognosis and inflammation that are commonly used to evaluate the severity of COVID-19 patients. The results shown here pave the way to develop nanoparticle aggregation assays that classify COVID-19 patients according to disease severity, which could be useful to de-escalate care safely and make a better use of hospital resources.

10.
Int J Mol Sci ; 23(4)2022 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-35216426

RESUMO

As is the case with most eucaryotic cells, cancer cells are able to secrete extracellular vesicles (EVs) as a communication means towards their environment and surrounding cells. EVs are represented by microvesicles and smaller vesicles called exosomes, which are known for their involvement in cancer aggressiveness. The release of such EVs requires the intervention of trafficking-associated proteins, mostly represented by the RAB-GTPases family. In particular, RAB27A is known for its role in addressing EVs-to-be secreted towards the the plasma membrane. In this study, shRNAs targeting RAB27A were used in colorectal (CRC) and glioblastoma (GB) cell lines in order to alter EVs secretion. To study and monitor EVs secretion in cell lines' supernatants, nanoparticle tracking analysis (NTA) was used through the NanoSight NS300 device. Since it appeared that NanoSight failed to detect the decrease in the EVs secretion, we performed another approach to drop EVs secretion (RAB27A-siRNA, indomethacin, Nexihnib20). Similar results were obtained i.e., no variation in EVs concentration. Conversely, NTA allowed us to monitor EVs up-secretion following rotenone treatment or hypoxia conditions. Therefore, our data seemed to point out the insufficiency of using only this technique for the assessment of EVs secretion decrease.


Assuntos
Biotecnologia/métodos , Vesículas Extracelulares/metabolismo , Nanopartículas/metabolismo , Linhagem Celular Tumoral , Micropartículas Derivadas de Células/metabolismo , Exossomos/metabolismo , Células HCT116 , Humanos , Neoplasias/metabolismo , Transporte Proteico/fisiologia
11.
Int J Mol Sci ; 23(17)2022 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-36077470

RESUMO

Extracellular vesicles are evaluated by nanoparticle tracking analysis (NTA), providing information on their hydrodynamic diameters, and by atomic force microscopy (AFM) to calculate their geometric diameters. The aim of this study is to explore the influence of Brownian movements in a sample drop and preparation time on imaging-based measurements and to determine the relationship between the geometric and hydrodynamic sizes of the extracellular vesicles measured by the AFM and the NTA, respectively. Exosomes derived from the human prostate cancer cell line PC3 were evaluated by NTA and AFM, and those results were compared with Monte Carlo simulations. The mean size, evaluated by AFM shortly after application on the mica substrate, is less than its real value. It obtains the correct value faster for a thinner sample drop. Fitting the log-normal distribution to the geometric and hydrodynamic diameters leads to the conclusion that the latter could arise from the former by linear scaling by a factor that could be used to characterize the analyzed extracellular vesicles. The size of the vesicles attached to the mica substrate depends on time. The effect of Brownian motion and stretch of the lipid bilayer should be considered in the context of exosome AFM studies.


Assuntos
Exossomos , Vesículas Extracelulares , Nanopartículas , Exossomos/metabolismo , Vesículas Extracelulares/metabolismo , Humanos , Bicamadas Lipídicas/metabolismo , Masculino , Microscopia de Força Atômica/métodos , Nanopartículas/química
12.
Int J Mol Sci ; 23(24)2022 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-36555765

RESUMO

Size and zeta potential are critical physicochemical properties of nanoparticles (NPs), influencing their biological activity and safety profile. These are essential for further industrial upscale and clinical success. However, the characterization of polydisperse, non-spherical NPs is a challenge for traditional characterization techniques (ex., dynamic light scattering (DLS)). In this paper, superparamagnetic iron oxide nanoparticles (SPIONs) were coated with polyvinyl alcohol (PVAL) exhibiting different terminal groups at their surface, either hydroxyl (OH), carboxyl (COOH) or amino (NH2) end groups. Size, zeta potential and concentration were characterized by orthogonal methods, namely, batch DLS, nanoparticle tracking analysis (NTA), tunable resistive pulse sensing (TRPS), transmission electron microscopy (TEM), asymmetric flow field flow fractionation (AF4) coupled to multi-angle light scattering (MALS), UV-Visible and online DLS. Finally, coated SPIONs were incubated with albumin, and size changes were monitored by AF4-MALS-UV-DLS. NTA showed the biggest mean sizes, even though DLS PVAL-COOH SPION graphs presented aggregates in the micrometer range. TRPS detected more NPs in suspension than NTA. Finally, AF4-MALS-UV-DLS could successfully resolve the different sizes of the coated SPION suspensions. The results highlight the importance of combining techniques with different principles for NPs characterization. The advantages and limitations of each method are discussed here.


Assuntos
Nanopartículas , Polímeros , Tamanho da Partícula , Difusão Dinâmica da Luz , Nanopartículas/química , Nanopartículas Magnéticas de Óxido de Ferro , Álcool de Polivinil
13.
Int J Mol Sci ; 23(24)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36555442

RESUMO

Small particles in natural sources are a subject of interest for their potential role in intercellular, inter-organism, and inter-species interactions, but their harvesting and assessment present a challenge due to their small size and transient identity. We applied a recently developed interferometric light microscopy (ILM) to assess the number density and hydrodynamic radius (Rh) of isolated small cellular particles (SCPs) from blood preparations (plasma and washed erythrocytes) (B), spruce needle homogenate (S), suspension of flagellae of microalgae Tetraselmis chuii (T), conditioned culture media of microalgae Phaeodactylum tricornutum (P), and liposomes (L). The aliquots were also assessed by flow cytometry (FCM), dynamic light scattering (DLS), ultraviolet-visible spectrometry (UV-vis), and imaging by cryogenic transmission electron microscopy (cryo-TEM). In Rh, ILM showed agreement with DLS within the measurement error in 10 out of 13 samples and was the only method used here that yielded particle density. Cryo-TEM revealed that representative SCPs from Tetraselmis chuii flagella (T) did not have a globular shape, so the interpretation by Rh of the batch methods was biased. Cryo-TEM showed the presence of thin filaments in isolates from Phaeodactylum tricornutum conditioned culture media (P), which provides an explanation for the considerably larger Rh obtained by batch methods than the sizes of particles observed by cryo-TEM images. ILM proved convenient for assessment of number density and Rh of SCPs in blood preparations (e.g., plasma); therefore, its use in population and clinical studies is indicated.


Assuntos
Lipossomos , Lipossomos/química , Meios de Cultivo Condicionados , Microscopia Eletrônica de Transmissão , Microscopia Crioeletrônica , Difusão Dinâmica da Luz , Tamanho da Partícula
14.
Curr Issues Mol Biol ; 43(3): 1997-2010, 2021 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-34889902

RESUMO

BACKGROUND: Anesthetic-induced preconditioning (AIP) with volatile anesthetics is a well-known experimental technique to protect tissues from ischemic injury or oxidative stress. Additionally, plasmatic extracellular vesicle (EV) populations and their cargo are known to be affected by AIP in vitro, and to provide organ protective properties via their cargo. We investigated whether AIP would affect the generation of EVs in an in vivo rat model. METHODS: Twenty male Sprague Dawley rats received a repetitive treatment with either isoflurane or with sevoflurane for a duration of 4 or 8 weeks. EVs from blood plasma were characterized by nanoparticle tracking analysis, transmission electron microscopy (TEM) and Western blot. A scratch assay (H9C2 cardiomyoblast cell line) was performed to investigate the protective capabilities of the isolated EVs. RESULTS: TEM images as well as Western blot analysis indicated that EVs were successfully isolated. The AIP changed the flotillin and CD63 expression on the EV surface, but not the EV concentration. The scratch assay did not show increased cell migration and/or proliferation after EV treatment. CONCLUSION: AIP in rats changed the cargo of EVs but had no effect on EV concentration or cell migration/proliferation. Future studies are needed to investigate the cargo on a miRNA level and to investigate the properties of these EVs in additional functional experiments.


Assuntos
Anestésicos/administração & dosagem , Anestésicos/farmacocinética , Vesículas Extracelulares/metabolismo , Animais , Biomarcadores , Linhagem Celular , Vesículas Extracelulares/ultraestrutura , Isquemia/etiologia , Isquemia/metabolismo , Isquemia/patologia , Isquemia/prevenção & controle , Precondicionamento Isquêmico , Masculino , Nanopartículas , Estresse Oxidativo/efeitos dos fármacos , Tamanho da Partícula , Ratos
15.
Brain Behav Immun ; 92: 165-183, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33307173

RESUMO

Extracellular vesicles (EVs) have been implicated mechanistically in the pathobiology of neurodegenerative disorders, including central nervous system injury. However, the role of EVs in spinal cord injury (SCI) has received limited attention to date. Moreover, technical limitations related to EV isolation and characterization methods can lead to misleading or contradictory findings. Here, we examined changes in plasma EVs after mouse SCI at multiple timepoints (1d, 3d, 7d, 14d) using complementary measurement techniques. Plasma EVs isolated by ultracentrifugation (UC) were decreased at 1d post-injury, as shown by nanoparticle tracking analysis (NTA), and paralleled an overall reduction in total plasma extracellular nanoparticles. Western blot (WB) analysis of UC-derived plasma EVs revealed increased expression of the tetraspanin exosome marker, CD81, between 1d and 7d post-injury. To substantiate these findings, we performed interferometric and fluorescence imaging of single, tetraspanin EVs captured directly from plasma with ExoView®. Consistent with WB, we observed significantly increased plasma CD81+ EV count and cargo at 1d post-injury. The majority of these tetraspanin EVs were smaller than 50 nm based on interferometry and were insufficiently resolved by flow cytometry-based detection. At the injury site, there was enhanced expression of EV biogenesis proteins that were also detected in EVs directly isolated from spinal cord tissue by WB. Surface expression of tetraspanins CD9 and CD63 increased in multiple cell types at the injury site; however, astrocyte CD81 expression uniquely decreased, as demonstrated by flow cytometry. UC-isolated plasma EV microRNA cargo was also significantly altered at 1d post-injury with changes similar to that reported in EVs released by astrocytes after inflammatory stimulation. When injected into the lateral ventricle, plasma EVs from SCI mice increased both pro- and anti-inflammatory gene as well as reactive astrocyte gene expression in the brain cortex. These studies provide the first detailed characterization of plasma EV dynamics after SCI and suggest that plasma EVs may be involved in posttraumatic brain inflammation.


Assuntos
Exossomos , Vesículas Extracelulares , MicroRNAs , Nanopartículas , Traumatismos da Medula Espinal , Animais , Camundongos
16.
Methods ; 177: 35-49, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32035230

RESUMO

Extracellular vesicle (EV) is a unified terminology of membrane-enclosed vesicular species ubiquitously secreted by almost every cell type and present in all body fluids. They carry a cargo of lipids, metabolites, nucleic acids and proteins for their clearance from cells as well as for cell-to-cell communications. The exact composition of EVs and their specific functions are not well understood due to the underdevelopment of the separation protocols, especially those from the central nervous system including animal and human brain tissues as well as cerebrospinal fluids, and the low yield of proteins in the separated EVs. To understand their exact molecular composition and their functional roles, development of the reliable protocols for EV separation is necessary. Here we report the methods for EV separation from human and mouse unfixed frozen brain tissues by a sucrose step gradient ultracentrifugation method, and from human cerebrospinal fluids by an affinity capture method. The separated EVs were assessed for morphological, biophysical and proteomic properties of separated EVs by nanoparticle tracking analysis, transmission electron microscopy, and labeled and label-free mass spectrometry for protein profiling with step-by-step protocols for each assessment.


Assuntos
Encéfalo/metabolismo , Vesículas Extracelulares/química , Proteínas do Tecido Nervoso/isolamento & purificação , Proteoma/isolamento & purificação , Proteômica/métodos , Animais , Biomarcadores/líquido cefalorraquidiano , Química Encefálica , Comunicação Celular , Centrifugação com Gradiente de Concentração/métodos , Cromatografia de Afinidade/métodos , Cromatografia em Gel/métodos , Vesículas Extracelulares/metabolismo , Humanos , Camundongos , Proteínas do Tecido Nervoso/classificação , Neurônios/química , Neurônios/metabolismo , Proteoma/classificação , Proteômica/instrumentação , Ultracentrifugação/métodos
17.
J Supercrit Fluids ; 173: 105204, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34219919

RESUMO

Fabry disease is a lysosomal storage disease arising from a deficiency of the enzyme α-galactosidase A (GLA). The enzyme deficiency results in an accumulation of glycolipids, which over time, leads to cardiovascular, cerebrovascular, and renal disease, ultimately leading to death in the fourth or fifth decade of life. Currently, lysosomal storage disorders are treated by enzyme replacement therapy (ERT) through the direct administration of the missing enzyme to the patients. In view of their advantages as drug delivery systems, liposomes are increasingly being researched and utilized in the pharmaceutical, food and cosmetic industries, but one of the main barriers to market is their scalability. Depressurization of an Expanded Liquid Organic Solution into aqueous solution (DELOS-susp) is a compressed fluid-based method that allows the reproducible and scalable production of nanovesicular systems with remarkable physicochemical characteristics, in terms of homogeneity, morphology, and particle size. The objective of this work was to optimize and reach a suitable formulation for in vivo preclinical studies by implementing a Quality by Design (QbD) approach, a methodology recommended by the FDA and the EMA to develop robust drug manufacturing and control methods, to the preparation of α-galactosidase-loaded nanoliposomes (nanoGLA) for the treatment of Fabry disease. Through a risk analysis and a Design of Experiments (DoE), we obtained the Design Space in which GLA concentration and lipid concentration were found as critical parameters for achieving a stable nanoformulation. This Design Space allowed the optimization of the process to produce a nanoformulation suitable for in vivo preclinical testing.

18.
Chem Pharm Bull (Tokyo) ; 69(11): 1045-1053, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34719585

RESUMO

For quantitative analysis, data should be obtained at a sample concentration that is within the range of linearity. We examined the effect of sample concentration on nanoparticle tracking analysis (NTA) of small extracellular vesicles (sEVs), including exosomes, by comparing NTA results of sEVs with those obtained for polystyrene nanoparticles (PSN) and liposomes, which mimic lipid composition and physicochemical properties of exosomes. Initially, NTA of PSN at different concentrations was performed and the particle sizes determined were validated by dynamic light scattering. The major peak maxima for PSN mixtures of different sizes at the higher particle numbers were similar, with some fluctuation of the minor peak maxima observed at the lower particle number, which was also observed for sEVs. Sample concentration is critical for obtaining reproducible data for liposomes and exosomes and increasing the sample concentration caused an increase in data variability because of particle interactions. The inter-day repeatability of particles sizes and concentration for sEVs were 7.47 and 4.51%, respectively. Analysis of the linearity range revealed that this was narrower for sEVs when compared with that of liposomes. Owing to the use of liposomes that mimic the lipid composition and physicochemical properties of exosomes and proteinase-treated sEVs, it was demonstrated that these different analytical results could be possibly caused by the protein corona of sEVs. Consideration of the sample concentration and linearity range is important for obtaining reproducible and reliable data of sEVs.


Assuntos
Exossomos/química , Vesículas Extracelulares/química , Lipossomos/química , Nanopartículas/química , Imagem Individual de Molécula/métodos , Células HeLa , Células Hep G2 , Humanos , Células K562 , Limite de Detecção , Tamanho da Partícula , Fosfatidilcolinas/química , Fosfatidilserinas/química , Reprodutibilidade dos Testes
19.
Int J Mol Sci ; 22(8)2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33917210

RESUMO

Growing interest in extracellular vesicles (EVs) has prompted the advancements of protocols for improved EV characterization. As a high-throughput, multi-parameter, and single particle technique, flow cytometry is widely used for EV characterization. The comparison of data on EV concentration, however, is hindered by the lack of standardization between different protocols and instruments. Here, we quantified EV counts of platelet-derived EVs, using two flow cytometers (Gallios and CytoFLEX LX) and nanoparticle tracking analysis (NTA). Phosphatidylserine-exposing EVs were identified by labelling with lactadherin (LA). Calibration with silica-based fluorescent beads showed detection limits of 300 nm and 150 nm for Gallios and CytoFLEX LX, respectively. Accordingly, CytoFLEX LX yielded 40-fold higher EV counts and 13-fold higher counts of LA+CD41+ EVs compared to Gallios. NTA in fluorescence mode (F-NTA) demonstrated that only 9.5% of all vesicles detected in scatter mode exposed phosphatidylserine, resulting in good agreement of LA+ EVs for CytoFLEX LX and F-NTA. Since certain functional characteristics, such as the exposure of pro-coagulant phosphatidylserine, are not equally displayed across the entire EV size range, our study highlights the necessity of indicating the size range of EVs detected with a given approach along with the EV concentration to support the comparability between different studies.


Assuntos
Plaquetas/metabolismo , Vesículas Extracelulares/metabolismo , Citometria de Fluxo , Nanopartículas , Biomarcadores , Citometria de Fluxo/métodos , Fluorescência , Corantes Fluorescentes , Espectroscopia de Infravermelho com Transformada de Fourier
20.
Int J Mol Sci ; 22(22)2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34830318

RESUMO

Small extracellular vesicles isolated from urine (uEVs) are increasingly recognized as potential biomarkers. Meanwhile, different uEV preparation strategies exist. Conventionally, the performance of EV preparation methods is evaluated by single particle quantification, Western blot, and electron microscopy. Recently, we introduced imaging flow cytometry (IFCM) as a next-generation single EV analysis technology. Here, we analyzed uEV samples obtained with different preparation procedures using nanoparticle tracking analysis (NTA), semiquantitative Western blot, and IFCM. IFCM analyses demonstrated that urine contains a predominant CD9+ sEV population, which exceeds CD63+ and CD81+ sEV populations. Furthermore, we demonstrated that the storage temperature of urine samples negatively affects the recovery of CD9+ sEVs. Although overall reduced, the highest CD9+ sEV recovery was obtained from urine samples stored at -80 °C and the lowest from those stored at -20 °C. Upon comparing the yield of the different uEV preparations, incongruencies between NTA and IFCM data became apparent. Results obtained by both NTA and IFCM were consistent with Western blot analyses for EV marker proteins; however, NTA results correlated with the amount of the impurity marker uromodulin. Despite demonstrating that the combination of ultrafiltration and size exclusion chromatography appears as a reliable uEV preparation technique, our data challenge the soundness of traditional NTA for the evaluation of different EV preparation methods.


Assuntos
Vesículas Extracelulares/química , Citometria de Fluxo/métodos , Imagem Molecular/métodos , Urinálise/métodos , Adulto , Biomarcadores/urina , Cromatografia em Gel , Feminino , Voluntários Saudáveis , Humanos , Masculino , Nanopartículas/química , Nanopartículas/ultraestrutura , Tetraspanina 28/urina , Tetraspanina 29/urina , Tetraspanina 30/urina , Ultrafiltração , Urinálise/instrumentação , Urina/química , Uromodulina/urina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA