Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Biotechnol Bioeng ; 121(8): 2524-2541, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38795025

RESUMO

Governments and biopharmaceutical organizations aggressively leveraged expeditious communication capabilities, decision models, and global strategies to make a COVID-19 vaccine happen within a period of 12 months. This was an unusual effort and cannot be transferred to normal times. However, this focus on a single vaccine has also led to other treatments and drug developments being sidelined. Society expects the pharmaceutical industry to provide an uninterrupted supply of medicines. However, it is often overlooked how complex the manufacture of these compounds is and what logistics are required, not to mention the time needed to develop new drugs. The overarching theme, therefore, is patient access and how we can help ensure access and extend it to low- and middle-income countries. Despite unceasing efforts to make medications available to all patient populations, this must never be done at the expense of patient safety. A major fraction of the costs in biopharmaceutical manufacturing are for drug discovery, process development, and clinical studies. Infrastructure costs are very difficult to quantify because they often depend on whether a greenfield facility or an existing, depreciated facility is used or adapted for a new product. To accelerate process development concepts of platform process and prior knowledge are increasingly leveraged. While more traditional protein therapeutics continue to dominate the field, we are also experiencing the exciting emergence and evolution of other therapeutic formats (bispecifics, tetravalent mAbs, antibody-drug conjugates, enzymes, peptides, etc.) that offer unique treatment options for patients. Protein modalities are still dominant, but new modalities are being developed that can be learned from including advanced therapeutics-like cell and gene therapies. The industry must develop a model-based strategy for process development and technologies such as continuous integrated biomanufacturing must be adopted. The overall conclusion is that the pandemic pace was unsustainable, focused on vaccine delivery at the expense of other modalities/disease targets, and had implications for professional and personal life (work-life balance). Routinely reducing development time from 10 years to 1 year is nearly impossible to achieve. Environmental aspects of sustainable downstream processing are also described.


Assuntos
Produtos Biológicos , COVID-19 , Humanos , Vacinas contra COVID-19 , SARS-CoV-2 , Indústria Farmacêutica
2.
J Pept Sci ; 29(1): e3457, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36239115

RESUMO

Protein-protein interactions (PPI) are involved in all cellular processes and many represent attractive therapeutic targets. However, the frequently rather flat and large interaction areas render the identification of small molecular PPI inhibitors very challenging. As an alternative, peptide interaction motifs derived from a PPI interface can serve as starting points for the development of inhibitors. However, certain proteins remain challenging targets when applying inhibitors with a competitive mode of action. For that reason, peptide-based ligands with an irreversible binding mode have gained attention in recent years. This review summarizes examples of covalent inhibitors that employ peptidic binders and have been tested in a biological context.


Assuntos
Peptídeos , Peptídeos/farmacologia
3.
Xenobiotica ; 52(4): 426-431, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35410573

RESUMO

Challenges and opportunities in the field of biotransformation were presented and discussed at the 2nd European Biotransformation workshop which was conducted virtually in collaboration with the DMDG on November 24/25, 2021. Here we summarise the presentations and discussions from this workshop.The following topics were covered:Regulatory requirements and biotransformation studies for antibody drug conjugates (ADCs) and antisense oligonucleotides (ASOs).Solutions for mass spectral data processing of peptides and oligonucleotides.Future outsourcing needs in biotransformation for new modalities.Established quantitative and qualitative workflows for metabolite identification.New in vitro systems to study new chemical entities (NCEs) with low metabolic turnover.New strategies on the timing of the human ADME (absorption, distribution, metabolism, excretion) study and to investigate the impact of human microbiome on drug development.


Assuntos
Imunoconjugados , Biotransformação , Humanos , Peptídeos
4.
Clin Transl Oncol ; 26(3): 561-573, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37505372

RESUMO

The aim of this article is to discuss the challenges and new strategies in managing breast cancer patients, with a specific focus on radiation oncology and the importance of balancing oncologic outcomes with quality of life and post-treatment morbidity. A comprehensive literature review was conducted to identify advances in the management of breast cancer, exploring de-escalation strategies, hypofractionation schemes, predictors and tools for reducing toxicity (radiation-induced lymphocyte apoptosis, deep inspiration breath-hold, adaptive radiotherapy), enhancer treatments (hyperthermia, immunotherapy) and innovative diagnostic modalities (PET-MRI, omics). Balancing oncologic outcomes with quality of life and post-treatment morbidity is crucial in the era of personalized medicine. Radiotherapy plays a critical role in the management of breast cancer patients. Large randomized trials are necessary to generalize some practices and cost remains the main obstacle for many innovations that are already applicable.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/patologia , Radio-Oncologistas , Qualidade de Vida
5.
AAPS J ; 26(1): 16, 2024 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-38267613

RESUMO

Immunogenicity assessment is an essential part of biotherapeutic drug development. While the immune response in animals is not always representative of the human immune response, immunogenicity data obtained in animal models is still informative for the evaluation of drug exposure and safety. The most common assay format used for the detection of anti-drug antibodies (ADAs) in preclinical and clinical studies is the bridging format. The advantage of this method is that it can detect all antibody isotypes generated against the therapeutic. However, the method development can be time-consuming and labor-intensive, due to the need for labeling of the drug which is used both as capture and detection. Various generic ADA assays have been successfully implemented to overcome these disadvantages and to enable faster assay development timelines to support nonclinical toxicology studies. Here, we describe the challenges in the development of an assay to detect antibodies to zinpentraxin alfa, a recombinant human pentraxin-2, in rabbit and rat toxicology studies. Our initial efforts to develop a bridging assay failed, prompting us to develop a method adapted from generic assay formats to detect anti-zinpentraxin alfa antibodies in the serum of different species with minimal optimization. However, while the general assay format remained similar, assay reagents were adapted between the different species, resulting in the development of two distinct assays for the detection of ADAs in rat and rabbit. Here, we share the final development/validation data and the immunogenicity study results. Our work highlights the need for the evaluation of alternate assay formats when evaluating novel drug modalities.


Assuntos
Anticorpos , Bioensaio , Humanos , Animais , Coelhos , Ratos , Desenvolvimento de Medicamentos , Medicamentos Genéricos , Modelos Animais
6.
J Chromatogr A ; 1722: 464862, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38581978

RESUMO

The 21st century has been particularly productive for the biopharmaceutical industry, with the introduction of several classes of innovative therapeutics, such as monoclonal antibodies and related compounds, gene therapy products, and RNA-based modalities. All these new molecules are susceptible to aggregation and fragmentation, which necessitates a size variant analysis for their comprehensive characterization. Size exclusion chromatography (SEC) is one of the reference techniques that can be applied. The analytical techniques for mAbs are now well established and some of them are now emerging for the newer modalities. In this context, the objective of this review article is: i) to provide a short historical background on SEC, ii) to suggest some clear guidelines on the selection of packing material and mobile phase for successful method development in modern SEC; and iii) to highlight recent advances in SEC, such as the use of narrow-bore and micro-bore columns, ultra-wide pore columns, and low-adsorption column hardware. Some important innovations, such as recycling SEC, the coupling of SEC with mass spectrometry, and the use of alternative detectors such as charge detection mass spectrometry and mass photometry are also described. In addition, this review discusses the use of SEC in multidimensional setups and shows some of the most recent advances at the preparative scale. In the third part of the article, the possibility of SEC for the characterization of new modalities is also reviewed. The final objective of this review is to provide a clear summary of opportunities and limitations of SEC for the analysis of different biopharmaceutical products.


Assuntos
Cromatografia em Gel , Lipossomos , Nanopartículas , Cromatografia em Gel/métodos , Nanopartículas/química , Produtos Biológicos/análise , Produtos Biológicos/química , Ácidos Nucleicos/análise , Vetores Genéticos , Anticorpos Monoclonais/química , Anticorpos Monoclonais/análise , Anticorpos Monoclonais/isolamento & purificação , Proteínas/análise , Proteínas/química , Humanos , Lipídeos/química , Lipídeos/análise , Espectrometria de Massas/métodos
7.
Biomedicines ; 12(6)2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38927491

RESUMO

Nonsense mutations are genetic mutations that create premature termination codons (PTCs), leading to truncated, defective proteins in diseases such as cystic fibrosis, neurofibromatosis type 1, Dravet syndrome, Hurler syndrome, Beta thalassemia, inherited bone marrow failure syndromes, Duchenne muscular dystrophy, and even cancer. These mutations can also trigger a cellular surveillance mechanism known as nonsense-mediated mRNA decay (NMD) that degrades the PTC-containing mRNA. The activation of NMD can attenuate the consequences of truncated, defective, and potentially toxic proteins in the cell. Since approximately 20% of all single-point mutations are disease-causing nonsense mutations, it is not surprising that this field has received significant attention, resulting in a remarkable advancement in recent years. In fact, since our last review on this topic, new examples of nonsense suppression approaches have been reported, namely new ways of promoting the translational readthrough of PTCs or inhibiting the NMD pathway. With this review, we update the state-of-the-art technologies in nonsense suppression, focusing on novel modalities with therapeutic potential, such as small molecules (readthrough agents, NMD inhibitors, and molecular glue degraders); antisense oligonucleotides; tRNA suppressors; ADAR-mediated RNA editing; targeted pseudouridylation; and gene/base editing. While these various modalities have significantly advanced in their development stage since our last review, each has advantages (e.g., ease of delivery and specificity) and disadvantages (manufacturing complexity and off-target effect potential), which we discuss here.

8.
ChemMedChem ; 18(13): e202300127, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37276375

RESUMO

The status of industrial Medicinal Chemistry was discussed with European Medicinal Chemistry Leaders from large to mid-sized pharma and CRO companies as well as biotechs. The chemical modality space has expanded recently from small molecules to address new challenging targets. Besides the classical SAR/SPR optimization of drug molecules also their 'greenness' has increasing importance. The entire pharma discovery ecosystem has developed significantly. Beyond pharma and academia new key players such as Biotech and integrated CROs as well as Digital companies have appeared and are now to a large extend fueled by VC money. Digitalization is happening everywhere but surprisingly did not change speed and success rates of projects so far. Future Medicinal Chemists will still have to be excellent synthetic chemists but in addition they must be knowledgeable in new computational areas such as data sciences. Their ability to collaborate and to work in teams is key.


Assuntos
Química Farmacêutica , Indústria Farmacêutica , Ecossistema , Europa (Continente)
9.
Bioanalysis ; 15(24): 1469-1472, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37933576

RESUMO

The 10th China Bioanalysis Forum annual conference was held in Suzhou between 9 and 11 June 2023. This year a full range of bioanalytical topics were discussed such as new technology and bioanalytical approaches for biotherapeutics and biomarkers, particularly in the areas of gene and cell therapy. Another research area covered extensively at the conference was drug metabolism, including new drug metabolism and pharmacokinetic methods; absorption, distribution, metabolism and excretion of new modality drugs, recent regulatory guidance such as human mass balance study and preclinical study of antibody-drug conjugates and case studies of drug metabolism support to newly approved drugs.


Assuntos
Imunoconjugados , Humanos , Biomarcadores/análise , Relatório de Pesquisa , China
10.
Drug Discov Today ; 28(8): 103670, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37328053

RESUMO

Recently, there has been a change in the types of drug target entering early drug discovery portfolios. A significant increase in the number of challenging targets, or which would have historically been classed as intractable, has been observed. Such targets often have shallow or non-existent ligand-binding sites, can have disordered structures or domains or can be involved in protein-protein or protein-DNA interactions. The nature of the screens required to identify useful hits has, by necessity, also changed. The range of drug modalities explored has also increased and the chemistry required to design and optimise these molecules has adapted. In this review, we discuss this changing landscape and provide insights into the future requirements for small-molecule hit and lead generation.


Assuntos
Descoberta de Drogas , Proteínas , Sítios de Ligação , Ensaios de Triagem em Larga Escala
11.
Drug Discov Today ; 27(6): 1560-1574, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35202802

RESUMO

The year 2021 marks the 125th anniversary of the Bayer Chemical Research Laboratory in Wuppertal, Germany. A significant number of prominent small-molecule drugs, from Aspirin to Xarelto, have emerged from this research site. In this review, we shed light on historic cornerstones of small-molecule drug research, discussing current and future trends in drug discovery as well as providing a personal outlook on the future of drug research with a focus on small molecules.


Assuntos
Aniversários e Eventos Especiais , Pesquisa Farmacêutica , Descoberta de Drogas , Bibliotecas de Moléculas Pequenas/química
12.
Acta Pharm Sin B ; 12(6): 2751-2777, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35755285

RESUMO

Drug metabolism and pharmacokinetics (DMPK) is an important branch of pharmaceutical sciences. The nature of ADME (absorption, distribution, metabolism, excretion) and PK (pharmacokinetics) inquiries during drug discovery and development has evolved in recent years from being largely descriptive to seeking a more quantitative and mechanistic understanding of the fate of drug candidates in biological systems. Tremendous progress has been made in the past decade, not only in the characterization of physiochemical properties of drugs that influence their ADME, target organ exposure, and toxicity, but also in the identification of design principles that can minimize drug-drug interaction (DDI) potentials and reduce the attritions. The importance of membrane transporters in drug disposition, efficacy, and safety, as well as the interplay with metabolic processes, has been increasingly recognized. Dramatic increases in investments on new modalities beyond traditional small and large molecule drugs, such as peptides, oligonucleotides, and antibody-drug conjugates, necessitated further innovations in bioanalytical and experimental tools for the characterization of their ADME properties. In this review, we highlight some of the most notable advances in the last decade, and provide future perspectives on potential major breakthroughs and innovations in the translation of DMPK science in various stages of drug discovery and development.

13.
Anal Chim Acta ; 1166: 338492, 2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34023000

RESUMO

Capillary gel electrophoresis-based methods were applied to comprehensively characterize two development phase new modality monoclonal antibodies including a glycoengineered and a bispecific test compound. The samples were subjected to multilevel characterization at the intact (both by SDS-SGE and cIEF) as well as the reduced protein and the released N-glycan levels. SDS capillary gel electrophoresis analysis showed excellent separation of the light and heavy chains of both samples. The bispecific antibody required a special temperature gradient denaturation process and a longer capillary to resolve its two light chain fragments. Separation of PNGase F digested antibodies revealed migration time shifts, suggesting the presence of N-linked glycosylation on the corresponding subunits. For efficient glycan removal, the highly glycosylated glycoengineered monoclonal antibody was trypsin digested prior to the endoglycosidase treatment. The released glycans were profiled by capillary gel electrophoresis after APTS labeling and their oligosaccharide structures were identified by exoglycosidase based carbohydrate sequencing. Finally, capillary isoelectric focusing shed light on the charge heterogeneity of the test compounds, providing important complementary information. A flowchart was established for workflow optimization.


Assuntos
Eletroforese Capilar , Polissacarídeos , Glicosilação , Focalização Isoelétrica , Oligossacarídeos
14.
Trends Pharmacol Sci ; 42(6): 434-447, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33902949

RESUMO

Electrophilic natural products (ENPs) are a rich source of bioactive molecules with tremendous therapeutic potential. While their synthetic complexity may hinder their direct use as therapeutics, they represent tools for elucidation of suitable molecular targets and serve as inspiration for the design of simplified synthetic counterparts. Here, we review the recent use of various activity-based protein profiling methods to uncover molecular targets of ENPs. Beyond target identification, these examples also showcase further development of synthetic ligands from natural product starting points. Two examples demonstrate how ENPs can progress the emerging fields of targeted protein degradation and molecular glues. Though challenges still remain in the synthesis of ENP-based probes, and in their synthetic simplification, their potential for discovery of novel mechanisms of action makes it well worth the effort.


Assuntos
Produtos Biológicos , Descoberta de Drogas , Produtos Biológicos/farmacologia , Humanos , Ligantes , Estrutura Molecular
15.
Neurol India ; 68(Supplement): S218-S223, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33318354

RESUMO

BACKGROUND: Spinal cord stimulation (SCS) has emerged as state-of-the-art evidence-based treatment for chronic intractable pain related to spinal and peripheral nerve disorders. Traditionally delivered as steady-state, paraesthesia-producing electrical stimulation, newer technology has augmented the SCS option and outcome in the last decade. OBJECTIVE: To present an overview of the traditional and newer SCS waveforms. MATERIALS AND METHODS: We present a short literature review of SCS waveforms in reference to newer waveforms and describing paraesthesia-free, high frequency, and burst stimulation methods as well as advances in waveform paradigms and programming modalities. Pertinent literature was reviewed, especially in the context of evolution in the waveforms of SCS and stimulation parameters. RESULTS: Conventional tonic SCS remains one of the most utilized and clinically validated SCS waveforms. Newer waveforms such as burst stimulation, high-frequency stimulation, and the sub-perception SCS have emerged in the last decades with favorable results with no or minimal paraesthesia, including in cases otherwise intractable to conventional tonic SCS. The recent evolution and experience of closed-loop SCS is promising and appealing. The experience and validation of the newer SCS waveforms, however, remain limited but optimistic. CONCLUSIONS: Advances in SCS device technology and waveforms have improved patient outcomes, leading to its increased utilization of SCS for chronic pain. These improvements and the development of closed-loop SCS have been increasingly promising development and foster a clinical translation of improved pain relief as the years of research and clinical study beyond conventional SCS waveform come to fruition.


Assuntos
Dor Crônica , Estimulação da Medula Espinal , Dor Crônica/terapia , Humanos , Manejo da Dor
17.
Cell Chem Biol ; 25(1): 19-29, 2018 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-29153852

RESUMO

Two decades have passed since the discovery of the tumor suppressor, PTEN. A multitude of biological functions have since been revealed, suggesting potential therapeutic applications for both PTEN activation (e.g., cancer) and inhibition (e.g., neuroregeneration). Nevertheless, PTEN's therapeutic suitability has been called into question due to its "risky" profile as a tumor suppressor. To evaluate PTEN function and its various roles in disease a number of molecules have so far been developed. However, intrinsic problems associated with phosphatase inhibition and PTEN's complex regulation via post-translational modifications hinder straightforward access to selective modulators. For this reason, central questions associated with PTEN targeting remain unanswered. In this perspective, we summarize current PTEN-targeting strategies and discuss potential approaches to modulate its functional dose, considering all stages of PTEN biogenesis from direct protein modulation to the targeting of relevant miRNAs as well as the PTEN gene and mRNA.


Assuntos
Inibidores Enzimáticos/farmacologia , PTEN Fosfo-Hidrolase/antagonistas & inibidores , Inibidores Enzimáticos/química , Humanos , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo
18.
Cell Chem Biol ; 24(8): 958-968.e5, 2017 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-28757184

RESUMO

The Wnt signaling pathway plays a critical role in cell proliferation and differentiation, thus it is often associated with diseases such as cancers. Unfortunately, although attractive, developing anti-cancer strategy targeting Wnt signaling has been challenging given that the most attractive targets are involved in protein-protein interactions (PPIs). Here, we develop a stapled peptide inhibitor that targets the interaction between ß-catenin and T cell factor/lymphoid enhancer-binding factor transcription factors, which are crucially involved in Wnt signaling. Our integrative approach combines peptide stapling to optimize proteolytic stability, with lessons learned from cell-penetrating peptide (CPP) design to maximize cellular uptake resulting in NLS-StAx-h, a selective, cell permeable, stapled peptide inhibitor of oncogenic Wnt signaling that efficiently inhibits ß-catenin-transcription factor interactions. We expect that this type of integrative strategy that endows stapled peptides with CPP features will be generally useful for developing inhibitors of intracellular PPIs.


Assuntos
Peptídeos Penetradores de Células/metabolismo , beta Catenina/metabolismo , Sequência de Aminoácidos , Proteína Axina/genética , Proteína Axina/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular , Movimento Celular , Proliferação de Células/efeitos dos fármacos , Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/farmacologia , Expressão Gênica/efeitos dos fármacos , Genes Reporter , Células HeLa , Humanos , Microscopia Confocal , Domínios e Motivos de Interação entre Proteínas , Via de Sinalização Wnt/efeitos dos fármacos , beta Catenina/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA