Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
J Med Virol ; 96(1): e29417, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38258345

RESUMO

The EG.5.1 variant of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has been prevalent since mid-July 2023 in the United States and China. The variant BA.2.86 has become a major concern because it is 34 mutations away from the parental variant BA.2 and >30 mutations from XBB.1.5. There is an urgent need to evaluate whether the immunity of the population and current vaccines are protective against EG.5.1 and BA.2.86. Based on a cohort of two breakthrough-infected groups, the levels of neutralizing antibodies (NAbs) against different subvariants were measured using pseudovirus-based neutralization assays. XBB.1.5, EG.5.1, and BA.2.86 are comparably immune-evasive from neutralization by the plasma of individuals recovered from BA.5 infection (BA.5-convalescent) or XBB.1.9.2/XBB.1.5 infection following BA.5 infection (BA.5-XBB-convalescent). NAb levels against EG.5.1 and BA.2.86 subvariants remained >120 geometric mean titers (GMTs) in BA.5-XBB-convalescent individuals 2 months postinfection but were <40 GMTs in BA.5-convalescent individuals. Furthermore, the XBB-targeting messenger RNA (mRNA) vaccine RQ3033 induced higher levels of NAbs against XBB.1.5, EG.5.1, and BA.2.86 than against BA.5-XBB infection. The results suggest that BA.2.86 and EG.5.1 are unlikely to cause more severe concerns than the currently circulating XBB subvariants and that the XBB.1.5-targeting mRNA vaccine tested has promising protection against EG.5.1 and BA.2.86.


Assuntos
Anticorpos Neutralizantes , Plasma , Humanos , China , Evasão da Resposta Imune , Mutação , RNA Mensageiro , SARS-CoV-2/genética
2.
J Biomed Sci ; 29(1): 49, 2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35799178

RESUMO

BACKGROUND: With the continuous emergence of new SARS-CoV-2 variants that feature increased transmission and immune escape, there is an urgent demand for a better vaccine design that will provide broader neutralizing efficacy. METHODS: We report an mRNA-based vaccine using an engineered "hybrid" receptor binding domain (RBD) that contains all 16 point-mutations shown in the currently prevailing Omicron and Delta variants. RESULTS: A booster dose of hybrid vaccine in mice previously immunized with wild-type RBD vaccine induced high titers of broadly neutralizing antibodies against all tested SARS-CoV-2 variants of concern (VOCs). In naïve mice, hybrid vaccine generated strong Omicron-specific neutralizing antibodies as well as low but significant titers against other VOCs. Hybrid vaccine also elicited CD8+/IFN-γ+ T cell responses against a conserved T cell epitope present in wild type and all VOCs. CONCLUSIONS: These results demonstrate that inclusion of different antigenic mutations from various SARS-CoV-2 variants is a feasible approach to develop cross-protective vaccines.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Anticorpos Amplamente Neutralizantes , COVID-19/prevenção & controle , Humanos , Camundongos , SARS-CoV-2/genética , Vacinas Sintéticas , Vacinas de mRNA
3.
Microb Pathog ; 158: 105104, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34298126

RESUMO

Anthrax, by Bacillus anthracis, remains a dreadful fatal hazard worldwide. The currently used anthrax vaccines are plagued by numerous issues that limit their widespread use. As an immunization approach targeting both extracellular antigens and toxins of B. anthracis may achieve better sterile immunity, the present investigation designed a bicistronic secretory anti-anthrax DNA vaccine targeting immune response against toxin and cells. The efficacy of the vaccine was compared with monocistronic DNA vaccines and the currently used anthrax vaccine. For this, mice were immunized with the developed vaccine containing pag (encoding protective antigen to block toxin) and eag genes (encoding EA1 to target cells) of B. anthracis through DNA-prime/Protein-boost (D/P) and DNA prime/DNA-boost (D/D) approaches. There was a >2 and > 5 fold increase in specific antibody level by D/D and D/P approaches respectively, on 42nd days post-immunization (dpi). Serum cytokine profiling showed that both Th1 and Th2 immune responses were elicited, with more Th2 responses in D/P strategy. More importantly, challenge with 100 times LD50 of B. anthracis at 42nd dpi exhibited maximum cumulative survival (83.33 %) by bicistronic D/P approach. Remarkably, immunization with EA1 delayed mortality onset in infection. The study forms the first report on complement-dependent bactericidal activity of antiEA1 antibodies. In short, co-immunization of PA and EA1 through the developed bicistronic DNA vaccine would be an effective immunization approach in anthrax vaccination. Further, D/P strategy could enhance vaccine-induced immunity against B. anthracis. Altogether, the study generates certain critical insights having direct applications in next-generation vaccine development against anthrax.


Assuntos
Vacinas contra Antraz , Bacillus anthracis , Vacinas de DNA , Animais , Vacinas contra Antraz/genética , Anticorpos Antibacterianos , Antígenos de Bactérias/genética , Bacillus anthracis/genética , DNA , Imunidade , Camundongos , Camundongos Endogâmicos BALB C , Vacinação , Vacinas de DNA/genética
4.
J Virol ; 91(1)2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27795442

RESUMO

Bluetongue virus (BTV) is endemic in many parts of the world, often causing severe hemorrhagic disease in livestock. To date, at least 27 different serotypes have been recognized. Vaccination against all serotypes is necessary to protect susceptible animals and to prevent onward spread of the virus by insect vectors. In our previous studies, we generated replication-deficient (disabled infectious single-cycle [DISC]) virus strains for a number of serotypes and reported preliminary data on their protective efficacy in animals. In this report, to advance the DISC vaccines to the marketplace, we investigated different parameters of these DISC vaccines. First, we demonstrated the genetic stabilities of these vaccine strains and also the complementing cell line. Subsequently, the optimal storage conditions of vaccines, including additives, temperature, and desiccation, were determined and their protective efficacies in animals confirmed. Furthermore, to test if mixtures of different vaccine strains could be tolerated, we tested cocktails of DISC vaccines in combinations of three or six different serotypes in sheep and cattle, the two natural hosts of BTV. Groups of sheep vaccinated with a cocktail of six different vaccines were completely protected from challenge with individual virulent serotypes, both in early challenge and after 5 months of challenge without any clinical disease. There was no interference in protection between the different vaccines. Protection was also achieved in cattle with a mixture of three vaccine strains, albeit at a lesser level than in sheep. Our data support and validate the suitability of these virus strains as the next-generation vaccines for BTV. IMPORTANCE: Bluetongue (BT) is a debilitating and in many cases lethal disease that affects ruminants of economic importance. Classical vaccines that afford protection against bluetongue virus, the etiological agent, are not free from secondary and undesirable effects. A surge in new approaches to produce highly attenuated, safer vaccines was evident after the development of the BTV reverse-genetics system that allows the introduction of targeted mutations in the virus genome. We targeted an essential gene to develop disabled virus strains as vaccine candidates. The results presented in this report further substantiate our previous evidence and support the suitability of these virus strains as the next-generation BTV vaccines.


Assuntos
Anticorpos Neutralizantes/biossíntese , Anticorpos Antivirais/biossíntese , Vírus Bluetongue/efeitos dos fármacos , Bluetongue/prevenção & controle , Vacinas Virais/imunologia , Vírion/imunologia , Animais , Sequência de Bases , Bluetongue/imunologia , Bluetongue/virologia , Vírus Bluetongue/classificação , Vírus Bluetongue/genética , Vírus Bluetongue/imunologia , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/imunologia , Bovinos , Linhagem Celular , Estabilidade de Medicamentos , Armazenamento de Medicamentos , Feminino , Masculino , Genética Reversa , Sorogrupo , Ovinos , Vacinação , Vacinas Atenuadas , Vacinas de Subunidades Antigênicas , Vacinas Virais/administração & dosagem , Vacinas Virais/biossíntese , Vacinas Virais/genética , Vírion/genética
6.
Vaccines (Basel) ; 12(3)2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38543868

RESUMO

The COVID-19 pandemic's dramatic impact has been a vivid reminder that vaccines-especially in the context of infectious respiratory viruses-provide enormous societal value, well beyond the healthcare system perspective which anchors most Health Technology Assessment (HTA) and National Immunization Technical Advisory Group (NITAG) evaluation frameworks. Furthermore, the development of modified ribonucleic acid-based (mRNA-based) and nanoparticle vaccine technologies has brought into focus several new value drivers previously absent from the discourse on vaccines as public health interventions such as increased vaccine adaptation capabilities, the improved ability to develop combination vaccines, and more efficient vaccine manufacturing and production processes. We review these novel value dimensions and discuss how they might be measured and incorporated within existing value frameworks using existing methods. To realize the full potential of next-generation vaccine platforms and ensure their widespread availability across populations and health systems, it is important that value frameworks utilized by HTAs and NITAGs properly reflect the full range of benefits for population health and well-being and cost efficiencies that these new vaccines platforms provide.

7.
Vaccines (Basel) ; 11(12)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38140179

RESUMO

Rotavirus diarrhea-associated illness remains a major cause of global death in children under five, attributable in part to discrepancies in vaccine performance between high- and low-middle-income countries. Next-generation probiotic vaccines could help bridge this efficacy gap. We developed a novel recombinant Lactobacillus acidophilus (rLA) vaccine expressing rotavirus antigens of the VP8* domain from the rotavirus EDIM VP4 capsid protein along with the adjuvants FimH and FliC. The upp-based counterselective gene-replacement system was used to chromosomally integrate FimH, VP8Pep (10 amino acid epitope), and VP8-1 (206 amino acid protein) into the L. acidophilus genome, with FliC expressed from a plasmid. VP8 antigen and adjuvant expression were confirmed by flow cytometry and Western blot. Rotavirus naïve adult BALB/cJ mice were orally immunized followed by murine rotavirus strain ECWT viral challenge. Antirotavirus serum IgG and antigen-specific antibody-secreting cell responses were detected in rLA-vaccinated mice. A day after the oral rotavirus challenge, fecal antigen shedding was significantly decreased in the rLA group. These results indicate that novel rLA constructs expressing VP8 can be successfully constructed and used to generate modest homotypic protection from rotavirus challenge in an adult murine model, indicating the potential for a probiotic next-generation vaccine construct against human rotavirus.

8.
Vaccines (Basel) ; 10(8)2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-36016127

RESUMO

The tick-borne bacterium, Borrelia burgdorferi has been implicated in Lyme disease-a deadly infection, formerly confined to North America, but currently widespread across Europe and Asia. Despite the severity of this disease, there is still no human Lyme disease vaccine available. A reliable immunoinformatic approach is urgently needed for designing a therapeutic vaccine against this Gram-negative pathogen. Through this research, we explored the immunodominant proteins of B. burgdorferi and developed a novel and reliable vaccine design with great immunological predictability as well as low contamination and autoimmunity risks. Our initial analysis involved proteome-wide analysis to filter out proteins on the basis of their redundancy, homology to humans, virulence, immunogenicity, and size. Following the selection of proteins, immunoinformatic tools were employed to identify MHC class I & II epitopes and B-cell epitopes, which were subsequently subjected to a rigorous screening procedure. In the final formulation, ten common MHC-I and II epitopes were used together with a suitable adjuvant. We predicted that the final chimeric multi-epitope vaccine could invoke B-cell responses and IFN-gamma-mediated immunity as well as being stable and non-allergenic. The dynamics simulations predicted the stable folding of the designed molecule, after which the molecular docking predicted the stability of the interaction between the potential antigenic epitopes and human immune receptors. Our studies have shown that the designed next-generation vaccine stimulates desirable immune responses, thus potentially providing a viable way to prevent Lyme disease. Nevertheless, further experimental studies in a wet lab are needed in order to validate the results.

9.
Annu Rev Virol ; 9(1): 491-520, 2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-35704747

RESUMO

Human cytomegalovirus (HCMV) infection, the most common cause of congenital disease globally, affecting an estimated 1 million newborns annually, can result in lifelong sequelae in infants, such as sensorineural hearing loss and brain damage. HCMV infection also leads to a significant disease burden in immunocompromised individuals. Hence, an effective HCMV vaccine is urgently needed to prevent infection and HCMV-associated diseases. Unfortunately, despite more than five decades of vaccine development, no successful HCMV vaccine is available. This review summarizes what we have learned from acquired natural immunity, including innate and adaptive immunity; the successes and failures of HCMV vaccine human clinical trials; the progress in related animal models; and the analysis of protective immune responses during natural infection and vaccination settings. Finally, we propose novel vaccine strategies that will harness the knowledge of protective immunity and employ new technology and vaccine concepts to inform next-generation HCMV vaccine development.


Assuntos
Infecções por Citomegalovirus , Vacinas contra Citomegalovirus , Imunidade Adaptativa , Animais , Citomegalovirus , Infecções por Citomegalovirus/prevenção & controle , Vacinas contra Citomegalovirus/uso terapêutico , Humanos , Imunidade Inata , Recém-Nascido , Desenvolvimento de Vacinas
10.
Front Immunol ; 13: 1010790, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36263027

RESUMO

Licensed L1-VLP-based immunizations against high-risk mucosal human papillomavirus (HPV) types have been a great success in reducing anogenital cancers, although they are limited in their cross-protection against HPV types not covered by the vaccine. Further, their utility in protection against cutaneous HPV types, of which some contribute to non-melanoma skin cancer (NMSC) development, is rather low. Next generation vaccines achieve broadly cross-protective immunity against highly conserved sequences of L2. In this exploratory study, we tested two novel HPV vaccine candidates, HPV16 RG1-VLP and CUT-PANHPVAX, in the preclinical natural infection model Mastomys coucha. After immunization with either vaccines, a mock control or MnPV L1-VLPs, the animals were experimentally infected and monitored. Besides vaccine-specific seroconversion against HPV L2 peptides, the animals also developed cross-reactive antibodies against the cutaneous Mastomys natalensis papillomavirus (MnPV) L2, which were cross-neutralizing MnPV pseudovirions in vitro. Further, both L2-based vaccines also conferred in vivo protection as the viral loads in plucked hair after experimental infection were lower compared to mock-vaccinated control animals. Importantly, the formation of neutralizing antibodies, whether directed against L1-VLPs or L2, was able to prevent skin tumor formation and even microscopical signs of MnPV infection in the skin. For the first time, our study shows the proof-of-principle of next generation L2-based vaccines even across different PV genera in an infection animal model with its genuine PV. It provides fundamental insights into the humoral immunity elicited by L2-based vaccines against PV-induced skin tumors, with important implications to the design of next generation HPV vaccines.


Assuntos
Neoplasias , Proteínas Oncogênicas Virais , Infecções por Papillomavirus , Vacinas contra Papillomavirus , Vacinas de Partículas Semelhantes a Vírus , Camundongos , Animais , Humanos , Testes de Neutralização , Proteínas do Capsídeo , Camundongos Endogâmicos BALB C , Papillomaviridae , Anticorpos Neutralizantes , Peptídeos
11.
Front Microbiol ; 12: 750124, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34691001

RESUMO

The year 2020 was shaped by the COVID-19 pandemic which killed more people than any other infectious disease in this particular year. At the same time, the development of highly efficacious COVID-19 vaccines within less than a year raises hope that this threat can be tamed in the near future. For the last 200 years, the agent of tuberculosis (TB) has been the worst killer amongst all pathogens. Although a vaccine has been available for 100 years, TB remains a substantial threat. The TB vaccine, Bacille Calmette-Guérin (BCG), has saved tens of millions of lives since its deployment. It was the best and only choice available amongst many attempts to develop efficacious vaccines and all competitors, be they subunit vaccines, viable vaccines or killed whole cell vaccines have failed. Yet, BCG is insufficient. The last decades have witnessed a reawakening of novel vaccine approaches based on deeper insights into immunity underlying TB and BCG immunization. In addition, technical advances in molecular genetics and the design of viral vectors and adjuvants have facilitated TB vaccine development. This treatise discusses firstly early TB vaccine developments leading to BCG as the sole preventive measure which stood the test of time, but failed to significantly contribute to TB control and secondly more recent attempts to develop novel vaccines are described that focus on the genetically modified BCG-based vaccine VPM1002, which has become the frontrunner amongst viable TB vaccine candidates. It is hoped that highly efficacious vaccines against TB will become available even though it remains unclear whether and when this ambition can be accomplished. None the less it is clear that the goal of reducing TB morbidity and mortality by 90% or 95%, respectively, by 2030 as proposed by the World Health Organization depends significantly on better vaccines.

12.
Aging Dis ; 12(8): 2173-2195, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34881093

RESUMO

Newly emerging significant SARS-CoV-2 variants such as B.1.1.7, B.1.351, and B.1.1.28 are the variant of concern (VOC) for the human race. These variants are getting challenging to contain from spreading worldwide. Because of these variants, the second wave has started in various countries and is threatening human civilization. Thus, we require efficient vaccines that can combat all emerging variants of SARS-CoV-2. Therefore, we took the initiative to develop a peptide-based next-generation vaccine using four variants (Wuhan variant, B.1.1.7, B.1.351, and B.1.1.28) that could potentially combat SARS-CoV-2 variants. We applied a series of computational tools, servers, and software to identify the most significant epitopes present on the mutagenic regions of SARS-CoV-2 variants. The immunoinformatics approaches were used to identify common B cell derived T cell epitopes, influencing the host immune system. Consequently, to develop a novel vaccine candidate, the antigenic epitopes were linked with a flexible and stable peptide linker, and the adjuvant was added at the N-terminal end. 3D vaccine candidate structure was refined, and quality was assessed using web servers. The physicochemical properties and safety parameters of the vaccine construct were assessed through bioinformatics and immunoinformatics tools. The molecular docking analysis between TLR4/MD2 and the proposed vaccine candidate demonstrated a satisfactory interaction. The molecular dynamics studies confirmed the stability of the vaccine candidate. Finally, we optimized the proposed vaccine through codon optimization and in silico cloning to study the expression. Our multi-epitopic next-generation peptide vaccine construct can boost immunity against the Wuhan variant and all significant mutant variants of SARS-CoV-2.

13.
Front Immunol ; 12: 711650, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34489961

RESUMO

Helminths contribute a larger global burden of disease than both malaria and tuberculosis. These eukaryotes have caused human infections since before our earliest recorded history (i.e.: earlier than 1200 B.C. for Schistosoma spp.). Despite the prevalence and importance of these infections, helminths are considered a neglected tropical disease for which there are no vaccines approved for human use. Similar to other parasites, helminths are complex organisms which employ a plethora of features such as: complex life cycles, chronic infections, and antigenic mimicry to name a few, making them difficult to target by conventional vaccine strategies. With novel vaccine strategies such as viral vectors and genetic elements, numerous constructs are being defined for a wide range of helminth parasites; however, it has yet to be discussed which of these approaches may be the most effective. With human trials being conducted, and a pipeline of potential anti-helminthic antigens, greater understanding of helminth vaccine-induced immunity is necessary for the development of potent vaccine platforms and their optimal design. This review outlines the conventional and the most promising approaches in clinical and preclinical helminth vaccinology.


Assuntos
Helmintíase/prevenção & controle , Helmintos/imunologia , Invenções , Desenvolvimento de Vacinas/tendências , Vacinas , Adjuvantes Imunológicos , Animais , Antígenos de Helmintos/imunologia , Ensaios Clínicos como Assunto , Helmintíase/epidemiologia , Helmintíase/imunologia , Helmintos/efeitos da radiação , Humanos , Imunogenicidade da Vacina , Camundongos , Vacinas Baseadas em Ácido Nucleico , Células Th2/imunologia , Vacinação , Eficácia de Vacinas , Vacinas/imunologia , Vacinas Atenuadas , Vacinas de Subunidades Antigênicas , Vacinas Sintéticas
14.
Front Vet Sci ; 8: 697194, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34805327

RESUMO

Pathogens of viral origin produce a large variety of infectious diseases in livestock. It is essential to establish the best practices in animal care and an efficient way to stop and prevent infectious diseases that impact animal husbandry. So far, the greatest way to combat the disease is to adopt a vaccine policy. In the fight against infectious diseases, vaccines are very popular. Vaccination's fundamental concept is to utilize particular antigens, either endogenous or exogenous to induce immunity against the antigens or cells. In light of how past emerging and reemerging infectious diseases and pandemics were handled, examining the vaccination methods and technological platforms utilized for the animals may provide some useful insights. New vaccine manufacturing methods have evolved because of developments in technology and medicine and our broad knowledge of immunology, molecular biology, microbiology, and biochemistry, among other basic science disciplines. Genetic engineering, proteomics, and other advanced technologies have aided in implementing novel vaccine theories, resulting in the discovery of new ruminant vaccines and the improvement of existing ones. Subunit vaccines, recombinant vaccines, DNA vaccines, and vectored vaccines are increasingly gaining scientific and public attention as the next generation of vaccines and are being seen as viable replacements to conventional vaccines. The current review looks at the effects and implications of recent ruminant vaccine advances in terms of evolving microbiology, immunology, and molecular biology.

15.
Vaccines (Basel) ; 8(3)2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32640619

RESUMO

Current influenza vaccines offer suboptimal protection and depend on annual reformulation and yearly administration. Vaccine technology has rapidly advanced during the last decade, facilitating development of next-generation influenza vaccines that can target a broader range of influenza viruses. The development and licensure of a universal influenza vaccine could provide a game changing option for the control of influenza by protecting against all influenza A and B viruses. Here we review important findings and considerations regarding the development of universal influenza vaccines and what we can learn from this moving forward with a SARS-CoV-2 vaccine design.

16.
Vaccine ; 33(45): 6085-92, 2015 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-26116253

RESUMO

The varicella-zoster virus (VZV) Oka vaccine strain (vOka) is highly efficient and causes few adverse events; therefore, it is used worldwide. We previously constructed recombinant vOka (rvOka) harboring the mumps virus gene. Immunizing guinea pigs with rvOka induced the production of neutralizing antibodies against the mumps virus and VZV. Here, we constructed recombinant vOka viruses containing either the respiratory syncytial virus (RSV) subgroup A fusion glycoprotein (RSV A-F) gene or RSV subgroup B fusion glycoprotein (RSV B-F) gene (rvOka-RSV A-F or rvOka-RSV B-F). Indirect immunofluorescence and Western blot analyses confirmed the expression of each recombinant RSV protein in virus-infected cells. Immunizing guinea pigs with rvOka-RSV A-F or rvOka-RSV B-F led to the induction of antibodies against RSV proteins. These results suggest that the current varicella vaccine genome can be used to generate custom-made vaccine vectors to develop the next generation of live vaccines.


Assuntos
Anticorpos Antivirais/biossíntese , Vacina contra Varicela/imunologia , Herpesvirus Humano 3/imunologia , Imunidade Humoral , Vacinas contra Vírus Sincicial Respiratório/imunologia , Vírus Sinciciais Respiratórios/genética , Vírus Sinciciais Respiratórios/imunologia , Animais , Anticorpos Neutralizantes/biossíntese , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Varicela/imunologia , Vacina contra Varicela/administração & dosagem , Vacina contra Varicela/genética , Genoma Viral , Cobaias , Infecções por Vírus Respiratório Sincicial/imunologia , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Infecções por Vírus Respiratório Sincicial/virologia , Vacinas contra Vírus Sincicial Respiratório/administração & dosagem , Vacinas contra Vírus Sincicial Respiratório/genética , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/imunologia , Proteínas Virais de Fusão/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA