Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
FASEB J ; 36(3): e22084, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35107844

RESUMO

Chronic kidney disease (CKD), a disease involving damage to the kidney structure and function, is a global public health problem. Tubulointerstitial fibrosis (TIF) is both an inevitable pathological change in individuals with CKD and a driving force in the progression of renal fibrosis. Nicotinamide N-methyltransferase (NNMT) and its metabolite 1-methylnicotinamide (MNAM) have been shown to protect against lipotoxicity-induced kidney tubular injury. However, the biological roles of NNMT and MNAM in regulating TIF remain elusive. This study aimed to investigate the protective effect of NNMT and MNAM on TIF and the mechanisms involved. We explored the functions and mechanisms of NNMT and MNAM in TIF, as well as the interaction between NNMT and MNAM, using unilateral ureteral obstruction (UUO) mice and cultured mouse tubular epithelial cells (mTECs) stimulated with transforming growth factor-ß1 (TGF-ß1). Several important findings were obtained as follows: (1) NNMT expression was upregulated in the kidneys of UUO mice and TGF-ß1-induced mTECs, and this upregulation was proposed to be a protective compensatory response to TIF. (2) MNAM was a potentially effective antifibrotic and anti-inflammatory medication in UUO mice. (3) The antifibrotic effect of NNMT overexpression was exerted by increasing the concentration of MNAM. (4) The renoprotective role of MNAM depended on the selective blockade of the interaction of Smad3 with TGFß receptor I. Overall, our study shows that NNMT is involved in the development and progression of CKD and that its metabolite MNAM may be a novel inhibitor of the TGF-ß1/Smad3 pathway with great therapeutic potential for CKD.


Assuntos
Fibrose/metabolismo , Niacinamida/análogos & derivados , Nicotinamida N-Metiltransferase/metabolismo , Insuficiência Renal Crônica/metabolismo , Transdução de Sinais/fisiologia , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Animais , Células Cultivadas , Rim/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Niacinamida/metabolismo , Obstrução Ureteral/metabolismo
2.
Proc Natl Acad Sci U S A ; 116(32): 15957-15966, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31341085

RESUMO

Nicotinamide adenine dinucleotide (NAD) provides an important link between metabolism and signal transduction and has emerged as central hub between bioenergetics and all major cellular events. NAD-dependent signaling (e.g., by sirtuins and poly-adenosine diphosphate [ADP] ribose polymerases [PARPs]) consumes considerable amounts of NAD. To maintain physiological functions, NAD consumption and biosynthesis need to be carefully balanced. Using extensive phylogenetic analyses, mathematical modeling of NAD metabolism, and experimental verification, we show that the diversification of NAD-dependent signaling in vertebrates depended on 3 critical evolutionary events: 1) the transition of NAD biosynthesis to exclusive usage of nicotinamide phosphoribosyltransferase (NamPT); 2) the occurrence of nicotinamide N-methyltransferase (NNMT), which diverts nicotinamide (Nam) from recycling into NAD, preventing Nam accumulation and inhibition of NAD-dependent signaling reactions; and 3) structural adaptation of NamPT, providing an unusually high affinity toward Nam, necessary to maintain NAD levels. Our results reveal an unexpected coevolution and kinetic interplay between NNMT and NamPT that enables extensive NAD signaling. This has implications for therapeutic strategies of NAD supplementation and the use of NNMT or NamPT inhibitors in disease treatment.


Assuntos
Evolução Biológica , NAD/metabolismo , Transdução de Sinais , Sequência de Aminoácidos , Animais , Vias Biossintéticas , Células HeLa , Humanos , Cinética , Nicotinamida N-Metiltransferase , Nicotinamida Fosforribosiltransferase/química , Nicotinamida Fosforribosiltransferase/metabolismo , Filogenia , Especificidade por Substrato , Vertebrados/metabolismo
3.
Mol Cell Biochem ; 460(1-2): 93-103, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31278587

RESUMO

Nicotinamide N-methyltransferase (NNMT) is an important methyltransferase involved in the biotransformation of many drugs and exogenous compounds. Abnormal expression of NNMT protein is closely associated with the onset and progression of many malignancies, but little is known about its role in esophageal squamous cell carcinoma (ESCC). Therefore, we aimed to explore whether NNMT plays any roles in carcinogenesis and metastasis in ESCC. NNMT expression was determined by immunohistochemistry in ESCC and corresponding adjacent normal tissues. Functional experiments were performed to elucidate the effects of NNMT knockdown on the proliferation, apoptosis, cell cycle, migration, and epithelial-mesenchymal transition (EMT) in EC9706 and TE1 cells. NNMT expression was significantly elevated in ESCC tissues compared with corresponding adjacent normal tissues. Moreover, a significant association emerged between NNMT expression and lymph node metastasis. SiRNA-mediated knockdown of NNMT in ESCC cells can significantly suppress cell viability and migration, induce cell cycle arrest, and promote cell apoptosis. In addition, NNMT downregulation led to the reversal of EMT, as reflected by upregulation of the intercellular adhesion molecule E-cadherin and downregulation of the mesenchymal markers N-cadherin and Vimentin. Further study found that NNMT knockdown suppressed the Wnt/ß-catenin signaling pathway. Taken together, these findings indicate that NNMT is a critical regulator of EMT in ESCC and may be a potential therapeutic target for ESCC metastasis.


Assuntos
Movimento Celular/genética , Regulação para Baixo , Transição Epitelial-Mesenquimal/genética , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/patologia , Nicotinamida N-Metiltransferase/genética , Via de Sinalização Wnt , Idoso , Idoso de 80 Anos ou mais , Apoptose/genética , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Sobrevivência Celular/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Metástase Linfática/genética , Metástase Linfática/patologia , Masculino , Pessoa de Meia-Idade , Nicotinamida N-Metiltransferase/metabolismo , RNA Interferente Pequeno/metabolismo
4.
Bioorg Med Chem Lett ; 28(5): 922-925, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29433927

RESUMO

Nicotinamide N-methyltransferase (NNMT) has been linked to obesity and diabetes. We have identified a novel nicotinamide (NA) analog, compound 12 that inhibited NNMT enzymatic activity and reduced the formation of 1-methyl-nicotinamide (MNA), the primary metabolite of NA by ∼80% at 2 h when dosed in mice orally at 50 mg/kg.


Assuntos
Inibidores Enzimáticos/farmacologia , Niacinamida/farmacologia , Nicotinamida N-Metiltransferase/antagonistas & inibidores , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Estrutura Molecular , Niacinamida/síntese química , Niacinamida/química , Nicotinamida N-Metiltransferase/metabolismo , Relação Estrutura-Atividade
5.
Int J Med Sci ; 11(12): 1234-9, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25317069

RESUMO

Accumulating evidence has shown that alterations in one carbon metabolism might play an important role in the pathogenesis of schizophrenia (SZ). Nicotinamide-N-methyltransferase (NNMT) is one of the key enzymes of one-carbon metabolism. To examine whether NNMT gene was associated with SZ in Han Chinese population, we selected seven single nucleotide polymorphisms (SNPs) in NNMT gene, and investigated its association with SZ from a cohort of 42 SZ patients and 86 healthy controls by Mass-ARRAY technology. Statistical analyses revealed that one (rs694539) of the SNPs in the female subgroup showed significant difference between SZ patients and controls both in genotypic (p= 0.0170) and allelic frequencies (p = 0.0059). We also found that the frequency of haplotype 'A G G C T C T' in the female patients was significantly higher than in controls (p=0.0015). Our results suggest that NNMT rs694539 may have a role in the etiology of SZ in a Han Chinese female population.


Assuntos
Nicotinamida N-Metiltransferase/genética , Polimorfismo de Nucleotídeo Único , Esquizofrenia/enzimologia , Esquizofrenia/genética , Adolescente , Adulto , Povo Asiático/genética , Estudos de Casos e Controles , China , Estudos de Coortes , Feminino , Frequência do Gene , Estudos de Associação Genética , Haplótipos , Humanos , Desequilíbrio de Ligação , Masculino , Pessoa de Meia-Idade , Caracteres Sexuais , Adulto Jovem
6.
Int Immunopharmacol ; 142(Pt B): 113208, 2024 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-39312861

RESUMO

Emerging research has positioned Nicotinamide N-methyltransferase (NNMT) as a key player in oncology, with its heightened expression frequently observed across diverse cancers. This increased presence is tightly linked to tumor initiation, proliferation, and metastasis. The enzymatic function of NNMT is centered on the methylation of nicotinamide (NAM), utilizing S-adenosylmethionine (SAM) as the methyl donor, which results in the generation of S-adenosyl-L-homocysteine (SAH) and methyl nicotinamide (MNAM). This metabolic process reduces the availability of NAM, necessary for Nicotinamide adenine dinucleotide (NAD+) synthesis, and generates SAH, precursor to homocysteine (Hcy). These alterations are theorized to foster the resilience, expansion, and invasiveness of cancer cells. Furthermore, NNMT is implicated in enhancing cancer malignancy by affecting multiple signaling pathways, such as phosphatidylinositol 3-kinase (PI3K)-protein kinase B (AKT), cancer-associated fibroblasts (CAFs) and 5-Methyladenosine (5-MA), epithelial-mesenchymal transition (EMT), and epigenetic mechanisms. Upregulation of NNMT metabolism plays a key role in the formation and maintenance of the tumour microenvironment. While the use of small molecule inhibitors and RNA interference (RNAi) to target NNMT has shown therapeutic promise, the full extent of NNMT's influence on cancer is not yet fully understood, and clinical evidence is limited. This article systematically describes the relationship between the functional metabolism of NNMT enzymes and the cancer and tumour microenvironments, describing the mechanisms by which NNMT contributes to cancer initiation, proliferation, and metastasis, as well as targeted therapies. Additionally, we discuss the future opportunities and challenges of NNMT in targeted anti-cancer treatments.


Assuntos
Neoplasias , Nicotinamida N-Metiltransferase , Nicotinamida N-Metiltransferase/metabolismo , Humanos , Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Animais , Transdução de Sinais , Terapia de Alvo Molecular , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia
7.
Front Pharmacol ; 15: 1410479, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38919254

RESUMO

Metabolic syndrome (MetS) represents a constellation of metabolic abnormalities, typified by obesity, hypertension, hyperglycemia, and hyperlipidemia. It stems from intricate dysregulations in metabolic pathways governing energy and substrate metabolism. While comprehending the precise etiological mechanisms of MetS remains challenging, evidence underscores the pivotal roles of aberrations in lipid metabolism and insulin resistance (IR) in its pathogenesis. Notably, nicotinamide N-methyltransferase (NNMT) has recently surfaced as a promising therapeutic target for addressing MetS. Single nucleotide variants in the NNMT gene are significantly correlated with disturbances in energy metabolism, obesity, type 2 diabetes (T2D), hyperlipidemia, and hypertension. Elevated NNMT gene expression is notably observed in the liver and white adipose tissue (WAT) of individuals with diabetic mice, obesity, and rats afflicted with MetS. Knockdown of NNMT elicits heightened energy expenditure in adipose and hepatic tissues, mitigates lipid accumulation, and enhances insulin sensitivity. NNMT catalyzes the methylation of nicotinamide (NAM) using S-adenosyl-methionine (SAM) as the donor methyl group, resulting in the formation of S-adenosyl-l-homocysteine (SAH) and methylnicotinamide (MNAM). This enzymatic process results in the depletion of NAM, a precursor of nicotinamide adenine dinucleotide (NAD+), and the generation of SAH, a precursor of homocysteine (Hcy). Consequently, this cascade leads to reduced NAD+ levels and elevated Hcy levels, implicating NNMT in the pathogenesis of MetS. Moreover, experimental studies employing RNA interference (RNAi) strategies and small molecule inhibitors targeting NNMT have underscored its potential as a therapeutic target for preventing or treating MetS-related diseases. Nonetheless, the precise mechanistic underpinnings remain elusive, and as of yet, clinical trials focusing on NNMT have not been documented. Therefore, further investigations are warranted to elucidate the intricate roles of NNMT in MetS and to develop targeted therapeutic interventions.

8.
Metabolites ; 14(6)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38921477

RESUMO

The complex process of aging leads to a gradual deterioration in the function of cells, tissues, and the entire organism, thereby increasing the risk of disease and death. Nicotinamide N-methyltransferase (NNMT) has attracted attention as a potential target for combating aging and its related pathologies. Studies have shown that NNMT activity increases over time, which is closely associated with the onset and progression of age-related diseases. NNMT uses S-adenosylmethionine (SAM) as a methyl donor to facilitate the methylation of nicotinamide (NAM), converting NAM into S-adenosyl-L-homocysteine (SAH) and methylnicotinamide (MNA). This enzymatic action depletes NAM, a precursor of nicotinamide adenine dinucleotide (NAD+), and generates SAH, a precursor of homocysteine (Hcy). The reduction in the NAD+ levels and the increase in the Hcy levels are considered important factors in the aging process and age-related diseases. The efficacy of RNA interference (RNAi) therapies and small-molecule inhibitors targeting NNMT demonstrates the potential of NNMT as a therapeutic target. Despite these advances, the exact mechanisms by which NNMT influences aging and age-related diseases remain unclear, and there is a lack of clinical trials involving NNMT inhibitors and RNAi drugs. Therefore, more in-depth research is needed to elucidate the precise functions of NNMT in aging and promote the development of targeted pharmaceutical interventions. This paper aims to explore the specific role of NNMT in aging, and to evaluate its potential as a therapeutic target.

9.
Anticancer Res ; 44(4): 1653-1660, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38537979

RESUMO

BACKGROUND/AIM: "Stromal high expression" of Nicotinamide N-methyltransferase (NNMT), previously reported as a poor prognostic factor of gastric cancer, was based on immunohistochemical H-score. However, this could simply indicate an increase in cancer-associated fibroblasts (CAFs) because NNMT is positive for fibroblasts. To verify this, the proportion and staining intensity of stromal NNMT-positive stellate/spindle cells were evaluated separately and examined for its association with related proteins (H3K4me3, H3K27me3, and LOXL2). PATIENTS AND METHODS: Immunohistochemistry for NNMT, H3K4me3, H3K27me3, and LOXL2 was performed on 521 tissue microarrays of gastric cancer. Cancer stromal stellate/spindle cells were evaluated according to morphology, proportion, and stain intensity of NNMT, loss of H3K4me3 and H3K27me3, and stain intensity of LOXL2. Their associations with clinicopathological characteristics and overall survival were examined. RESULTS: Higher staining intensity of NNMT was not related to a poorer prognosis. However, higher proportion of NNMT-positive stellate/spindle cells indirectly contributed to a poor prognosis. It was associated with CAF-like morphology and a global decrease in H3K4me3/H3K27me3, which were both associated with high LOXL2 expression. These three factors were independent poor prognostic factors. In addition, in the LOXL2-high group, prognosis significantly deteriorated with the presence of a global decrease in H3K4me3/H3K27me3. CONCLUSION: The higher proportion of NNMT-positive cancer stromal cells in gastric cancer serves as an indicator for identifying unfavorable prognostic CAFs that show a global decrease in H3K4me3/H3K27me3. This facilitates research on the nature of these cells and their characteristics.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias Gástricas , Humanos , Histonas , Nicotinamida N-Metiltransferase/metabolismo , Fibroblastos Associados a Câncer/metabolismo , Prognóstico , Células Estromais/metabolismo
10.
Front Oncol ; 12: 894744, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35756670

RESUMO

Cancer cells typically exhibit a tightly regulated program of metabolic plasticity and epigenetic remodeling to meet the demand of uncontrolled cell proliferation. The metabolic-epigenetic axis has recently become an increasingly hot topic in carcinogenesis and offers new avenues for innovative and personalized cancer treatment strategies. Nicotinamide N-methyltransferase (NNMT) is a metabolic enzyme involved in controlling methylation potential, impacting DNA and histone epigenetic modification. NNMT overexpression has been described in various solid cancer tissues and even body fluids, including serum, urine, and saliva. Furthermore, accumulating evidence has shown that NNMT knockdown significantly decreases tumorigenesis and chemoresistance capacity. Most importantly, the natural NNMT inhibitor yuanhuadine can reverse epidermal growth factor receptor tyrosine kinase inhibitor resistance in lung cancer cells. In this review, we evaluate the possibility of NNMT as a diagnostic biomarker and molecular target for effective anticancer treatment. We also reveal the exact mechanisms of how NNMT affects epigenetics and the development of more potent and selective inhibitors.

11.
Front Physiol ; 9: 1407, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30349486

RESUMO

Background: Nicotinamide N-methyltransferase (NNMT) is an enzyme that catalyzes N-methylation of pyridine-containing compounds. NNMT is upregulated in many types of solid tumors, suggesting the potential for its use as a tumor biomarker. However, the prognostic value of NNMT in solid tumors is still unclear. We therefore conducted a meta-analysis to investigate the association between NNMT expression and survival in patients with solid tumors. Methods: We focused on patients with solid tumors, using high NNMT expression levels as the intervention and low NNMT expression levels as the comparison, according to Patient, Intervention, Comparison, and Outcome (PICO) guidelines. Electronic databases (up to June 7, 2018) were comprehensively searched to collect relevant cohort studies regarding the associations between NNMT expression levels and survival outcomes (overall survival [OS], disease-specific survival [DSS] including cancer-specific survival [CSS], and time to tumor progression [TTP] including disease-free survival [DFS], progression-free survival [PFS], and metastasis-free survival [MeFS]). Publication biases were also examined. All analyses were performed using STATA 12.0 software. Results: A total of 3340 patients with solid tumors from nine published studies were included. The combined hazard ratio (HR) identified high NNMT expression levels as a poor prognostic predictor of OS (HR = 1.67, 95% CI = 1.23-2.26). However, NNMT levels had no significant association with DSS (HR = 1.47, 95% CI = 0.95-2.28) and TTP (HR = 1.13, 95%CI = 0.39-3.25). Conclusion: High NNMT expression levels may be a poor prognostic biomarker for patients with solid tumors.

12.
Free Radic Biol Med ; 89: 831-41, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26482866

RESUMO

Free fatty acid-bound albumin (FFA-albumin)-related oxidative stress is involved in the pathogenesis of proximal tubular cell (PTC) damage and subsequent renal dysfunction in patients with refractory proteinuria. Nicotinamide adenine dinucleotide (NAD) metabolism has recently been focused on as a novel therapeutic target for several modern diseases, including diabetes. This study was designed to identify a novel molecule in NAD metabolism to protect PTCs from lipotoxicity-related oxidative stress. Among 19 candidate enzymes involved in mammalian NAD metabolism, the mRNA expression level of nicotinamide n-methyltransferase (NNMT) was significantly increased in both the kidneys of FFA-albumin-overloaded mice and cultured PTCs stimulated with palmitate-albumin. Knockdown of NNMT exacerbated palmitate-albumin-induced cell death in cultured PTCs, whereas overexpression of NNMT inhibited it. Intracellular concentration of 1-Methylnicotinamide (1-MNA), a metabolite of NNMT, increased and decreased in cultured NNMT-overexpressing and -knockdown PTCs, respectively. Treatment with 1-MNA inhibited palmitate-albumin-induced mitochondrial reactive oxygen species generation and cell death in cultured PTCs. Furthermore, oral administration of 1-MNA ameliorated oxidative stress, apoptosis, necrosis, inflammation, and fibrosis in the kidneys of FFA-albumin-overloaded mice. In conclusion, NNMT-derived 1-MNA can reduce lipotoxicity-mediated oxidative stress and cell damage in PTCs. Supplementation of 1-MNA may have potential as a new therapy in patients with refractory proteinuria.


Assuntos
Túbulos Renais Proximais/patologia , Niacinamida/análogos & derivados , Nicotinamida N-Metiltransferase/metabolismo , Estresse Oxidativo/fisiologia , Proteinúria/complicações , Albuminas/toxicidade , Animais , Western Blotting , Modelos Animais de Doenças , Ácidos Graxos não Esterificados/toxicidade , Imuno-Histoquímica , Túbulos Renais Proximais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Niacinamida/metabolismo , RNA Interferente Pequeno , Reação em Cadeia da Polimerase em Tempo Real , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA