Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Int J Mol Sci ; 25(11)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38891819

RESUMO

Photothermal therapy (PTT) is a promising cancer therapy modality with significant advantages such as precise targeting, convenient drug delivery, better efficacy, and minimal adverse effects. Photothermal therapy effectively absorbs the photothermal transducers in the near-infrared region (NIR), which induces the photothermal effect to work. Although PTT has a better role in tumor therapy, it also suffers from low photothermal conversion efficiency, biosafety, and incomplete tumor elimination. Therefore, the use of nanomaterials themselves as photosensitizers, the targeted modification of nanomaterials to improve targeting efficiency, or the combined use of nanomaterials with other therapies can improve the therapeutic effects and reduce side effects. Notably, noble metal nanomaterials have attracted much attention in PTT because they have strong surface plasmon resonance and an effective absorbance light at specific near-infrared wavelengths. Therefore, they can be used as excellent photosensitizers to mediate photothermal conversion and improve its efficiency. This paper provides a comprehensive review of the key role played by noble metal nanomaterials in tumor photothermal therapy. It also describes the major challenges encountered during the implementation of photothermal therapy.


Assuntos
Nanopartículas Metálicas , Neoplasias , Terapia Fototérmica , Humanos , Terapia Fototérmica/métodos , Neoplasias/terapia , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Animais , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/uso terapêutico
2.
Small ; 19(46): e2304880, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37452439

RESUMO

Porous noble metal nanoparticles have received particular attention recently for their unique optical, thermal, and catalytic functions in biomedicine. However, limited progress has been made to synthesize such porous metallic nanostructures with large mesopores (≥25 nm). Here, a green yet facile synthesis strategy using biocompatible liposomes as templates to mediate the formation of mesoporous metallic nanostructures in a controllable fashion is reported. Various monodispersed nanostructures with well-defined mesoporous shape and large mesopores (≈ 40 nm) are successfully synthesized from mono- (Au, Pd, and Pt), bi- (AuPd, AuPt, AuRh, PtRh, and PdPt), and tri-noble metals (AuPdRh, AuPtRh, and AuPdPt). Along with a successful demonstration of its effectiveness in synthesis of various mesoporous nanostructures, the possible mechanism of liposome-guided formation of such nanostructures via time sectioning of the synthesis process (monitoring time-resolved growth of mesoporous structures) and computational quantum molecular modeling (analyzing chemical interaction energy between metallic cations and liposomes at the enthalpy level) is also revealed. These mesoporous metallic nanostructures exhibit a strong photothermal effect in the near-infrared region, effective catalytic activities in hydrogen peroxide decomposition reaction, and high drug loading capacity. Thus, the liposome-templated method provides an inspiring and robust avenue to synthesize mesoporous noble metal-based nanostructures for versatile biomedical applications.


Assuntos
Lipossomos , Nanoestruturas , Nanoestruturas/química , Metais/química
3.
Mikrochim Acta ; 190(4): 120, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36884101

RESUMO

T-2 toxin is the most potent and toxic mycotoxin, produced by various Fusarium species that can potentially affect human health, and widely exists in field crops and stored grain. In this work, an electrochemical aptasensor with nonenzymatic signal amplification strategy for the detection of T-2 toxin is presented, using noble metal nanocomposites and catalytic hairpin assembly as signal amplification strategy. Silver palladium nanoflowers and gold octahedron nanoparticles@graphene oxide nanocomposites are used for synergistic amplification of electrical signals. Simultaneously, the catalytic hairpin assembly strategy based on artificial molecular technology was introduced to further amplify the signal. Under optimal conditions, T-2 toxin was measured within a linear concentration range 1 × 10-2 ~ 1 × 104 pg·mL-1 with an extremely low detection limit of 6.71 fg·mL-1. The aptasensor exhibited high sensitivity, good selectivity, satisfactory stability, and excellent reproducibility. Moreover, this method had high accuracy in detecting T-2 toxin in beer sample. The encouraging results show the potential application in foodstuff analysis. A dual signal amplification electrochemical biosensor for the detection of T-2 toxins was constructed, through the signal amplification of noble metal nanomaterials and CHA strategy.


Assuntos
Nanopartículas Metálicas , Nanocompostos , Toxina T-2 , Humanos , Reprodutibilidade dos Testes , Nanopartículas Metálicas/química , Técnicas Eletroquímicas/métodos , Limite de Detecção , Nanocompostos/química
4.
Nanomaterials (Basel) ; 13(4)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36839151

RESUMO

In recent years, research has focused on developing materials exhibiting outstanding mechanical, electrical, thermal, catalytic, magnetic and optical properties such as graphene/polymer, graphene/metal nanoparticles and graphene/ceramic nanocomposites. Two-dimensional sp2 hybridized graphene has become a material of choice in research due to the excellent properties it displays electrically, thermally, optically and mechanically. Noble nanomaterials also present special physical and chemical properties and, therefore, they provide model building blocks in modifying nanoscale structures for various applications, ranging from nanomedicine to catalysis and optics. The introduction of noble metal nanoparticles (NPs) (Au, Ag and Pd) into chemically derived graphene is important in opening new avenues for both materials in different fields where they can provide hybrid materials with exceptional performance due to the synergistical result of the specific properties of each of the materials. This review presents the different synthetic procedures for preparing Pt, Ag, Pd and Au NP/graphene oxide (GO) and reduced graphene oxide (rGO) composites.

5.
Nanomaterials (Basel) ; 13(2)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36678042

RESUMO

Water toxicity, one of the major concerns for ecosystems and the health of humanity, is usually attributed to inorganic anions-induced contamination. Particularly, cyanide ions are considered one of the most harmful elements required to be monitored in water. The need for cyanide sensing and monitoring has tempted the development of sensing technologies without highly sophisticated instruments or highly skilled operations for the objective of in-situ monitoring. Recent decades have witnessed the growth of noble metal nanomaterials-based sensors for detecting cyanide ions quantitatively as nanoscience and nanotechnologies advance to allow nanoscale-inherent physicochemical properties to be exploited for sensing performance. Particularly, noble metal nanostructure e-based optical sensors have permitted cyanide ions of nanomolar levels, or even lower, to be detectable. This capability lends itself to analytical application in the quantitative detection of harmful elements in environmental water samples. This review covers the noble metal nanomaterials-based sensors for cyanide ions detection developed in a variety of approaches, such as those based on colorimetry, fluorescence, Rayleigh scattering (RS), and surface-enhanced Raman scattering (SERS). Additionally, major challenges associated with these nano-platforms are also addressed, while future perspectives are given with directions towards resolving these issues.

6.
Front Biosci (Landmark Ed) ; 27(2): 40, 2022 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-35226983

RESUMO

BACKGROUND: Recently, the incidence of hematological malignancy, such as various leukemias, multiple myeloma and lymphoma, has revealed an increasing tendency, exhibiting a major impact on human health. Most of the available anti-cancer drugs, however, possess high non-targeted accumulation, dosage-associated toxicity, fast elimination, and lack specificity towards tumors, which restrict their utilization in clinical therapy. This extends also to cancer diagnosis where there is a lack of predictive biomarkers. OBJECT: Noble metal nanomaterials (NM NMs) have the potential to overcome these shortcomings due to several characteristics including ease of synthesis, ultra-small size, easy surface modification and specific physicochemical properties. At present, gold-, silver- and platinum-based nanomaterials have been employed in the tracing and treatment of hematopoietic tumors through direct individual endocytosis or in innovative drug delivery systems (DDS) by conjugation with other targeting biomolecules. PURPOSE: In this mini review, we focus on the use of localized surface plasmon resonance (LSPR)-/surface-enhanced Raman scattering (SERS)- and fluorescence-based diagnosis of NM NMs in the hematological malignancies. Furthermore, the treatment of hematological malignancies utilized the NM NMs or NM NMs-based therapy technology in the chemotherapy, targeted therapy, and photothermal therapy are depicted in depth. The construction of effective and promising NM NMs or NM NMs- dependent theranostic methodology has the potential to provide interdisciplinary knowledge in the development of clinical tracing, diagnosis and treatment of refractory hematological diseases.


Assuntos
Neoplasias Hematológicas , Nanopartículas Metálicas , Nanoestruturas , Ouro , Neoplasias Hematológicas/diagnóstico , Neoplasias Hematológicas/tratamento farmacológico , Humanos , Nanopartículas Metálicas/uso terapêutico , Nanoestruturas/uso terapêutico , Análise Espectral Raman/métodos , Ressonância de Plasmônio de Superfície/métodos
7.
Front Chem ; 9: 672739, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34055741

RESUMO

Noble metal nanomaterials, such as gold, silver, and platinum, have been studied extensively in broad scientific fields because of their unique properties, including superior conductivity, plasmonic property, and biocompatibility. Due to their unique properties, researchers have used them to fabricate biosensors. Recently, biosensors for detecting respiratory illness-inducing viruses have gained attention after the global outbreak of coronavirus disease (COVID-19). In this mini-review, we discuss noble metal nanomaterials and associated biosensors for detecting respiratory illness-causing viruses, including SARS-CoV-2, using electrochemical and optical detection techniques. this review will provide interdisciplinary knowledge about the application of noble metal nanomaterials to the biomedical field.

8.
Adv Healthc Mater ; 10(6): e2001806, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33470542

RESUMO

It is of great significance to develop anticancer therapeutic agents or technologies with high degree of specificity and patient compliance, while low toxicity. The emerging photothermal therapy (PTT) has become a new and powerful therapeutic technology due to its noninvasiveness, high specificity, low side effects to normal tissues and strong anticancer efficacy. Noble metal nanomaterials possess strong surface plasmon resonance (SPR) effect and synthetic tunability, which make them facile and effective PTT agents with superior optical and photothermal characteristics, such as high absorption cross-section, incomparable optical-thermal conversion efficiency in the near infrared (NIR) region, as well as the potential of bioimaging. By incorporating with various functional reagents such as antibodies, peptides, biocompatible polymers, chemo-drug and immune factors, noble metal nanomaterials have presented strong potential in multifunctional cancer therapy. Herein, the recent development regarding the application of noble metal nanomaterials for NIR-triggered PTT in cancer treatment is summarized. A variety of studies with good therapeutic effects against cancer from impressive photothermal efficacy of noble metal nanomaterials are concluded. Intelligent nanoplatforms through ingenious fabrication showing potential of multifunctional PTT, combined with chemo-therapy, immunotherapy, photodynamic therapy (PDT), as well as simultaneous imaging modality are also demonstrated.


Assuntos
Antineoplásicos , Nanoestruturas , Neoplasias , Fotoquimioterapia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Humanos , Neoplasias/tratamento farmacológico , Fototerapia , Terapia Fototérmica
9.
Nanomaterials (Basel) ; 11(2)2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33494342

RESUMO

Heavy metal ions and pesticides are extremely dangerous for human health and environment and an accurate detection is an essential step to monitor their levels in water. The standard and most used methods for detecting these pollutants are sophisticated and expensive analytical techniques. However, recent technological advancements have allowed the development of alternative techniques based on optical properties of noble metal nanomaterials, which provide many advantages such as ultrasensitive detection, fast turnover, simple protocols, in situ sampling, on-site capability and reduced cost. This paper provides a review of the most common photo-physical effects impact on the fluorescence of metal nanomaterials and how these processes can be exploited for the detection of pollutant species. The final aim is to provide readers with an updated guide on fluorescent metallic nano-systems used as optical sensors of heavy metal ions and pesticides in water.

10.
Adv Mater ; 28(39): 8779-8783, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27546519

RESUMO

To accelerate hydrogel formation and further simplify the synthetic procedure, a series of MCu (M = Pd, Pt, and Au) bimetallic aerogels is synthesized from the in situ reduction of metal precursors through enhancement of the gelation kinetics at elevated temperature. Moreover, the resultant PdCu aerogel with ultrathin nanowire networks exhibits excellent electrocatalytic performance toward ethanol oxidation, holding promise in fuel-cell applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA