Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(40): 24936-24946, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32958672

RESUMO

While near-cognate codons are frequently used for translation initiation in eukaryotes, their efficiencies are usually low (<10% compared to an AUG in optimal context). Here, we describe a rare case of highly efficient near-cognate initiation. A CUG triplet located in the 5' leader of POLG messenger RNA (mRNA) initiates almost as efficiently (∼60 to 70%) as an AUG in optimal context. This CUG directs translation of a conserved 260-triplet-long overlapping open reading frame (ORF), which we call POLGARF (POLG Alternative Reading Frame). Translation of a short upstream ORF 5' of this CUG governs the ratio between POLG (the catalytic subunit of mitochondrial DNA polymerase) and POLGARF synthesized from a single POLG mRNA. Functional investigation of POLGARF suggests a role in extracellular signaling. While unprocessed POLGARF localizes to the nucleoli together with its interacting partner C1QBP, serum stimulation results in rapid cleavage and secretion of a POLGARF C-terminal fragment. Phylogenetic analysis shows that POLGARF evolved ∼160 million y ago due to a mammalian-wide interspersed repeat (MIR) transposition into the 5' leader sequence of the mammalian POLG gene, which became fixed in placental mammals. This discovery of POLGARF unveils a previously undescribed mechanism of de novo protein-coding gene evolution.


Assuntos
Códon de Iniciação/genética , DNA Polimerase gama/genética , Filogenia , Biossíntese de Proteínas/genética , Animais , Sequência de Bases , Proteínas de Transporte/genética , Feminino , Humanos , Proteínas Mitocondriais/genética , Fases de Leitura Aberta/genética , Gravidez , RNA Mensageiro/genética , Fases de Leitura/genética
2.
Int J Mol Sci ; 21(6)2020 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-32192132

RESUMO

Initiation of protein synthesis in eukaryotes is a complex process requiring more than 12 different initiation factors, comprising over 30 polypeptide chains. The functions of many of these factors have been established in great detail; however, the precise role of some of them and their mechanism of action is still not well understood. Eukaryotic initiation factor 2A (eIF2A) is a single chain 65 kDa protein that was initially believed to serve as the functional homologue of prokaryotic IF2, since eIF2A and IF2 catalyze biochemically similar reactions, i.e., they stimulate initiator Met-tRNAi binding to the small ribosomal subunit. However, subsequent identification of a heterotrimeric 126 kDa factor, eIF2 (α,ß,γ) showed that this factor, and not eIF2A, was primarily responsible for the binding of Met-tRNAi to 40S subunit in eukaryotes. It was found however, that eIF2A can promote recruitment of Met-tRNAi to 40S/mRNA complexes under conditions of inhibition of eIF2 activity (eIF2α-phosphorylation), or its absence. eIF2A does not function in major steps in the initiation process, but is suggested to act at some minor/alternative initiation events such as re-initiation, internal initiation, or non-AUG initiation, important for translational control of specific mRNAs. This review summarizes our current understanding of the eIF2A structure and function.


Assuntos
Fator de Iniciação 2 em Eucariotos/metabolismo , Animais , Proteínas de Transporte/metabolismo , Fator de Iniciação 2 em Eucariotos/química , Fator de Iniciação 2 em Eucariotos/genética , Evolução Molecular , Técnicas de Silenciamento de Genes , Humanos , Mamíferos , Camundongos Knockout , Iniciação Traducional da Cadeia Peptídica , Fator de Iniciação 2 em Procariotos/química , Fator de Iniciação 2 em Procariotos/metabolismo , Ligação Proteica , Biossíntese de Proteínas , RNA Mensageiro/química , RNA Mensageiro/metabolismo , RNA de Transferência/metabolismo , Transdução de Sinais , Estresse Fisiológico , Relação Estrutura-Atividade , Sítio de Iniciação de Transcrição , Leveduras/genética , Leveduras/metabolismo
3.
Proteomics ; 15(14): 2410-6, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25736862

RESUMO

The boundaries of protein coding sequences are more difficult to define at the 5' end than at the 3' end due to potential multiple translation initiation sites (TISs). Even in the presence of phylogenetic data, the use of sequence information only may not be sufficient for the accurate identification of TISs. Traditional proteomics approaches may also fail because the N-termini of newly synthesized proteins are often processed. Thus ribosome profiling (ribo-seq), producing a snapshot of the ribosome distribution across the entire transcriptome, is an attractive experimental technique for the purpose of TIS location exploration. The GWIPS-viz (Genome Wide Information on Protein Synthesis visualized) browser (http://gwips.ucc.ie) provides free access to the genomic alignments of ribo-seq data and corresponding mRNA-seq data along with relevant annotation tracks. In this brief, we illustrate how GWIPS-viz can be used to explore the ribosome occupancy at the 5' ends of protein coding genes to assess the activity of AUG and non-AUG TISs responsible for the synthesis of proteoforms with alternative or heterogeneous N-termini. The presence of ribo-seq tracks for various organisms allows for cross-species comparison of orthologous genes and the availability of datasets from multiple laboratories permits the assessment of the technical reproducibility of the ribosome densities.


Assuntos
Biossíntese de Proteínas , Proteínas/genética , Proteômica/métodos , RNA Mensageiro/genética , Ribossomos/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Genoma , Genômica/métodos , Humanos , Camundongos , Dados de Sequência Molecular , Fases de Leitura Aberta , Proteínas/química , Alinhamento de Sequência , Software
4.
Neuron ; 95(6): 1292-1305.e5, 2017 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-28910618

RESUMO

Several microsatellite-expansion diseases are characterized by the accumulation of RNA foci and RAN proteins, raising the possibility of a mechanistic connection. We explored this question using myotonic dystrophy type 2, a multisystemic disease thought to be primarily caused by RNA gain-of-function effects. We demonstrate that the DM2 CCTG⋅CAGG expansion expresses sense and antisense tetrapeptide poly-(LPAC) and poly-(QAGR) RAN proteins, respectively. In DM2 autopsy brains, LPAC is found in neurons, astrocytes, and glia in gray matter, and antisense QAGR proteins accumulate within white matter. LPAC and QAGR proteins are toxic to cells independent of RNA gain of function. RNA foci and nuclear sequestration of CCUG transcripts by MBNL1 is inversely correlated with LPAC expression. These data suggest a model that involves nuclear retention of expansion RNAs by RNA-binding proteins (RBPs) and an acute phase in which expansion RNAs exceed RBP sequestration capacity, are exported to the cytoplasm, and undergo RAN translation. VIDEO ABSTRACT.


Assuntos
Distrofia Miotônica/metabolismo , Biossíntese de Proteínas , Proteínas de Ligação a RNA/metabolismo , Proteína ran de Ligação ao GTP/biossíntese , Encéfalo/metabolismo , Sobrevivência Celular , Células Cultivadas , Regulação da Expressão Gênica , Humanos , Mutação , RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteína ran de Ligação ao GTP/toxicidade
5.
Translation (Austin) ; 2(1): e28387, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-26779403

RESUMO

Translation generally initiates with the AUG codon. While initiation at GUG and UUG is permitted in prokaryotes (Archaea and Bacteria), cases of CUG initiation were recently reported in human cells. The varying stringency in translation initiation between eukaryotic and prokaryotic domains largely stems from a fundamental problem for the ribosome in recognizing a codon at the peptidyl-tRNA binding site. Initiation factors specific to each domain of life evolved to confer stringent initiation by the ribosome. The mechanistic basis for high accuracy in eukaryotic initiation is described based on recent findings concerning the role of the multifactor complex (MFC) in this process. Also discussed are whether non-AUG initiation plays any role in translational control and whether start codon accuracy is regulated in eukaryotes.

6.
Virology ; 446(1-2): 397-408, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23830075

RESUMO

The sobemoviruses have one of the smallest of all known RNA virus genomes. ORF1 encodes P1 which plays a role in suppression of silencing and virus movement, ORFs 2a and 2b encode the replicational polyproteins P2a and P2ab, and ORF3 encodes the coat protein. Translation of ORF2a from the genomic RNA is dependent on a leaky scanning mechanism. We report the presence of an additional ORF (ORFx), conserved in all sobemoviruses. ORFx overlaps the 5' end of ORF2a in the +2 reading frame and also extends some distance upstream of ORF2a. ORFx lacks an AUG initiation codon and its expression is predicted to depend on low level initiation at near-cognate non-AUG codons, such as CUG, by a proportion of the ribosomes that are scanning the region between the ORF1 and ORF2a initiation codons. Mutations that disrupt translation of ORFx in turnip rosette virus prevent the establishment of infection.


Assuntos
Fases de Leitura Aberta , Vírus de Plantas/genética , Vírus de RNA/genética , RNA Viral/genética , Códon de Iniciação , Sequência Conservada , Biossíntese de Proteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA