Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Neurosci ; 42(5): 731-748, 2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-34907024

RESUMO

Group I mGluRs have diverse functions in some fundamental neuronal processes, including modulation of synaptic plasticity; and dysregulation of these receptors could lead to various neuropsychiatric disorders. Trafficking of Group I mGluRs plays critical roles in controlling the precise spatiotemporal localization and activity of these receptors, both of which contribute to proper downstream signaling. Using "molecular replacement" approach in hippocampal neurons derived from mice of both sexes, we demonstrate a critical role for the postsynaptic density protein Norbin in regulating the ligand-induced internalization of Group I mGluRs. We show that Norbin associates with protein kinase A (PKA) through its N-terminus and anchors mGluR5 through its C-terminus, both of which are necessary for the ligand-mediated endocytosis of mGluR5, a member of the Group I mGluR family. A point mutation (A687G) at the C-terminus of Norbin inhibits the binding of Norbin to mGluR5 and blocks mGluR5 endocytosis. Finally, we demonstrate an important mechanism by which Norbin regulates mGluR-mediated AMPAR endocytosis in hippocampal neurons, a cellular correlate for mGluR-dependent synaptic plasticity. Norbin, through its PKA-binding regions, recruits PKA to AMPARs on activation of mGluRs; and deletion of the PKA-binding regions of Norbin inhibits mGluR-triggered AMPAR endocytosis. We further report that Norbin is important specifically for the mGluR-mediated AMPAR endocytosis, but not for NMDAR-dependent AMPAR endocytosis. Thus, this study unravels a novel role for Norbin in the internalization of mGluRs and mGluR-mediated AMPAR endocytosis that can have clinical relevance to the function of Group I mGluRs in pathologic processes.SIGNIFICANCE STATEMENT The postsynaptic protein Norbin interacts with mGluR5, and both of them have been implicated in disorders, such as schizophrenia. However, the mechanistic basis underlying the regulation of mGluRs by Norbin remains elusive. We have identified Norbin as an essential mediator of ligand-mediated endocytosis of Group I mGluRs. Mechanistically, Norbin N-terminus associates with protein kinase-A (PKA) and C-terminus binds to mGluR5 to coordinate receptor internalization. A point mutation NorA687G inhibits endocytosis by disrupting this interaction. Additionally, Norbin is critical for the recruitment of PKA to AMPARs on activation of Group I mGluRs that assists in mGluR-mediated AMPAR endocytosis. Thus, Norbin has a dual function in the hippocampus: regulation of mGluR internalization and PKA-dependent modulation of mGluR-mediated AMPAR endocytosis, a prerequisite for mGluR-mediated synaptic plasticity.


Assuntos
Endocitose/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Plasticidade Neuronal/fisiologia , Receptor de Glutamato Metabotrópico 5/metabolismo , Receptores de AMPA/metabolismo , Sinapses/metabolismo , Animais , Animais Recém-Nascidos , Células Cultivadas , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/genética , Receptor de Glutamato Metabotrópico 5/genética , Receptores de AMPA/genética , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/genética
2.
J Virol ; 96(2): e0134421, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-34705559

RESUMO

The CCCH-type zinc finger antiviral protein (ZAP) can recognize and induce the degradation of mRNAs and proteins of certain viruses, as well as exerting its antiviral activity by activating T cells. However, the mechanism of ZAP that mediates T cell activation during virus infection remains unclear. Here, we found a potential function of ZAP that relieves immunosuppression of T cell induced by avian leukosis virus subgroup J (ALV-J) via a novel signaling pathway that involves norbin-like protein (NLP), protein kinase C delta (PKC-δ), and nuclear factor of activated T cell (NFAT). Specifically, ZAP expression activated T cells by promoting the dephosphorylation and nuclear translocation of NFAT. Furthermore, knockdown of ZAP weakened the reactivity and antiviral response of T cells. Mechanistically, ZAP reduced PKC-δ activity by upregulating and reactivating NLP by competitively binding with viral protein. Knockdown of NLP decreased the dephosphorylation of PKC-δ by ZAP expression. Moreover, we show that knockdown of PKC-δ reduced the phosphorylation levels of NFAT and enhanced its nuclear translocation. Taken together, these data revealed that ZAP relieves immunosuppression caused by ALV-J and mediates T cell activation through the NLP-PKC-δ-NFAT pathway. IMPORTANCE The evolution of the host defense system is driven synchronously in the process of resisting virus invasion. Accordingly, host innate defense factors effectively work to suppress virus replication. However, it remains unclear whether the host innate defense factors are involved in antiviral immune responses against the invasion of immunosuppressive viruses. Here, we found that CCCH-type zinc finger antiviral protein (ZAP) effectively worked in resistance to immunosuppression caused by avian leukosis virus subgroup J (ALV-J), a classic immunosuppressive virus. Evidence showed that ZAP released the phosphatase activity of NLP inhibited by ALV-J and further activated NFAT by inactivating PKC-δ. This novel molecular mechanism, i.e., ZAP regulation of the antiviral immune response by mediating the NLP-PKC-δ-NFAT pathway, has greatly enriched the understanding of the functions of host innate defense factors and provided important scientific ideas and a theoretical basis for research on immunosuppressive viruses and antiviral immunity.


Assuntos
Vírus da Leucose Aviária/imunologia , Fatores de Transcrição NFATC/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteína Quinase C-delta/metabolismo , Proteínas de Ligação a RNA/metabolismo , Linfócitos T/imunologia , Animais , Galinhas , Interações Hospedeiro-Patógeno , Tolerância Imunológica , Ativação Linfocitária , Fosforilação , Ligação Proteica , Proteínas de Ligação a RNA/genética , Transdução de Sinais , Linfócitos T/metabolismo , Linfócitos T/virologia , Proteínas Virais/metabolismo
3.
Biochem Soc Trans ; 51(4): 1545-1558, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37503670

RESUMO

Norbin (Neurochondrin, NCDN) is a highly conserved 79 kDa adaptor protein that was first identified more than a quarter of a century ago as a gene up-regulated in rat hippocampus upon induction of long-term potentiation. Most research has focussed on the role of Norbin in the nervous system, where the protein is highly expressed. Norbin regulates neuronal morphology and synaptic plasticity, and is essential for normal brain development and homeostasis. Dysregulation of Norbin is linked to a variety of neurological conditions. Recently, Norbin was shown to be expressed in myeloid cells as well as neurons. Myeloid-cell specific deletion revealed an important role of Norbin as a suppressor of neutrophil-derived innate immunity. Norbin limits the ability of neutrophils to clear bacterial infections by curbing the responsiveness of these cells to inflammatory and infectious stimuli. Mechanistically, Norbin regulates cell responses through binding to its interactors, in particular to a wide range of G protein-coupled receptors (GPCRs). Norbin association with GPCRs controls GPCR trafficking and signalling. Other important Norbin interactors are the Rac guanine-nucleotide exchange factor P-Rex1 and protein kinase A. Downstream signalling pathways regulated by Norbin include ERK, Ca2+ and the small GTPase Rac. Here, we review the current understanding of Norbin structure, expression and its roles in health and disease. We also explore Norbin signalling through its interactors, with a particular focus on GPCR trafficking and signalling. Finally, we discuss avenues that could be pursued in the future to increase our understanding of Norbin biology.


Assuntos
Neuropeptídeos , Ratos , Animais , Neuropeptídeos/metabolismo , Transdução de Sinais , Receptores Acoplados a Proteínas G/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
4.
Proc Natl Acad Sci U S A ; 112(31): 9745-50, 2015 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-26195764

RESUMO

Adult neurogenesis in the hippocampus subgranular zone is associated with the etiology and treatment efficiency of depression. Factors that affect adult hippocampal neurogenesis have been shown to contribute to the neuropathology of depression. Glutamate, the major excitatory neurotransmitter, plays a critical role in different aspects of neurogenesis. Of the eight metabotropic glutamate receptors (mGluRs), mGluR5 is the most highly expressed in neural stem cells. We previously identified Norbin as a positive regulator of mGluR5 and showed that its expression promotes neurite outgrowth. In this study, we investigated the role of Norbin in adult neurogenesis and depressive-like behaviors using Norbin-deficient mice. We found that Norbin deletion significantly reduced hippocampal neurogenesis; specifically, the loss of Norbin impaired the proliferation and maturation of newborn neurons without affecting cell-fate specification of neural stem cells/neural progenitor cells (NSCs/NPCs). Norbin is highly expressed in the granular neurons in the dentate gyrus of the hippocampus, but it is undetectable in NSCs/NPCs or immature neurons, suggesting that the effect of Norbin on neurogenesis is likely caused by a nonautonomous niche effect. In support of this hypothesis, we found that the expression of a cell-cell contact gene, Desmoplakin, is greatly reduced in Norbin-deletion mice. Moreover, Norbin-KO mice show an increased immobility in the forced-swim test and the tail-suspension test and reduced sucrose preference compared with wild-type controls. Taken together, these results show that Norbin is a regulator of adult hippocampal neurogenesis and that its deletion causes depressive-like behaviors.


Assuntos
Comportamento Animal , Depressão/metabolismo , Depressão/patologia , Deleção de Genes , Hipocampo/patologia , Neurogênese , Neuropeptídeos/metabolismo , Envelhecimento/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Comunicação Celular , Diferenciação Celular , Linhagem da Célula , Proliferação de Células , Giro Denteado/metabolismo , Depressão/fisiopatologia , Hipocampo/fisiopatologia , Camundongos Knockout , Atividade Motora , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologia , Fenótipo , Receptor de Glutamato Metabotrópico 5/metabolismo
5.
Biol Psychiatry ; 2023 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-37579933

RESUMO

BACKGROUND: Highly palatable food triggers behavioral responses including strong motivation. These effects involve the reward system and dopamine neurons, which modulate neurons in the nucleus accumbens (NAc). The molecular mechanisms underlying the long-lasting effects of highly palatable food on feeding behavior are poorly understood. METHODS: We studied the effects of 2-week operant conditioning of mice with standard or isocaloric highly palatable food. We investigated the behavioral responses and dendritic spine modifications in the NAc. We compared the translating messenger RNA in NAc neurons identified by the type of dopamine receptors they express, depending on the kind of food and training. We tested the consequences of invalidation of an abundant downregulated gene, Ncdn. RESULTS: Operant conditioning for highly palatable food increased motivation for food even in well-fed mice. In wild-type mice, free choice between regular and highly palatable food increased weight compared with access to regular food only. Highly palatable food increased spine density in the NAc. In animals trained for highly palatable food, translating messenger RNAs were modified in NAc neurons expressing dopamine D2 receptors, mostly corresponding to striatal projection neurons, but not in neurons expressing D1 receptors. Knockout of Ncdn, an abundant downregulated gene, opposed the conditioning-induced changes in satiety-sensitive feeding behavior and apparent motivation for highly palatable food, suggesting that downregulation may be a compensatory mechanism. CONCLUSIONS: Our results emphasize the importance of messenger RNA alterations in D2 striatal projection neurons in the NAc in the behavioral consequences of highly palatable food conditioning and suggest a modulatory contribution of Ncdn downregulation.

6.
Life (Basel) ; 12(3)2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35330215

RESUMO

Using an in vivo method for the assessment of polyphosphoinositide (PI) hydrolysis, we examine whether spatial learning and memory extinction cause changes in mGlu5 metabotropic glutamate receptor signaling in the hippocampus and prefrontal cortex. We use the following five groups of mice: (i) naive mice; (ii) control mice exposed to the same environment as learner mice; (iii) leaner mice, trained for four days in a water maze; (iv) mice in which memory extinction was induced by six trials without the platform; (v) mice that spontaneously lost memory. The mGlu5 receptor-mediated PI hydrolysis was significantly reduced in the dorsal hippocampus of learner mice as compared to naive and control mice. The mGlu5 receptor signaling was also reduced in the ventral hippocampus and prefrontal cortex of learner mice, but only with respect to naive mice. Memory extinction was associated with a large up-regulation of mGlu5 receptor-mediated PI hydrolysis in the three brain regions and with increases in mGlu5 receptor and phospholipase-Cß protein levels in the ventral and dorsal hippocampus, respectively. These findings support a role for mGlu5 receptors in mechanisms underlying spatial learning and suggest that mGlu5 receptors are candidate drug targets for disorders in which cognitive functions are impaired or aversive memories are inappropriately retained.

7.
Acta Neuropathol Commun ; 10(1): 20, 2022 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-35151370

RESUMO

Frontotemporal dementia (FTD) is a heterogeneous clinical disorder characterized by progressive abnormalities in behavior, executive functions, personality, language and/or motricity. A neuropathological subtype of FTD, frontotemporal lobar degeneration (FTLD)-FET, is characterized by protein aggregates consisting of the RNA-binding protein fused in sarcoma (FUS). The cause of FTLD-FET is not well understood and there is a lack of genetic evidence to aid in the investigation of mechanisms of the disease. The goal of this study was to identify genetic variants contributing to FTLD-FET and to investigate their effects on FUS pathology. We performed whole-exome sequencing on a 50-year-old FTLD patient with ubiquitin and FUS-positive neuronal inclusions and unaffected parents, and identified a de novo postzygotic nonsense variant in the NCDN gene encoding Neurochondrin (NCDN), NM_014284.3:c.1206G > A, p.(Trp402*). The variant was associated with a ~ 31% reduction in full-length protein levels in the patient's brain, suggesting that this mutation leads to NCDN haploinsufficiency. We examined the effects of NCDN haploinsufficiency on FUS and found that depleting primary cortical neurons of NCDN causes a reduction in the total number of FUS-positive cytoplasmic granules. Moreover, we found that these granules were significantly larger and more highly enriched with FUS. We then examined the effects of a loss of FUS function on NCDN in neurons and found that depleting cells of FUS leads to a decrease in NCDN protein and mRNA levels. Our study identifies the NCDN protein as a likely contributor of FTLD-FET pathophysiology. Moreover, we provide evidence for a negative feedback loop of toxicity between NCDN and FUS, where loss of NCDN alters FUS cytoplasmic dynamics, which in turn has an impact on NCDN expression.


Assuntos
Encéfalo/patologia , Demência Frontotemporal/genética , Proteínas do Tecido Nervoso/genética , Neurônios/patologia , Proteína FUS de Ligação a RNA/metabolismo , Códon sem Sentido , Feminino , Demência Frontotemporal/patologia , Haploinsuficiência , Humanos , Pessoa de Meia-Idade
8.
Biomed Pharmacother ; 133: 111031, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33249277

RESUMO

Tramadol, a weak agonist of mu-opioid receptors, causes seizure via several mechanisms. Preconditioning has been purposed to reduce the epileptic seizures in animal models of epilepsy. The preconditioning effect of tramadol on seizure is not studied yet. This study was designed to evaluate the preconditioning effect of ultra-low dose of tramadol on the seizures induced by tramadol at high dose. Furthermore, regarding the critical role of glutamate signaling in the pathogenesis of epilepsy, the effect of preconditioning on some glutamate signaling elements was also examined. Male Wistar rats received tramadol (2 mg/kg, i.p) or normal saline (1 mL/kg, i.p) in preconditioning and control groups, respectively. After 4 days, the challenging tramadol dose (150 mg/kg) was injected to all rats. Epileptic behaviors were recorded during 50 min. The expression of Norbin (as a regulator of metabotropic glutamate receptor 5), Calponin3 (as a regulator of excitatory synaptic markers), NR1 (NMDA receptor subunit 1) and GluR1 (AMPA receptor subunit 1) was measured in hippocampus, prefrontal cortex (PFC) and amygdala. Preconditioning decreased the number and duration of tremors and tonic-clonic seizures. Norbin, Calponin3, NR1 and GluR1 expression were decreased in hippocampus, and preconditioning had no effect on them. In contrast, it increased Norbin expression in PFC and amygdala, and attenuated NR1 and GluR1 upregulation following tramadol at high dose. These findings indicated that preconditioning by ultra-low dose of tramadol protected the animals against seizures following high dose of tramadol mediated, at least in part, by Norbin up regulation, and NR1 and GluR1 down regulation.


Assuntos
Analgésicos Opioides/administração & dosagem , Anticonvulsivantes/administração & dosagem , Encéfalo/efeitos dos fármacos , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Convulsões/prevenção & controle , Tramadol/administração & dosagem , Analgésicos Opioides/toxicidade , Animais , Anticonvulsivantes/toxicidade , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Regulação para Baixo , Masculino , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Ratos Wistar , Receptores de AMPA/genética , Receptores de N-Metil-D-Aspartato/genética , Convulsões/induzido quimicamente , Convulsões/metabolismo , Convulsões/fisiopatologia , Índice de Gravidade de Doença , Tramadol/toxicidade , Calponinas
9.
Psychiatry Res ; 260: 152-157, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29195167

RESUMO

The D2 receptor partial agonist, aripiprazole, has shown increased therapeutic efficacy for schizophrenia, autism and Tourette's syndrome compared to traditional antipsychotics such as the D2 receptor antagonist, haloperidol. Recent evidence suggests this superior profile may be associated with downstream effects on glutamatergic synapses. Group 1 metabotropic glutamate receptors (mGluRs) and their endogenous modulators, Norbin and Homer1, are regulated by D2 receptor activity, particularly within the nucleus accumbens (NAc), a target region of aripiprazole and haloperidol. This study sought to evaluate the effects of aripiprazole on Group 1 mGluRs, Norbin and Homer1 in the NAc, in comparison to haloperidol. Sprague-Dawley rats were orally administered daily doses of aripiprazole (2.25mg/kg), haloperidol (0.3mg/kg) or vehicle for 1 or 10-weeks. Immunoblot analyses revealed Group 1 mGluR protein levels were not altered following 1-week and 10-week aripiprazole or haloperidol treatment, compared to vehicle treated rodents. However, 1-week aripiprazole and haloperidol treatment significantly elevated Homer1a and Norbin protein expression, respectively. After 10 weeks of treatment, aripiprazole, but not haloperidol, significantly increased Norbin expression. These findings indicate the antipsychotics, aripiprazole and haloperidol, exert differential temporal effects on Norbin and Homer1 expression that may have consequences on synaptic glutamatergic transmission underlying their therapeutic profile.


Assuntos
Antipsicóticos/farmacologia , Aripiprazol/farmacologia , Haloperidol/farmacologia , Núcleo Accumbens/efeitos dos fármacos , Receptores de Glutamato Metabotrópico/efeitos dos fármacos , Animais , Antipsicóticos/administração & dosagem , Aripiprazol/administração & dosagem , Haloperidol/administração & dosagem , Masculino , Ratos , Ratos Sprague-Dawley
10.
Schizophr Res ; 166(1-3): 212-8, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26048293

RESUMO

Metabotropic glutamate receptor 5 (mGluR5) is involved in hippocampal-dependent learning and memory, which are processes disrupted in schizophrenia. Recent evidence from human genetic and animal studies suggests that the regulation of mGluR5, including its interaction with trafficking molecules, may be altered in the disorder. However there have been no investigations of hippocampal mGluR5 or mGluR5 trafficking molecules in the postmortem schizophrenia brain to confirm this. In the present study, we investigated whether protein expression of mGluR5, as well as Norbin and Tamalin (modulators of mGluR5 signalling and trafficking), might be altered in the schizophrenia brain, using postmortem samples from the hippocampal CA1 region of schizophrenia subjects and matched controls (n=20/group). Protein levels of mGluR5 (total: 42%, p<0.001; monomer: 25%, p=0.011; dimer: 52%, p<0.001) and mGluR5 trafficking molecules (Norbin: 47%, p<0.001; Tamalin: 34%, p=0.009) were significantly higher in schizophrenia subjects compared to controls. To determine any influence of antipsychotic drug treatment, all proteins were also correlated with lifetime chlorpromazine equivalents in patients, and separately measured in the hippocampus of rats exposed to haloperidol or olanzapine treatment. mGluR5 was negatively correlated with lifetime antipsychotic drug exposure in schizophrenia patients, suggesting antipsychotic drugs could reduce mGluR5 protein in schizophrenia subjects. In contrast, mGluR5 and mGluR5 trafficking molecules were not altered in the hippocampus of antipsychotic drug treated rats. This investigation provides strong support for the hypothesis that mGluR5 is involved in the pathology of schizophrenia, and that alterations to mGluR5 trafficking might contribute to the hippocampal-dependent cognitive dysfunctions associated with this disorder.


Assuntos
Região CA1 Hipocampal/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptor de Glutamato Metabotrópico 5/metabolismo , Esquizofrenia/metabolismo , Animais , Antipsicóticos/farmacologia , Antipsicóticos/uso terapêutico , Benzodiazepinas/farmacologia , Benzodiazepinas/uso terapêutico , Região CA1 Hipocampal/efeitos dos fármacos , Clorpromazina/uso terapêutico , Dimerização , Feminino , Haloperidol/farmacologia , Haloperidol/uso terapêutico , Humanos , Immunoblotting , Masculino , Pessoa de Meia-Idade , Neuropeptídeos/metabolismo , Olanzapina , Ratos Sprague-Dawley , Esquizofrenia/tratamento farmacológico
11.
Front Neuroanat ; 8: 53, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25009471

RESUMO

Pyramidal cells of the ventral hippocampal CA1 area have numerous and diverse distant projections to other brain regions including the temporal and parietal association areas, visual, auditory, olfactory, somatosensory, gustatory, and visceral areas, and inputs to the amygdalar and prefrontal-orbital-agranular insular region. In addition, their differential expression of proteins like calbindin provides further indications for cellular diversity. This raises the possibility that the pyramidal cells may form subpopulations participating in different brain circuitries. To address this hypothesis we applied the juxtacellular labeling technique to fill individual pyramidal cells in the ventral hippocampus with neurobiotin in urethane anesthetized rats. For each labeled pyramidal cell we determined soma location, dendritic arborizations and selective expression of calbindin and norbin. Reconstruction and mapping of long-range axonal projections were made with the Neurolucida system. We found three major routes of ventral CA1 pyramidal cell projections. The classical pathway run caudo-ventrally across and innervating the subiculum, further to the parahippocampal regions and then to the deep and superficial layers of entorhinal cortex. The other two pathways avoided subiculum by branching from the main axon close to the soma and either traveled antero- and caudo-ventrally to amygdaloid complex, amygdalopiriform-transition area and parahippocampal regions or run antero-dorsally through the fimbria-fornix to the septum, hypothalamus, ventral striatum and olfactory regions. We found that most pyramidal cells investigated used all three major routes to send projecting axons to other brain areas. Our results suggest that the information flow through the ventral hippocampus is distributed by wide axonal projections from the CA1 area.

12.
Commun Integr Biol ; 3(6): 487-90, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21331221

RESUMO

Norbin, a neurite-outgrowth promoting protein, has been found to interact with and regulate several membrane proteins, including metabotropic glutamate receptor 5 (mGluR5). The disruption of both Norbin alleles leads to early embryonic death between 3.5 and 6.5 day post coitus.1 Forebrain specific Norbin knockout (KO) mice are defective in synaptic plasticity,2 an interesting feature considering that Norbin was initially discovered in the context of chemical-induced long term potentiation (LTP),3 a form of synaptic plasticity extensively studied in the context of learning and memory.4 The behavioral phenotypes associated with Norbin conditional KO suggest reduced mGluR5 function. Because of its fundamental functions, Norbin is emerging as a key neuronal regulator. The aim of the present review is to summarize current knowledge about Norbin while emphasizing its role in the nervous system.

13.
Science ; 326(5959): 1554-7, 2009 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-20007903

RESUMO

Metabotropic glutamate receptor 5 (mGluR5) is highly expressed in the mammalian central nervous system (CNS). It is involved in multiple physiological functions and is a target for treatment of various CNS disorders, including schizophrenia. We report that Norbin, a neuron-specific protein, physically interacts with mGluR5 in vivo, increases the cell surface localization of the receptor, and positively regulates mGluR5 signaling. Genetic deletion of Norbin attenuates mGluR5-dependent stable changes in synaptic function measured as long-term depression or long-term potentiation of synaptic transmission in the hippocampus. As with mGluR5 knockout mice or mice treated with mGluR5-selective antagonists, Norbin knockout mice showed a behavioral phenotype associated with a rodent model of schizophrenia, as indexed by alterations both in sensorimotor gating and psychotomimetic-induced locomotor activity.


Assuntos
Encéfalo/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Transdução de Sinais , Animais , Cálcio/metabolismo , Sinalização do Cálcio , Linhagem Celular , Membrana Celular/metabolismo , Humanos , Camundongos , Camundongos Knockout , Atividade Motora , Proteínas do Tecido Nervoso/genética , Plasticidade Neuronal , Ligação Proteica , Ratos , Receptor de Glutamato Metabotrópico 5 , Receptores de Glutamato Metabotrópico/genética , Reflexo de Sobressalto , Esquizofrenia/fisiopatologia , Transmissão Sináptica , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA