Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 630
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Mol Cell ; 84(3): 506-521.e11, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38159565

RESUMO

Regulated protein phosphorylation controls most cellular processes. The protein phosphatase PP1 is the catalytic subunit of many holoenzymes that dephosphorylate serine/threonine residues. How these enzymes recruit their substrates is largely unknown. Here, we integrated diverse approaches to elucidate how the PP1 non-catalytic subunit PPP1R15B (R15B) captures its full trimeric eIF2 substrate. We found that the substrate-recruitment module of R15B is largely disordered with three short helical elements, H1, H2, and H3. H1 and H2 form a clamp that grasps the substrate in a region remote from the phosphorylated residue. A homozygous N423D variant, adjacent to H1, reducing substrate binding and dephosphorylation was discovered in a rare syndrome with microcephaly, developmental delay, and intellectual disability. These findings explain how R15B captures its 125 kDa substrate by binding the far end of the complex relative to the phosphosite to present it for dephosphorylation by PP1, a paradigm of broad relevance.


Assuntos
Domínio Catalítico , Fator de Iniciação 2 em Eucariotos , Proteína Fosfatase 1 , Humanos , Fosforilação , Proteína Fosfatase 1/genética , Proteína Fosfatase 1/metabolismo
2.
Mol Cell ; 81(7): 1384-1396.e6, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33636126

RESUMO

G proteins play a central role in signal transduction and pharmacology. Signaling is initiated by cell-surface receptors, which promote guanosine triphosphate (GTP) binding and dissociation of Gα from the Gßγ subunits. Structural studies have revealed the molecular basis of subunit association with receptors, RGS proteins, and downstream effectors. In contrast, the mechanism of subunit dissociation is poorly understood. We use cell signaling assays, molecular dynamics (MD) simulations, and biochemistry and structural analyses to identify a conserved network of amino acids that dictates subunit release. In the presence of the terminal phosphate of GTP, a glycine forms a polar network with an arginine and glutamate, putting torsional strain on the subunit binding interface. This "G-R-E motif" secures GTP and, through an allosteric link, discharges the Gßγ dimer. Replacement of network residues prevents subunit dissociation regardless of agonist or GTP binding. These findings reveal the molecular basis of the final committed step of G protein activation.


Assuntos
Guanosina Trifosfato , Proteínas Heterotriméricas de Ligação ao GTP , Simulação de Dinâmica Molecular , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/enzimologia , Regulação Alostérica , Motivos de Aminoácidos , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Células HEK293 , Proteínas Heterotriméricas de Ligação ao GTP/química , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Humanos , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
Mol Cell ; 73(3): 490-504.e6, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30581145

RESUMO

Fused in sarcoma (FUS) is an RNA binding protein involved in regulating many aspects of RNA processing and linked to several neurodegenerative diseases. Transcriptomics studies indicate that FUS binds a large variety of RNA motifs, suggesting that FUS RNA binding might be quite complex. Here, we present solution structures of FUS zinc finger (ZnF) and RNA recognition motif (RRM) domains bound to RNA. These structures show a bipartite binding mode of FUS comprising of sequence-specific recognition of a NGGU motif via the ZnF and an unusual shape recognition of a stem-loop RNA via the RRM. In addition, sequence-independent interactions via the RGG repeats significantly increase binding affinity and promote destabilization of structured RNA conformation, enabling additional binding. We further show that disruption of the RRM and ZnF domains abolishes FUS function in splicing. Altogether, our results rationalize why deciphering the RNA binding mode of FUS has been so challenging.


Assuntos
Proteína FUS de Ligação a RNA/química , RNA/química , Sítios de Ligação , Células HeLa , Humanos , Modelos Moleculares , Motivos de Nucleotídeos , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , RNA/genética , RNA/metabolismo , Motivo de Reconhecimento de RNA , Splicing de RNA , Estabilidade de RNA , Proteína FUS de Ligação a RNA/genética , Proteína FUS de Ligação a RNA/metabolismo , Relação Estrutura-Atividade , Dedos de Zinco
4.
Mol Cell ; 72(6): 985-998.e7, 2018 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-30415949

RESUMO

Current models of SIRT1 enzymatic regulation primarily consider the effects of fluctuating levels of its co-substrate NAD+, which binds to the stably folded catalytic domain. By contrast, the roles of the sizeable disordered N- and C-terminal regions of SIRT1 are largely unexplored. Here we identify an insulin-responsive sensor in the SIRT1 N-terminal region (NTR), comprising an acidic cluster (AC) and a 3-helix bundle (3HB), controlling deacetylase activity. The allosteric assistor DBC1 removes a distal N-terminal shield from the 3-helix bundle, permitting PACS-2 to engage the acidic cluster and the transiently exposed helix 3 of the 3-helix bundle, disrupting its structure and inhibiting catalysis. The SIRT1 activator (STAC) SRT1720 binds and stabilizes the 3-helix bundle, protecting SIRT1 from inhibition by PACS-2. Identification of the SIRT1 insulin-responsive sensor and its engagement by the DBC1 and PACS-2 regulatory hub provides important insight into the roles of disordered regions in enzyme regulation and the mode by which STACs promote metabolic fitness.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Hepatócitos/enzimologia , Insulina/metabolismo , Sirtuína 1/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Regulação Alostérica , Animais , Sítios de Ligação , Dieta Hiperlipídica , Modelos Animais de Doenças , Regulação da Expressão Gênica , Células HCT116 , Hepatócitos/efeitos dos fármacos , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Humanos , Resistência à Insulina , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/enzimologia , Obesidade/genética , Obesidade/prevenção & controle , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Estabilidade Proteica , Sirtuína 1/genética , Proteínas de Transporte Vesicular/deficiência , Proteínas de Transporte Vesicular/genética
5.
Biophys J ; 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39340152

RESUMO

Intrinsically disordered proteins (IDPs) often contain proline residues, which undergo cis/trans isomerisation. While molecular dynamics (MD) simulations have the potential to fully characterise the proline cis and trans sub-ensembles, they are limited by the slow timescales of isomerisation and force field inaccuracies. Nuclear magnetic resonance (NMR) spectroscopy can report on ensemble-averaged observables for both the cis-proline and trans-proline states, but a full atomistic characterisation of these conformers is challenging. Given the importance of proline cis/trans isomerisation for influencing the conformational sampling of disordered proteins, we employed a combination of all-atom MD simulations with enhanced sampling (metadynamics), NMR, and small-angle X-ray scattering (SAXS) to characterise the two sub-ensembles of the ORF6 C-terminal region (ORF6CTR) from SARS-CoV-2 corresponding to the proline-57 (P57) cis and trans states. We performed MD simulations in three distinct force fields: AMBER03ws, AMBER99SB-disp, and CHARMM36m, which are all optimised for disordered proteins. Each simulation was run for an accumulated time of 180-220 µs until convergence was reached, as assessed by blocking analysis. A good agreement between the cis-P57 populations predicted from metadynamic simulations in AMBER03ws was observed with populations obtained from experimental NMR data. Moreover, we observed good agreement between the radius of gyration predicted from the metadynamic simulations in AMBER03ws and that measured using SAXS. Our findings suggest that both the cis-P57 and trans-P57 conformations of ORF6CTR are extremely dynamic and that interdisciplinary approaches combining both multi-scale computations and experiments offer avenues to explore highly dynamic states that cannot be reliably characterised by either approach in isolation.

6.
Metabolomics ; 20(4): 68, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38941046

RESUMO

INTRODUCTION: Exploring metabolic changes within host E. coli through an untargeted metabolomic study of T7L variants overexpression to optimize engineered endolysins for clinical/therapeutic use. AIM AND OBJECTIVE: This study aims to assess the impact of overexpressing T7L variants on the metabolic profiles of E. coli. The two variants considered include T7L-H37A, which has enhanced lytic activity compared to its wild-type protein, and T7L-H48K, a dead mutant with no significant activity. METHODS: 1H NMR-based metabolomics was employed to compare the metabolic profiles of E. coli cells overexpressing T7L wild-type protein and its variants. RESULTS: Overexpression of the T7L wild-type (T7L-WT) protein and its variants (T7L-H48K and T7L-H37A) was compared to RNAP overexpression in E. coli cells using 1H NMR-based metabolomics, analyzing a total of 75 annotated metabolites, including organic acids, amino acids, sugars, and nucleic acids. The results showed distinct clustering patterns for the two T7L variant groups compared with the WT, in which the dead mutant (H48K) group showed clustering close to that of RNAP. Pathway impact analysis revealed different effects of T7L variants on E. coli metabolic profiles, with T7L-H48K showing minimal alterations in energy and amino acid pathways linked to osmotic stress compared to noticeable alterations in these pathways for both T7L-H37A and T7L-WT. CONCLUSIONS: This study uncovered distinct metabolic fingerprints when comparing the overexpression of active and inactive mutants of T7L lytic enzymes in E. coli cells. These findings could contribute to the optimization and enhancement of suitable endolysins as potential alternatives to antibiotics.


Assuntos
Escherichia coli , Metaboloma , Metabolômica , Escherichia coli/metabolismo , Escherichia coli/genética , Metabolômica/métodos , Proteínas Virais/metabolismo , Proteínas Virais/genética , Bacteriófago T7/genética , Bacteriófago T7/metabolismo , Mutação , RNA Polimerases Dirigidas por DNA/metabolismo , RNA Polimerases Dirigidas por DNA/genética
7.
Chemistry ; 30(4): e202301846, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-37721802

RESUMO

The tremendous importance of dirhodium paddlewheel complexes for asymmetric catalysis is largely the result of an empirical optimization of the chiral ligand sphere about the bimetallic core. It was only recently that a H(C)Rh triple resonance 103 Rh NMR experiment provided the long-awaited opportunity to examine - with previously inconceivable accuracy - how variation of the ligands impacts on the electronic structure of such catalysts. The recorded effects are dramatic: formal replacement of only one out of eight O-atoms surrounding the metal centers in a dirhodium tetracarboxylate by an N-atom results in a shielding of the corresponding Rh-site of no less than 1000 ppm. The current paper provides the theoretical framework that allows this and related experimental observations made with a set of 19 representative rhodium complexes to be interpreted. In line with symmetry considerations, it is shown that the shielding tensor responds only to the donor ability of the equatorial ligands along the perpendicular principal axis. Axial ligands, in contrast, have no direct effect on shielding but may come into play via the electronic c i s ${cis}$ -effect that they exert onto the neighboring equatorial sites. On top of these fundamental interactions, charge redistribution within the core as well as the electronic t r a n s ${trans}$ -effect of ligands of different donor strengths is reflected in the recorded 103 Rh NMR shifts.

8.
Mol Pharm ; 21(6): 2949-2959, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38685852

RESUMO

Crystallization is a widely used purification technique in the manufacture of active pharmaceutical ingredients (APIs) and precursor molecules. However, when impurities and desired compounds have similar molecular structures, separation by crystallization may become challenging. In such cases, some impurities may form crystalline solid solutions with the desired product during recrystallization. Understanding the molecular structure of these recrystallized solid solutions is crucial to devise methods for effective purification. Unfortunately, there are limited analytical techniques that provide insights into the molecular structure or spatial distribution of impurities that are incorporated within recrystallized products. In this study, we investigated model solid solutions formed by recrystallizing salicylic acid (SA) in the presence of anthranilic acid (AA). These two molecules are known to form crystalline solid solutions due to their similar molecular structures. To overcome challenges associated with the long 1H longitudinal relaxation times (T1(1H)) of SA and AA, we employed dynamic nuclear polarization (DNP) and 15N isotope enrichment to enable solid-state NMR experiments. Results of solid-state NMR experiments and DFT calculations revealed that SA and AA are homogeneously alloyed as a solid solution. Heteronuclear correlation (HETCOR) experiments and plane-wave DFT structural models provide further evidence of the molecular-level interactions between SA and AA. This research provides valuable insights into the molecular structure of recrystallized solid solutions, contributing to the development of effective purification strategies and an understanding of the physicochemical properties of solid solutions.


Assuntos
Isótopos de Carbono , Cristalização , Espectroscopia de Ressonância Magnética , Isótopos de Nitrogênio , Ácido Salicílico , ortoaminobenzoatos , Espectroscopia de Ressonância Magnética/métodos , Ácido Salicílico/química , Cristalização/métodos , Isótopos de Nitrogênio/química , ortoaminobenzoatos/química , Isótopos de Carbono/química , Soluções/química , Estrutura Molecular
9.
Mol Pharm ; 21(7): 3163-3172, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38781678

RESUMO

Stabilization of proteins by disaccharides in lyophilized formulations depends on the interactions between the protein and the disaccharide (system homogeneity) and the sufficiently low mobility of the system. Human serum albumin (HSA) was lyophilized with disaccharides (sucrose and/or trehalose) in different relative concentrations. Solid-state nuclear magnetic resonance (ssNMR) spectroscopy 1H T1 and 1H T1ρ relaxation times were measured to determine the homogeneity of the lyophilized systems on 20-50 and 1-3 nm domains, respectively, with 1H T1 relaxation times also being used to determine the ß-relaxation rate. HSA/sucrose systems had longer 1H T1 relaxation times and were slightly more stable than HSA/trehalose systems in almost all cases shown. HSA/sucrose/trehalose systems have 1H T1 relaxation times between the HSA/sucrose and HSA/trehalose systems and did not result in a more stable system compared with binary systems. Inhomogeneity was evident in a sample containing relative concentrations of 10% HSA and 90% trehalose, suggesting trehalose crystallization during lyophilization. Under these stability conditions and with these ssNMR acquisition parameters, a 1H T1 relaxation time below 1.5 s correlated with an unstable sample, regardless of the disaccharide(s) used.


Assuntos
Liofilização , Espectroscopia de Ressonância Magnética , Sacarose , Trealose , Trealose/química , Sacarose/química , Liofilização/métodos , Humanos , Espectroscopia de Ressonância Magnética/métodos , Albumina Sérica Humana/química , Albumina Sérica/química , Estabilidade de Medicamentos , Química Farmacêutica/métodos , Excipientes/química , Dissacarídeos/química
10.
Artigo em Inglês | MEDLINE | ID: mdl-39303804

RESUMO

OBJECTIVE: Chronic venous disease (CVD) is a condition presenting a great burden to patients and society, with poorly characterised pathophysiology. Metabolic phenotyping can elucidate mechanisms of disease and identify candidate biomarkers. The aim of this study was to determine differences in the metabolic signature between symptomatic patients with CVD and asymptomatic volunteers using proton nuclear magnetic resonance spectroscopy (1H-NMR). METHODS: This was a prospective case-control study of consecutive patients with symptomatic CVD and asymptomatic volunteers recruited from a single centre. Participants underwent clinical assessment, venous duplex ultrasound, and blood and urine sampling. Disease stage was defined according to the Clinical-Etiology-Anatomy-Pathophysiology (CEAP) classification. 1H-NMR experiments were performed, with data analysed via multivariate statistical techniques. RESULTS: A total of 622 participants were recruited, including 517 symptomatic patients with CVD (telangiectasia [C1] 0.6%, varicose veins [C2] 48.5%, swelling [C3] 12.0%, skin changes [C4] 27.7%, healed or active ulceration [C5/6] 11.2%) and 105 asymptomatic participants (no disease [C0] 69.5%, telangiectasia [C1] 29.6%). Multivariate analysis revealed differences between the metabolic profile of the symptomatic CVD and asymptomatic groups, and between CEAP clinical classes in the CVD group. Serum aromatic amino acids positively correlated with increasing CEAP clinical class (p < .001). Urinary formate, creatinine, glycine, citrate, succinate, pyruvate, and 2-hydroxyisobutyrate negatively correlated with increasing CEAP clinical class (p < .001). These metabolites are involved in the tricarboxylic acid cycle, hypoxia inducible factor pathway, and one carbon metabolism. CONCLUSION: Untargeted biofluid analysis via 1H-NMR has detected metabolites associated with the presence and severity of CVD, highlighting biological pathways of relevance and providing candidate biomarkers to explore in future research.

11.
Environ Sci Technol ; 58(31): 13772-13782, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39058895

RESUMO

Dissolved organic matter (DOM), the most reactive fraction of forest soil organic matter, is increasingly impacted by wildfires worldwide. However, few studies have quantified the temporal changes in soil DOM quantity and quality after fire. Here, soil samples were collected after the Qipan Mountain Fire (3-36 months) from pairs of burned and unburned sites. DOM contents and characteristics were analyzed using carbon quantification and various spectroscopic and spectrometric techniques. Compared with the unburned sites, burned sites showed higher contents of bulk DOM and most DOM components 3 months after the fire but lower contents of them 6-36 months after the fire. During the sharp drop of DOM from 3 to 6 months after the fire, carboxyl-rich alicyclic molecule-like and highly unsaturated compounds had greater losses than condensed aromatics. Notably, the burned sites had consistently higher abundances of oxygen-poor dissolved black nitrogen and fluorescent DOM 3-36 months after the fire, particularly the abundance of pyrogenic C2 (excitation/emission maxima of <250/∼400 nm) that increased by 150% before gradually declining. This study advances the understanding of temporal variations in the effects of fire on different soil DOM components, which is crucial for future postfire environmental management.


Assuntos
Incêndios , Solo , Solo/química , China , Incêndios Florestais , Florestas
12.
Methods ; 218: 198-209, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37607621

RESUMO

Over 40% of eukaryotic proteomes and 15% of bacterial proteomes are predicted to be intrinsically disordered based on their amino acid sequence. Intrinsically disordered proteins (IDPs) exist as heterogeneous ensembles of interconverting conformations and pose a challenge to the structure-function paradigm by apparently functioning without possessing stable structural elements. IDPs play a prominent role in biological processes involving extensive intermolecular interaction networks and their inherently dynamic nature facilitates their promiscuous interaction with multiple structurally diverse partner molecules. NMR spectroscopy has made pivotal contributions to our understanding of IDPs because of its unique ability to characterize heterogeneity at atomic resolution. NMR methods such as Chemical Exchange Saturation Transfer (CEST) and relaxation dispersion have enabled the detection of 'invisible' excited states in biomolecules which are transiently and sparsely populated, yet central for function. Here, we develop a 1Hα CEST pulse sequence which overcomes the resonance overlap problem in the 1Hα-13Cα plane of IDPs by taking advantage of the superior resolution in the 1H-15N correlation spectrum. In this sequence, magnetization is transferred after 1H CEST using a triple resonance coherence transfer pathway from 1Hα (i) to 1HN(i + 1) during which the 15N(t1) and 1HN(t2) are frequency labelled. This approach is integrated with spin state-selective CEST for eliminating spurious dips in CEST profiles resulting from dipolar cross-relaxation. We apply this sequence to determine the excited state 1Hα chemical shifts of the intrinsically disordered DNA binding domain (CytRN) of the bacterial cytidine repressor (CytR), which transiently acquires a functional globally folded conformation. The structure of the excited state, calculated using 1Hα chemical shifts in conjunction with other excited state NMR restraints, is a three-helix bundle incorporating a helix-turn-helix motif that is vital for binding DNA.


Assuntos
Proteínas Intrinsicamente Desordenadas , Proteoma , Sequência de Aminoácidos , Citidina , Eucariotos
13.
J Endocrinol Invest ; 47(8): 2075-2085, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38182920

RESUMO

AIMS: To assess if advanced characterization of serum glycoprotein and lipoprotein profile, measured by proton nuclear magnetic resonance spectroscopy (1H-NMRS) improves a predictive clinical model of cardioautonomic neuropathy (CAN) in subjects with type 1 diabetes (T1D). METHODS: Cross-sectional study (ClinicalTrials.gov Identifier: NCT04950634). CAN was diagnosed using Ewing's score. Advanced characterization of macromolecular complexes including glycoprotein and lipoprotein profiles in serum samples were measured by 1H-NMRS. We addressed the relationships between these biomarkers and CAN using correlation and regression analyses. Diagnostic performance was assessed by analyzing their areas under the receiver operating characteristic curves (AUCROC). RESULTS: Three hundred and twenty-three patients were included (46% female, mean age and duration of diabetes of 41 ± 13 years and 19 ± 11 years, respectively). The overall prevalence of CAN was 28% [95% confidence interval (95%CI): 23; 33]. Glycoproteins such as N-acetylglucosamine/galactosamine and sialic acid showed strong correlations with inflammatory markers such as high-sensitive C-reactive protein, fibrinogen, IL-10, IL-6, and TNF-α. On the contrary, we did not find any association between the former and CAN. A stepwise binary logistic regression model (R2 = 0.078; P = 0.003) retained intermediate-density lipoprotein-triglycerides (IDL-TG) [ß:0.082 (95%CI: 0.005; 0.160); P = 0.039], high-density lipoprotein-triglycerides (HDL-TGL)/HDL-Cholesterol [ß:3.633 (95%CI: 0.873; 6.394); P = 0.010], and large-HDL particle number [ß: 3.710 (95%CI: 0.677; 6.744); P = 0.001] as statistically significant determinants of CAN. Adding these lipoprotein particles to a clinical prediction model of CAN that included age, duration of diabetes, and A1c enhanced its diagnostic performance, improving AUCROC from 0.546 (95%CI: 0.404; 0.688) to 0.728 (95%CI: 0.616; 0.840). CONCLUSIONS: When added to clinical variables, 1H-NMRS-lipoprotein particle profiles may be helpful to identify those patients with T1D at risk of CAN.


Assuntos
Biomarcadores , Diabetes Mellitus Tipo 1 , Lipoproteínas , Espectroscopia de Prótons por Ressonância Magnética , Humanos , Feminino , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/sangue , Masculino , Adulto , Estudos Transversais , Lipoproteínas/sangue , Biomarcadores/sangue , Espectroscopia de Prótons por Ressonância Magnética/métodos , Neuropatias Diabéticas/diagnóstico , Neuropatias Diabéticas/sangue , Neuropatias Diabéticas/etiologia , Neuropatias Diabéticas/epidemiologia , Pessoa de Meia-Idade , Prognóstico , Doenças do Sistema Nervoso Autônomo/diagnóstico , Doenças do Sistema Nervoso Autônomo/etiologia , Doenças do Sistema Nervoso Autônomo/sangue
14.
Adv Exp Med Biol ; 1441: 435-458, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38884724

RESUMO

Over the last few decades, the study of congenital heart disease (CHD) has benefited from various model systems and the development of molecular biological techniques enabling the analysis of single gene as well as global effects. In this chapter, we first describe different models including CHD patients and their families, animal models ranging from invertebrates to mammals, and various cell culture systems. Moreover, techniques to experimentally manipulate these models are discussed. Second, we introduce cardiac phenotyping technologies comprising the analysis of mouse and cell culture models, live imaging of cardiogenesis, and histological methods for fixed hearts. Finally, the most important and latest molecular biotechniques are described. These include genotyping technologies, different applications of next-generation sequencing, and the analysis of transcriptome, epigenome, proteome, and metabolome. In summary, the models and technologies presented in this chapter are essential to study the function and development of the heart and to understand the molecular pathways underlying CHD.


Assuntos
Cardiopatias Congênitas , Animais , Humanos , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/metabolismo , Modelos Animais de Doenças , Camundongos , Fenótipo , Sequenciamento de Nucleotídeos em Larga Escala , Técnicas de Cultura de Células/métodos
15.
Magn Reson Chem ; 62(6): 452-462, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38237933

RESUMO

Benchtop diffusion nuclear magnetic resonance (NMR) spectroscopy was used to perform quantitative monitoring of enzymatic hydrolysis. The study aimed to test the feasibility of the technology to characterize enzymatic hydrolysis processes in real time. Diffusion ordered spectroscopy (DOSY) was used to measure the signal intensity and apparent self-diffusion constant of solubilized protein in hydrolysate. The NMR technique was tested on an enzymatic hydrolysis reaction of red cod, a lean white fish, by the endopeptidase alcalase at 50°C. Hydrolysate samples were manually transferred from the reaction vessel to the NMR equipment. Measurement time was approximately 3 min per time point. The signal intensity from the DOSY experiment was used to measure protein concentration and the apparent self-diffusion constant was converted into an average molecular weight and an estimated degree of hydrolysis. These values were plotted as a function of time and both the rate of solubilization and the rate of protein breakdown could be calculated. In addition to being rapid and noninvasive, DOSY using benchtop NMR spectroscopy has an advantage compared with other enzymatic hydrolysis characterization methods as it gives a direct measure of average protein size; many functional properties of proteins are strongly influenced by protein size. Therefore, a method to give protein concentration and average size in real time will allow operators to more tightly control production from enzymatic hydrolysis. Although only one type of material was tested, it is anticipated that the method should be applicable to a broad variety of enzymatic hydrolysis feedstocks.


Assuntos
Subtilisinas , Hidrólise , Subtilisinas/metabolismo , Subtilisinas/química , Difusão , Animais , Espectroscopia de Ressonância Magnética/métodos , Gadiformes/metabolismo
16.
Pediatr Surg Int ; 40(1): 87, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38512700

RESUMO

PURPOSE: This study aims to compare the fecal metabolome in post pull-through HD with and without HAEC patients and healthy young children using nuclear magnetic resonance (NMR) spectroscopy. METHODS: Fresh fecal samples were collected from children under 5 years of age in both post-pull-through HD patients and healthy Thai children. A total of 20 fecal samples were then analyzed using NMR spectroscopy. RESULTS: Thirty-four metabolites identified among HD and healthy children younger than 5 years were compared. HD samples demonstrated a significant decrease in acetoin, phenylacetylglutamine, and N-acetylornithine (corrected p value = 0.01, 0.04, and 0.004, respectively). Succinate and xylose significantly decreased in HD with HAEC group compared to HD without HAEC group (corrected p value = 0.04 and 0.02, respectively). Moreover, glutamine and glutamate metabolism, and alanine, aspartate, and glutamate metabolism were the significant pathways involved, with pathway impact 0.42 and 0.50, respectively (corrected p value = 0.02 and 0.04, respectively). CONCLUSION: Differences in class, quantity, and metabolism of protein and other metabolites in young children with HD after pull-through operation were identified. Most of the associated metabolic pathways were correlated with the amino acids metabolism, which is required to maintain intestinal integrity and function.


Assuntos
Enterocolite , Doença de Hirschsprung , Criança , Humanos , Lactente , Pré-Escolar , Doença de Hirschsprung/cirurgia , Enterocolite/cirurgia , Intestinos , Fezes/química , Glutamatos/análise , Complicações Pós-Operatórias , Estudos Retrospectivos
17.
Int J Mol Sci ; 25(9)2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38732266

RESUMO

Metabolic syndrome (MS) is a widespread disease in developed countries, accompanied, among others, by decreased adiponectin serum levels and perturbed lipoprotein metabolism. The associations between the serum levels of adiponectin and lipoproteins have been extensively studied in the past under healthy conditions, yet it remains unexplored whether the observed associations also exist in patients with MS. Therefore, in the present study, we analyzed the serum levels of lipoprotein subclasses using nuclear magnetic resonance spectroscopy and examined their associations with the serum levels of adiponectin in patients with MS in comparison with healthy volunteers (HVs). In the HVs, the serum levels of adiponectin were significantly negatively correlated with the serum levels of large buoyant-, very-low-density lipoprotein, and intermediate-density lipoprotein, as well as small dense low-density lipoprotein (LDL) and significantly positively correlated with large buoyant high-density lipoprotein (HDL). In patients with MS, however, adiponectin was only significantly correlated with the serum levels of phospholipids in total HDL and large buoyant LDL. As revealed through logistic regression and orthogonal partial least-squares discriminant analyses, high adiponectin serum levels were associated with low levels of small dense LDL and high levels of large buoyant HDL in the HVs as well as high levels of large buoyant LDL and total HDL in patients with MS. We conclude that the presence of MS weakens or abolishes the strong associations between adiponectin and the lipoprotein parameters observed in HVs and disturbs the complex interplay between adiponectin and lipoprotein metabolism.


Assuntos
Adiponectina , Lipoproteínas , Síndrome Metabólica , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adiponectina/sangue , Estudos de Casos e Controles , Voluntários Saudáveis , Lipoproteínas/sangue , Lipoproteínas HDL/sangue , Lipoproteínas LDL/sangue , Espectroscopia de Ressonância Magnética , Síndrome Metabólica/sangue
18.
Molecules ; 29(17)2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39274886

RESUMO

Bitumen, a vital component in road pavement construction, exhibits complex chemo-mechanical properties that necessitate thorough characterization for enhanced understanding and potential modifications. Nuclear Magnetic Resonance (NMR) spectroscopy emerges as a valuable technique for probing the structural and compositional features of bitumen. This review presents an in-depth exploration of the role of NMR spectroscopy in bitumen characterization, highlighting its diverse applications in determining bitumen content, group composition, molecular dynamics, and interaction with additives. Various NMR techniques, including free induction decay (FID), Carr-Purcell-Meilboom-Gill (CPMG), and Pulsed Field Gradient Stimulated Echo (PFGSE), are discussed in the context of their utility in bitumen analysis. Case studies, challenges, and limitations associated with NMR-based bitumen characterization are critically evaluated, offering insights into potential future research directions. Overall, this review provides a comprehensive overview of the current state-of-the-art in NMR-based bitumen characterization and identifies avenues for further advancement in the field.

19.
Molecules ; 29(14)2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39064947

RESUMO

This perspective outlines recent developments in the field of NMR spectroscopy, enabling new opportunities for in situ studies on bulk and confined clathrate hydrates. These hydrates are crystalline ice-like materials, built up from hydrogen-bonded water molecules, forming cages occluding non-polar gaseous guest molecules, including CH4, CO2 and even H2 and He gas. In nature, they are found in low-temperature and high-pressure conditions. Synthetic confined versions hold immense potential for energy storage and transportation, as well as for carbon capture and storage. Using previous studies, this report highlights static and magic angle spinning NMR hardware and strategies enabling the study of clathrate hydrate formation in situ, in bulk and in nano-confinement. The information obtained from such studies includes phase identification, dynamics, gas exchange processes, mechanistic studies and the molecular-level elucidation of the interactions between water, guest molecules and confining interfaces.

20.
Traffic ; 22(1-2): 23-37, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33225481

RESUMO

Autophagy-linked FYVE protein (ALFY) is a large, multidomain protein involved in the degradation of protein aggregates by selective autophagy. The C-terminal FYVE domain of ALFY has been shown to bind phosphatidylinositol 3-phosphate (PI(3)P); however, ALFY only partially colocalizes with other FYVE domains in cells. Thus, we asked if the FYVE domain of ALFY has distinct membrane binding properties compared to other FYVE domains and whether these properties might affect its function in vivo. We found that the FYVE domain of ALFY binds weakly to PI(3)P containing membranes in vitro. This weak binding is the result of a highly conserved glutamic acid within the membrane insertion loop in the FYVE domain of ALFY that is not present in any other human FYVE domain. In addition, not only does this glutamic acid reduce binding to membranes in vitro and inhibits its targeting to membranes in vivo, but it is also important for the ability of ALFY to clear protein aggregates.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Ácido Glutâmico , Proteínas Relacionadas à Autofagia , Humanos , Fosfatos de Fosfatidilinositol
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA