Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Bioessays ; 45(2): e2200190, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36412071

RESUMO

In contrast to bilaterian animals, non-bilaterian mitochondrial genomes contain atypical genes, often attributed to horizontal gene transfer (HGT) as an ad hoc explanation. Although prevalent in plants, HGT into animal mitochondrial genomes is rare, lacking suitable explanatory models for their occurrence. HGT of the mismatch DNA repair gene (mtMutS) from giant viruses to octocoral (soft corals and their kin) mitochondrial genomes provides a model for how barriers to HGT to animal mitochondria may be overcome. A review of the available literature suggests that this HGT was mediated by an alveolate endosymbiont infected with a lysogenic phycodnavirus that enabled insertion of the homing endonuclease containing mtMutS into octocoral mitochondrial genomes. We posit that homing endonuclease domains and similar selfish elements play a crucial role in such inter-domain gene transfers. Understanding the role of selfish genetic elements in HGT has the potential to aid development of tools for manipulating animal mitochondrial DNA.


Assuntos
Genoma Mitocondrial , Animais , Genoma Mitocondrial/genética , Transferência Genética Horizontal/genética , DNA Mitocondrial/genética , Mitocôndrias/genética , Sequências Repetitivas de Ácido Nucleico/genética , Filogenia , Evolução Molecular
2.
Environ Manage ; 73(3): 646-656, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38103092

RESUMO

Marine Citizen Science (MCS) has emerged as a promising tool to enhance conservation efforts. Although the quality of volunteer data has been questioned, the design of specific protocols, effective training programs, and data validation by experts have enabled us to overcome these quality concerns, thus ensuring data reliability. Here, we validated the effectiveness of volunteer training in assessing the conservation status of Mediterranean coral species. We conducted a comparative analysis of data collected by volunteers with different levels of expertise, demonstrating improvements in data precision and accuracy with only one training session, thereby achieving values equivalent to those obtained by scientists. These outcomes align with the feedback received from volunteers through a qualitative survey. Finally, we analysed the data generated by volunteers and validated by experts using the developed protocol in the Coral Alert project from the Observadores del Mar MCS initiative. Our findings highlight the importance of proper training, expert validation, robust sampling protocols, and a well-structured platform to ensure the success of long-term MCS projects. Overall, our results stress the key role MCS plays in enhancing the conservation and management strategies designed to mitigate the ongoing environmental crisis.


Assuntos
Antozoários , Ciência do Cidadão , Animais , Humanos , Reprodutibilidade dos Testes , Voluntários , Inquéritos e Questionários
3.
Mol Phylogenet Evol ; 188: 107910, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37640170

RESUMO

Keratoisididae is a globally distributed, and exclusively deep-sea, family of octocorals that contains species and genera that are polyphyletic. An alphanumeric system, based on a three-gene-region phylogeny, is widely used to describe the biodiversity within this family. That phylogeny identified 12 major groups although it did not have enough signal to explore the relationships among groups. Using increased phylogenomic resolution generated from Ultraconserved Elements and exons (i.e. conserved elements), we aim to resolve deeper nodes within the family and investigate the relationships among those predefined groups. In total, 109 libraries of conserved elements were generated from individuals representing both the genetic and morphological diversity of our keratoisidids. In addition, the conserved element data of 12 individuals from previous studies were included. Our taxon sampling included 11 of the 12 keratoisidid groups. We present two phylogenies, constructed from a 75% (231 loci) and 50% (1729 loci) taxon occupancy matrix respectively, using both Maximum Likelihood and Multiple Species Coalescence methods. These trees were congruent at deep nodes. As expected, S1 keratoisidids were recovered as a well-supported sister clade to the rest of the bamboo corals. S1 corals do not share the same mitochondrial gene arrangement found in other members of Keratoisididae. All other bamboo corals were recovered within two major clades. Clade I comprises individuals assigned to alphanumeric groups B1, C1, D1&D2, F1, H1, I4, and J3 while Clade II contains representatives from A1, I1, and M1. By combining genomics with already published morphological data, we provide evidence that group H1 is not monophyletic, and that the division between other groups - D1 and D2, and A1 and M1 - needs to be reconsidered. Overall, there is a lack of robust morphological markers within Keratoisididae, but subtle characters such as sclerite microstructure and ornamentation seem to be shared within groups and warrant further investigation as taxonomically diagnostic characters.


Assuntos
Antozoários , Animais , Filogenia , Antozoários/genética , Evolução Biológica , Biodiversidade , Éxons
4.
Vet Pathol ; 60(5): 640-651, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37218467

RESUMO

Aspergillosis of gorgonian sea fans is a Caribbean-wide disease characterized by focal, annular purple pigmentation with central tissue loss. We applied a holistic diagnostic approach including histopathology and a combination of culture and direct molecular identification of fungi to evaluate these lesions with the goal of determining the diversity of associated micro-organisms and pathology. Biopsies were collected from 14 sea fans without gross lesions and 44 sea fans with lesions grossly consistent with aspergillosis in shallow fringing reefs of St. Kitts. Histologically, the tissue loss margin had exposure of the axis and amoebocyte encapsulation with abundant mixed micro-organisms. Polyp loss, gastrodermal necrosis, and coenenchymal amoebocytosis were at the lesion interface (purpled area transitioning to grossly normal tissue) with algae (n = 21), fungus-like hyphae (n = 20), ciliate protists (n = 16), cyanobacteria (n = 15), labyrinthulomycetes (n = 5), or no micro-organisms (n = 8). Slender, septate hyaline hyphae predominated over other morphological categories, but were confined to the axis with little host response other than periaxial melanization. Hyphae were absent in 6 lesioned sea fans and present in 5 control biopsies, questioning their pathogenicity and necessary role in lesion causation. From cultivation, different fungi were isolated and identified by sequencing of the nuclear ribosomal internal transcribed spacer region. In addition, 2 primer pairs were used in a nested format to increase the sensitivity for direct amplification and identification of fungi from lesions, thereby circumventing cultivation. Results suggest mixed and opportunistic infections in sea fans with these lesions, requiring longitudinal or experimental studies to better determine the pathogenesis.


Assuntos
Antozoários , Aspergilose , Cianobactérias , Animais , Antozoários/microbiologia , Antozoários/fisiologia , Região do Caribe , Aspergilose/diagnóstico , Aspergilose/veterinária , Hifas
5.
Mol Ecol ; 31(3): 798-810, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34748669

RESUMO

Up to one-third of all described marine species inhabit coral reefs, but the future of these hyperdiverse ecosystems is insecure due to local and global threats, such as overfishing, eutrophication, ocean warming and acidification. Although these impacts are expected to have a net detrimental effect on reefs, it has been shown that some organisms such as octocorals may remain unaffected, or benefit from, anthropogenically induced environmental change, and may replace stony corals in future reefs. Despite their potential importance in future shallow-water coastal environments, the molecular mechanisms leading to the resilience to anthropogenically induced stress observed in octocorals remain unknown. Here, we use manipulative experiments, proteomics and transcriptomics to show that the molecular toolkit used by Pinnigorgia flava, a common Indo-Pacific gorgonian octocoral, to deposit its calcium carbonate skeleton is resilient to heat and seawater acidification stress. Sublethal heat stress triggered a stress response in P. flava but did not affect the expression of 27 transcripts encoding skeletal organic matrix (SOM) proteins. Exposure to seawater acidification did not cause a stress response but triggered the downregulation of many transcripts, including an osteonidogen homologue present in the SOM. The observed transcriptional decoupling of the skeletogenic and stress-response toolkits provides insights into the mechanisms of resilience to anthropogenically driven environmental change observed in octocorals.


Assuntos
Antozoários , Ecossistema , Animais , Antozoários/genética , Calcificação Fisiológica/genética , Conservação dos Recursos Naturais , Recifes de Corais , Pesqueiros , Concentração de Íons de Hidrogênio , Água do Mar
6.
Glob Chang Biol ; 26(4): 2181-2202, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32077217

RESUMO

The deep sea plays a critical role in global climate regulation through uptake and storage of heat and carbon dioxide. However, this regulating service causes warming, acidification and deoxygenation of deep waters, leading to decreased food availability at the seafloor. These changes and their projections are likely to affect productivity, biodiversity and distributions of deep-sea fauna, thereby compromising key ecosystem services. Understanding how climate change can lead to shifts in deep-sea species distributions is critically important in developing management measures. We used environmental niche modelling along with the best available species occurrence data and environmental parameters to model habitat suitability for key cold-water coral and commercially important deep-sea fish species under present-day (1951-2000) environmental conditions and to project changes under severe, high emissions future (2081-2100) climate projections (RCP8.5 scenario) for the North Atlantic Ocean. Our models projected a decrease of 28%-100% in suitable habitat for cold-water corals and a shift in suitable habitat for deep-sea fishes of 2.0°-9.9° towards higher latitudes. The largest reductions in suitable habitat were projected for the scleractinian coral Lophelia pertusa and the octocoral Paragorgia arborea, with declines of at least 79% and 99% respectively. We projected the expansion of suitable habitat by 2100 only for the fishes Helicolenus dactylopterus and Sebastes mentella (20%-30%), mostly through northern latitudinal range expansion. Our results projected limited climate refugia locations in the North Atlantic by 2100 for scleractinian corals (30%-42% of present-day suitable habitat), even smaller refugia locations for the octocorals Acanella arbuscula and Acanthogorgia armata (6%-14%), and almost no refugia for P. arborea. Our results emphasize the need to understand how anticipated climate change will affect the distribution of deep-sea species including commercially important fishes and foundation species, and highlight the importance of identifying and preserving climate refugia for a range of area-based planning and management tools.

7.
Mar Drugs ; 18(3)2020 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-32121035

RESUMO

Prostaglandin A2-AcMe (1) and Prostaglandin A2 (2) were isolated from the octocoral Plexaura homomalla and three semisynthetic derivatives (3-5) were then obtained using a reduction protocol. All compounds were identified through one- and two-dimensional (1D and 2D) nuclear magnetic resonance (NMR) experiments. Additionally, evaluation of in vitro cytotoxic activity against the breast (MDA-MB-213) and lung (A549) cancer cell lines, in combination with enzymatic activity and molecular docking studies with the enzymes p38α-kinase, Src-kinase, and topoisomerase IIα, were carried out for compounds 1-5 in order to explore their potential as inhibitors of cancer-related molecular targets. Results showed that prostaglandin A2 (2) was the most potent compound with an IC50 of 16.46 and 25.20 µg/mL against MDA-MB-213 and A549 cell lines, respectively. In addition, this compound also inhibited p38α-kinase in 49% and Src-kinase in 59% at 2.5 µM, whereas topoisomerase IIα was inhibited in 64% at 10 µM. Enzymatic activity was found to be consistent with molecular docking simulations, since compound 2 also showed the lowest docking scores against the topoisomerase IIα and Src-kinase (-8.7 and -8.9 kcal/mol, respectively). Thus, molecular docking led to establish some insights into the predicted binding modes. Results suggest that prostaglandin 2 can be considered as a potential lead for development inhibitors against some enzymes present in cancer processes.


Assuntos
Antozoários , Antineoplásicos/farmacologia , Prostaglandinas/farmacologia , Células A549/efeitos dos fármacos , Animais , Linhagem Celular Tumoral/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Oceanos e Mares
8.
Chem Biodivers ; 15(1)2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29164812

RESUMO

Gorgonian corals play a structural role in temperate and tropical biogenic reefs, forming animal forests and creating biodiversity hot spots. In the Mediterranean Sea, slow-growing and long-lived gorgonian species are threatened by human disturbances and global environmental changes and concern about their conservation is rising. Alkaloid metabolites have proven to be essential in protecting these species from environmental stressors. Traditional profiling methodologies to detect these metabolites require a large quantity of living tissue. Here, the chemodiversity of gorgonian alkaloids was investigated by applying a fast and effective protocol combining extraction and derivatization using small-scale tissue samples and GC/MS analysis. The method was effective in identifying and quantifying alkaloids and guanine-based compounds. Eight N-heterocyclic compounds were found in six Mediterranean gorgonians differing for types and quantity. The metabolomic profile was conservative in species of the Eunicella genus, with three species sharing the same pattern. Conversely, Paramuricea clavata displayed a noticeable spatial pattern of variation among colonies collected in different locations. The analytical approach presented here proved to be effective, allowing rare, endangered, and small-sized species to be screened rapidly for detection of new compounds in order to explore their biological and ecological functions.


Assuntos
Alcaloides/análise , Antozoários/química , Compostos Heterocíclicos/análise , Alcaloides/metabolismo , Animais , Compostos Heterocíclicos/metabolismo , Mar Mediterrâneo
9.
Chem Biodivers ; 15(1)2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29092092

RESUMO

Three azulenoid sesquiterpenes (1 - 3) were isolated from the Antarctic gorgonian Acanthogorgia laxa collected by bottom trawls at -343 m. Besides linderazulene (1), and the known ketolactone 2, a new brominated C16 linderazulene derivative (3) was also identified. This compound has an extra carbon atom at C(7) of the linderazulene framework. The antifouling activity of compounds 1 and 2 was assayed in the laboratory with Artemia salina larvae, and also in field tests, by incorporation in soluble-matrix experimental antifouling paints. The results obtained after a 45 days field trial of the paints, showed that compounds 1 and 2 displayed good antifouling potencies against a wide array of organisms. Compound 3, a benzylic bromide, was unstable and for this reason was not submitted to bioassays. Two known cembranolides: pukalide and epoxypukalide, were also identified as minor components of the extract.


Assuntos
Antozoários/química , Artemia/efeitos dos fármacos , Azulenos/farmacologia , Incrustação Biológica , Animais , Regiões Antárticas , Azulenos/química , Azulenos/isolamento & purificação , Relação Dose-Resposta a Droga , Estrutura Molecular , Relação Estrutura-Atividade
10.
BMC Mol Biol ; 18(1): 16, 2017 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-28623884

RESUMO

BACKGROUND: Mitogenome diversity is staggering among early branching animals with respect to size, gene density, content and order, and number of tRNA genes, especially in cnidarians. This last point is of special interest as tRNA cleavage drives the maturation of mitochondrial mRNAs and is a primary mechanism for mt-RNA processing in animals. Mitochondrial RNA processing in non-bilaterian metazoans, some of which possess a single tRNA gene in their mitogenomes, is essentially unstudied despite its importance in understanding the evolution of mitochondrial transcription in animals. RESULTS: We characterized the mature mitochondrial mRNA transcripts in a species of the octocoral genus Sinularia (Alcyoniidae: Octocorallia), and defined precise boundaries of transcription units using different molecular methods. Most mt-mRNAs were polycistronic units containing two or three genes and 5' and/or 3' untranslated regions of varied length. The octocoral specific, mtDNA-encoded mismatch repair gene, the mtMutS, was found to undergo alternative polyadenylation, and exhibited differential expression of alternate transcripts suggesting a unique regulatory mechanism for this gene. In addition, a long noncoding RNA complementary to the ATP6 gene (lncATP6) potentially involved in antisense regulation was detected. CONCLUSIONS: Mt-mRNA processing in octocorals possessing a single mt-tRNA is complex. Considering the variety of mitogenome arrangements known in cnidarians, and in general among non-bilaterian metazoans, our findings provide a first glimpse into the complex mtDNA transcription, mt-mRNA processing, and regulation among early branching animals and represent a first step towards understanding its functional and evolutionary implications.


Assuntos
Antozoários/genética , RNA de Transferência/genética , RNA/genética , Animais , Mapeamento Cromossômico , Regulação da Expressão Gênica , Ordem dos Genes , Genoma Mitocondrial , Fases de Leitura Aberta , RNA/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Mitocondrial , Transcrição Gênica , Transcriptoma , Regiões não Traduzidas
11.
Mol Phylogenet Evol ; 115: 181-189, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28782594

RESUMO

Molecular analyses of the ecologically important gorgonian octocoral genus Leptogorgia are scant and mostly deal with few species from restricted geographical regions. Here we explore the phylogenetic relationships and the evolutionary history of Leptogorgia using the complete mitochondrial genomes of six Leptogorgia species from different localities in the Atlantic, Mediterranean and eastern Pacific as well as four other genera of Gorgoniidae and Plexauridae. Our mitogenomic analyses showed high inter-specific diversity, variable nucleotide substitution rates and, for some species, novel genomic features such as ORFs of unknown function. The phylogenetic analyses using complete mitogenomes and an extended mtMutS dataset recovered Leptogorgia as polyphyletic, and the species considered in the analyses were split into two defined groups corresponding to different geographic regions, namely the eastern Pacific and the Atlantic-Mediterranean. Our phylogenetic analysis based on mtMutS also showed a clear separation between the eastern Atlantic and South African Leptogorgia, suggesting the need of a taxonomic revision for these forms. A time-calibrated phylogeny showed that the separation of eastern Pacific and western Atlantic species started ca. 20Mya and suggested a recent divergence for eastern Pacific species and for L. sarmentosa-L. capverdensis. Our results also revealed high inter-specific diversity among eastern Atlantic and South African species, highlighting a potential role of the geographical diversification processes and geological events occurring during the last 30Ma in the Atlantic on the evolutionary history of these organisms.


Assuntos
Antozoários/classificação , Mitocôndrias/genética , Animais , Antozoários/genética , Evolução Biológica , DNA/química , DNA/isolamento & purificação , DNA/metabolismo , Variação Genética , ATPases Mitocondriais Próton-Translocadoras/classificação , ATPases Mitocondriais Próton-Translocadoras/genética , Filogenia , RNA Ribossômico/classificação , RNA Ribossômico/genética , Análise de Sequência de DNA
12.
Mol Phylogenet Evol ; 98: 373-81, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26953740

RESUMO

Octocorals are a diverse and ecologically important group of cnidarians. However, the phylogenetic relationships of many octocoral groups are not well understood and are based mostly on mitochondrial sequence data. In addition, the discovery and description of new gorgonian species displaying unusual or intermediate morphologies and uncertain phylogenetic affinities further complicates the study of octocoral systematics and raises questions about the role played by processes such as plasticity, crypsis, and convergence in the evolution of this group of organisms. Here, we use nuclear (i.e. 28S rDNA) and mitochondrial (mtMutS) markers and a sample of Eastern Pacific gorgonians thought to be remarkable from a morphological point of view to shed light on the morphological diversification among these organisms. Our study reveals the loss of the anastomosed colony morphology in two unrelated lineages of the seafan genus Pacifigorgia and offers strong evidence for the independent evolution of a whip-like morphology in two lineages of Eastern Pacific Leptogorgia. Additionally, our data revealed one instance of mito-nuclear discordance in the genera Leptogorgia and Eugorgia, which may be the results of incomplete lineage sorting or ancient hybridization-introgression events. Our study stresses the importance of comprehensive taxonomic sampling and the use of independent sources of evidence to address the phylogenetic relationships and clarifying the evolution of octocorals.


Assuntos
Antozoários/anatomia & histologia , Antozoários/genética , Núcleo Celular/genética , Genes Mitocondriais/genética , Filogenia , Animais , Antozoários/classificação , Hibridização Genética , Oceano Pacífico , RNA Ribossômico 28S/genética , Análise de Sequência de DNA
13.
Mol Phylogenet Evol ; 79: 240-8, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24981558

RESUMO

The systematics within some families of octocorals (Class Anthozoa: Sub-class Octocorallia) remains uncertain in terms of morphological variability and unresolved molecular phylogenies. Elucidating the phylogenetic relationships among octocorals can help for understanding the origin of its huge biodiversity and optimizing conservation plans. The phylogenetic relationships within Gorgoniidae family remain highly polyphyletic. This research explores Gorgonia mariae and Antillogorgia bipinnata populations from several study sites in the Caribbean sea using for the first time the compensatory base changes (CBCs) analysis of the internal transcribed spacer 2 (ITS2) as a molecular tool to elucidate the phylogenetic relationships within the gorgonians. In addition, the mitochondrial gene mtMutS was sequenced in order to complement the nuclear information. This research shows that the presence of CBCs and hemi-CBCs is useful as a complementary tool for providing insights between octocoral species and populations, as well as an approach to figure out the origin of the octocorals biodiversity.


Assuntos
Antozoários/classificação , Evolução Molecular , Genética Populacional , Filogenia , Animais , Antozoários/genética , Região do Caribe , Núcleo Celular/genética , DNA Espaçador Ribossômico/genética , Genes Mitocondriais , Conformação de Ácido Nucleico , Análise de Sequência de DNA
14.
Mar Environ Res ; 200: 106656, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39067207

RESUMO

In areas with limited field data, predictive habitat mapping is a valuable method for elucidating species-environment relationships and enhancing our knowledge of the spatial distribution and complexity of benthic habitats. Species distribution models (SDMs) can be an important tool to support in science-based ecosystem management. The availability of direct observations of mesophotic species, including gorgonians and black corals, during costly surveys is generally limited. Therefore, predicting the distribution of mesophotic species in relation to key physical parameters of the seafloor would help improving conservation strategies in existing and new Marine Protected Areas (MPAs). This study aims to assess the distribution of gorgonians and black corals off Linosa Island, in the Strait of Sicily, a biogeographic boundary area between the western and eastern Mediterranean. The volcanic island of Linosa represents a small, naturally preserved area, with very limited human pressure, hosting rich marine benthic biodiversity on its wide submarine portions. Distribution of the most common coral species off Linosa Island was modelled under an SDM framework, relying on direct observations collected during two research cruises in 2016 and 2017 and a series of terrain parameters acquired through geophysical techniques. We used the so-called "ensemble of small models" approach to calibrate SDMs, which achieved fair-to-excellent results (AUC >0.7). In addition to identifying depth as the primary factor influencing coral distribution, our study also highlighted ruggedness as a significant terrain variable. Specifically, the depth range of 110-230 m emerged as the critical parameter determining habitat suitability for all modelled species, also highlighting peculiar and specie-specific habitat requirements.

15.
Mar Environ Res ; 200: 106663, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39102776

RESUMO

Marine Animal Forests (MAFs) form three-dimensional seascapes and provide substrate and shelter for a variety of species. We investigated the fine-scale distribution pattern of three habitat-forming species of the coastal Mediterranean MAFs: Eunicella cavolini, E. singularis and Paramuricea clavata, and assessed the influence of terrain, oceanographic, and biological factors on their distribution and the formation of MAFs in the central-northern Tyrrhenian Sea. Species presence and abundance were obtained through seafloor HD imagery and were combined with terrain and oceanographic parameters extracted from remote sensing data using distance-based linear modeling (DistLM) and generalized additive model (GAM). The three studied species occurred in all the study areas, with marked differences in their abundance and distribution across the different sites and habitat type, in relation to seafloor characteristics. Specifically, positive relationships emerged between the density of colonies and terrain parameters indicative of high seafloor complexity, such as slope and roughness, as well as the number species structuring MAFs. A clear niche separation for the three species was observed: E. cavolini and P. clavata were reported on coralligenous reefs, and in areas where the seafloor complexity may enhance hydrodynamics and transport of organic matter, while E. singularis was observed on red algal mats at shallower depths. A better understanding of the ecology of these gorgonians, as well as of the drivers determining MAFs formation, represent the first step toward the conservation of these threatened habitats which are currently poorly protected by management and conservation plans.

16.
PeerJ ; 11: e14812, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36814959

RESUMO

Dissolved organic carbon (DOC) enrichment and ocean warming both negatively affect hard corals, but studies on their combined effects on other reef organisms are scarce. Octocorals are likely to become key players in future reef communities, but they are still highly under-investigated with regard to their responses to global and local environmental changes. Thus, we evaluated the individual and combined effects of DOC enrichment (10, 20 and 40 mg L-1 DOC, added as glucose) and warming (stepwise from 26 to 32 °C) on the widespread Indo-Pacific gorgonian Pinnigorgia flava in a 45-day laboratory experiment. Oxygen fluxes (net photosynthesis and respiration), as well as Symbiodiniaceae cell density and coral growth were assessed. Our results highlight a differential ecophysiological response to DOC enrichment and warming as well as their combination. Individual DOC addition did not significantly affect oxygen fluxes nor Symbiodiniaceae cell density and growth, while warming significantly decreased photosynthesis rates and Symbiodiniaceae cell density. When DOC enrichment and warming were combined, no effect on P. flava oxygen fluxes was observed while growth responded to certain DOC conditions depending on the temperature. Our findings indicate that P. flava is insensitive to the individual effect of DOC enrichment, but not to warming and the two stressors combined. This suggests that, if temperature remains below certain thresholds, this gorgonian species may gain a competitive advantage over coral species that are reportedly more affected by DOC eutrophication. However, under the expected increasing temperature scenarios, it is also likely that this octocoral species will be negatively affected, with potential consequences on community structure. This study contributes to our understanding of the conditions that drive phase shift dynamics in coastal coral reef ecosystemds.


Assuntos
Antozoários , Dinoflagellida , Animais , Matéria Orgânica Dissolvida , Água do Mar/química , Eutrofização , Oxigênio/farmacologia , Oceanos e Mares
17.
Biol Open ; 11(10)2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36178163

RESUMO

Skeleton formation in corals is a biologically controlled process in which an extracellular organic matrix (OM) is entrapped inside the calcified structure. The analysis of OM requires a time-consuming and tedious extraction that includes grinding, demineralization, multiple rinsing and concentration steps. Here we present an alternative and straightforward method for the red coral Corallium rubrum that requires little equipment and saves steps. The entire skeleton is directly demineralized to produce a tractable material called ghost, which is further rinsed and melted at 80°C in water. The comparative analysis of the standard and alternative methods by electrophoresis, western blot, and FTIR of C. rubrum OM, shows that the 'alternative OM' is of higher quality. Advantages and limitations of both methods are discussed.


Assuntos
Antozoários , Animais , Matriz Extracelular , Água
18.
Sci Total Environ ; 823: 153701, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35134420

RESUMO

Global warming is causing the increase in intensity and frequency of heatwaves, which are often associated with mass mortality events of marine organisms from shallow and mesophotic rocky habitats, including gorgonians and other sessile organisms. We investigated the microbiome responses of the gorgonians Paramuricea clavata, Eunicella cavolini, and the red coral Corallium rubrum to the episodic temperature anomalies detected in the North Western Mediterranean, during August 2011. Although the investigated corals showed no signs of visible necrosis, the abundance of associated Bacteria and Archaea increased with increasing seawater temperature, suggesting their temperature-dependent proliferation. Coral microbiomes were highly sensitive to thermal anomaly amplitude and exhibited increased bacterial diversity to greater thermal shifts. This effect was explained by the decline of dominant bacterial members and the increase of new, rare and opportunistic taxa, including pathogens, revealing a direct effect of heatwave-induced alteration of the microbiomes and not a secondary consequence of coral necrosis.


Assuntos
Antozoários , Microbiota , Animais , Antozoários/fisiologia , Bactérias , Recifes de Corais , Ecossistema , Florestas , Água do Mar/microbiologia
19.
Sci Total Environ ; 799: 149324, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34371395

RESUMO

Biofouling prevention is one of the biggest challenges faced by the maritime industry, but antifouling agents commonly impact marine ecosystems. Advances in antifouling technology include the use of nanomaterials. Herein we test an antifouling nano-additive based on the encapsulation of the biocide 4,5-dichloro-2-octyl-4-isothiazolin-3-one (DCOIT) in engineered silica nanocontainers (SiNC). The work aims to assess the biochemical and physiological effects on the symbiotic coral Sarcophyton cf. glaucum caused by (1) thermal stress and (2) DCOIT exposure (free or nanoencapsulated forms), in a climate change scenario. Accordingly, the following hypotheses were addressed: (H1) ocean warming can cause toxicity on S. cf. glaucum; (H2) the nanoencapsulation process decreases DCOIT toxicity towards this species; (H3) the biocide toxicity, free or encapsulated forms, can be affected by ocean warming. Coral fragments were exposed for seven days to DCOIT in both free and encapsulated forms, SiNC and negative controls, under two water temperature regimes (26 °C and 30.5 °C). Coral polyp behavior and photosynthetic efficiency were determined in the holobiont, while biochemical markers were assessed individually in the endosymbiont and coral host. Results showed transient coral polyp retraction and diminished photosynthetic efficiency in the presence of heat stress or free DCOIT, with effects being magnified in the presence of both stressors. The activity of catalase and glutathione-S-transferase were modulated by temperature in each partner of the symbiosis. The shifts in enzymatic activity were more pronounced in the presence of free DCOIT, but to a lower extent for encapsulated DCOIT. Increased levels of oxidative damage were detected under heat conditions. The findings highlight the physiological constrains elicited by the increase of seawater temperature to symbiotic corals and demonstrate that DCOIT toxicity can be minimized through encapsulation in SiNC. The presence of both stressors magnifies toxicity and confirm that ocean warming enhances the vulnerability of tropical photosynthetic corals to local stressors.


Assuntos
Antozoários , Incrustação Biológica , Desinfetantes , Nanoestruturas , Animais , Incrustação Biológica/prevenção & controle , Recifes de Corais , Desinfetantes/toxicidade , Ecossistema , Nanoestruturas/toxicidade , Tiazóis
20.
Genome Biol Evol ; 13(9)2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34402879

RESUMO

MutS is a key component of the mismatch repair (MMR) pathway. Members of the MutS protein family are present in prokaryotes, eukaryotes, and viruses. Six MutS homologs (MSH1-6) have been identified in yeast, of which three function in nuclear MMR, while MSH1 functions in mitochondrial DNA repair. MSH proteins are believed to be well conserved in animals, except for MSH1-which is thought to be lost. Two intriguing exceptions to this general picture have been found, both in the class Anthozoa within the phylum Cnidaria. First, an ortholog of the yeast-MSH1 was reported in one hexacoral species. Second, a MutS homolog (mtMutS) has been found in the mitochondrial genome of all octocorals. To understand the origin and potential functional implications of these exceptions, we investigated the evolution of the MutS family both in Cnidaria and in animals in general. Our study confirmed the acquisition of octocoral mtMutS by horizontal gene transfer from a giant virus. Surprisingly, we identified MSH1 in all hexacorals and several sponges and placozoans. By contrast, MSH1 orthologs were lacking in other cnidarians, ctenophores, and bilaterian animals. Furthermore, while we identified MSH2 and MSH6 in nearly all animals, MSH4, MSH5, and, especially, MSH3 were missing in multiple species. Overall, our analysis revealed a dynamic evolution of the MutS family in animals, with multiple losses of MSH1, MSH3, some losses of MSH4 and MSH5, and a gain of the octocoral mtMutS. We propose that octocoral mtMutS functionally replaced MSH1 that was present in the common ancestor of Anthozoa.


Assuntos
Proteínas de Saccharomyces cerevisiae , Animais , Reparo do DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas Fúngicas/genética , Proteína MutS de Ligação de DNA com Erro de Pareamento/genética , Proteína MutS de Ligação de DNA com Erro de Pareamento/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA