Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Magn Reson Med ; 84(3): 1661-1671, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32077521

RESUMO

PURPOSE: Motion artifact limits the clinical translation of high-field MR. We present an optical prospective motion correction system for 7 Tesla MRI using a custom-built, within-coil camera to track an optical marker mounted on a subject. METHODS: The camera was constructed to fit between the transmit-receive coils with direct line of sight to a forehead-mounted marker, improving upon prior mouthpiece work at 7 Tesla MRI. We validated the system by acquiring a 3D-IR-FSPGR on a phantom with deliberate motion applied. The same 3D-IR-FSPGR and a 2D gradient echo were then acquired on 7 volunteers, with/without deliberate motion and with/without motion correction. Three neuroradiologists blindly assessed image quality. In 1 subject, an ultrahigh-resolution 2D gradient echo with 4 averages was acquired with motion correction. Four single-average acquisitions were then acquired serially, with the subject allowed to move between acquisitions. A fifth single-average 2D gradient echo was acquired following subject removal and reentry. RESULTS: In both the phantom and human subjects, deliberate and involuntary motion were well corrected. Despite marked levels of motion, high-quality images were produced without spurious artifacts. The quantitative ratings confirmed significant improvements in image quality in the absence and presence of deliberate motion across both acquisitions (P < .001). The system enabled ultrahigh-resolution visualization of the hippocampus during a long scan and robust alignment of serially acquired scans with interspersed movement. CONCLUSION: We demonstrate the use of a within-coil camera to perform optical prospective motion correction and ultrahigh-resolution imaging at 7 Tesla MRI. The setup does not require a mouthpiece, which could improve accessibility of motion correction during 7 Tesla MRI exams.


Assuntos
Artefatos , Encéfalo , Encéfalo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Movimento (Física) , Neuroimagem , Estudos Prospectivos
2.
Magn Reson Med ; 74(2): 571-7, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25982242

RESUMO

PURPOSE: Physiological noise remains a major problem in MRI, particularly at higher imaging resolutions and field strengths. The aim of this work was to investigate the feasibility of using an MR-compatible in-bore camera system to perform contactless monitoring of cardiac and respiratory information during MRI of human subjects. METHODS: An MR-compatible camera was mounted on an eight-channel head coil. Video data of the skin was processed offline to derive cardiac and respiratory signals from the pixel signal intensity and from head motion in the patient head-feet direction. These signals were then compared with data acquired simultaneously from the pulse oximeter and the respiratory belt. RESULTS: The cardiac signal computed using the average image pixel intensity closely resembled the signal obtained using the pulse oximeter. Trigger intervals obtained from both systems matched to within 50 ms (one standard deviation). The respiratory signal computed from small in-plane movements closely matched the signal obtained from the respiratory belt. Simultaneous MR imaging did not appear to have an effect on the physiological signals acquired by means of the contact-free monitoring system. CONCLUSION: Contact-free monitoring of human subjects to obtain cardiac and respiratory information is feasible using a small camera and light emitting diode mounted on the head coil of an MRI scanner.


Assuntos
Imageamento por Ressonância Magnética/instrumentação , Monitorização Fisiológica/instrumentação , Dispositivos Ópticos , Oximetria/instrumentação , Fotografação/instrumentação , Gravação em Vídeo/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
3.
Magn Reson Imaging ; 39: 44-52, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28137627

RESUMO

Head motion is an unsolved problem in magnetic resonance imaging (MRI) studies of the brain. Real-time tracking using a camera has recently been proposed as a way to prevent head motion artifacts. As compared to navigator-based approaches that use MRI data to detect and correct motion, optical motion correction works independently of the MRI scanner, thus providing low-latency real-time motion updates without requiring any modifications to the pulse sequence. The purpose of this study was two-fold: 1) to demonstrate that prospective optical motion correction using an optical camera mitigates artifacts from head motion in three-dimensional pseudo-continuous arterial spin labeling (3D PCASL) acquisitions and 2) to assess the effect of latency differences between real-time optical motion tracking and navigator-style approaches (such as PROMO). An optical motion correction system comprising a single camera and a marker attached to the patient's forehead was used to track motion at a rate of 60fps. In the presence of motion, continuous tracking data from the optical system was used to update the scan plane in real-time during the 3D-PCASL acquisition. Navigator-style correction was simulated by using the tracking data from the optical system and performing updates only once per repetition time. Three normal volunteers and a patient were instructed to perform continuous and discrete head motion throughout the scan. Optical motion correction yielded superior image quality compared to uncorrected images or images using navigator-style correction. The standard deviations of pixel-wise CBF differences between reference and non-corrected, navigator-style-corrected and optical-corrected data were 14.28, 14.35 and 11.09mL/100g/min for continuous motion, and 12.42, 12.04 and 9.60mL/100g/min for discrete motion. Data obtained from the patient revealed that motion can obscure pathology and that application of optical prospective correction can successfully reveal the underlying pathology in the presence of head motion.


Assuntos
Encéfalo/diagnóstico por imagem , Aumento da Imagem/métodos , Imageamento por Ressonância Magnética/métodos , Artérias , Artefatos , Voluntários Saudáveis , Humanos , Movimento (Física) , Estudos Prospectivos , Marcadores de Spin
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA