Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 404
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38856974

RESUMO

In this study, we examined the nanostructured molecular packing and orientations of poly[[N,N'-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5'-(2,2'-bithiophene)] (P(NDI2OD-T2)) films formed on water for the application of nanotechnology-based organic electronic devices. First, the nanoscale molecule-substrate interaction between the polymer and water was modulated by controlling the alkyl side chain length in NDI-based copolymers. Increasing alkyl side chain lengths induced a nanomorphological transition from face-on to edge-on orientation, confirmed by molecular dynamics simulations revealing nanostructural behavior. Second, the nanoscale intermolecular interactions of P(NDI2OD-T2) were controlled by varying the volume ratio of the high-boiling-point additive solvent in the binary solvent blends. As the additive solvent ratio increased, the nanostructured molecular orientation of the P(NDI2OD-T2) films on water changed remarkably from edge-on to bimodal with more face-on crystallites, thereby affecting charge transport. Our finding provides essential insights for precise nanoscale morphological control on water substrates, enabling the formation of high-performance polymer films for organic electronic devices.

2.
Chemistry ; 30(37): e202401074, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38697944

RESUMO

The backwardness of n-type organic semiconductors still exists compared with the p-type counterparts. Thus, the development of high-performance n-type organic semiconductors is of great importance for organic electronic devices and their integrated circuits. In recent years, azabenzannulated perylene diimide (PDI), as one of immense bay-region-annulated PDI derivatives, has drawn considerable attentions. However, the electronic mobilities of azabenzannulated PDI derivatives are barely satisfactory. In this contribution, the peripheral benzene ring in azabenzannulated PDI 2 was fused to the ortho position by intramolecular C-H arylation cyclization. This endows the resultant azabenzannulated PDI 4 a planar configuration as well as electron deficient pentagonal ring. As a result, the electronic mobility of 4 is almost two orders of magnitude higher than that of the nonfused azabenzannulated PDI 2. This work shall pave a new avenue in elevating the performance of azabenzannulated PDI in organic electronics.

3.
Macromol Rapid Commun ; 45(1): e2300271, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37400426

RESUMO

A poly (3,6-bis(thiophen-2-yl)-2,5-bis(2-decyltetradecyl)-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione-co-(2,3-bis(phenyl)acrylonitrile)) (PDPADPP) copolymer, composed of diketopyrrolopyrrole (DPP) and a cyano (nitrile) group with a vinylene spacer linking two benzene rings, is synthesized via a palladium-catalyzed Suzuki coupling reaction. The electrical performance of PDPADPP in organic field-effect transistors (OFETs) and circuits is investigated. The OFETs based on PDPADPP exhibit typical ambipolar transport characteristics, with the as-cast OFETs demonstrating low field-effect hole and electron mobility values of 0.016 and 0.004 cm2  V-1  s-1 , respectively. However, after thermal annealing at 240 °C, the OFETs exhibit improved transport characteristics with highly balanced ambipolar transport, showing average hole and electron mobility values of 0.065 and 0.116 cm2  V-1  s-1 , respectively. To verify the application of the PDPADPP OFETs in high-voltage logic circuits, compact modeling using the industry-standard small-signal Berkeley short-channel IGFET model (BSIM) is performed, and the logic application characteristics are evaluated. The circuit simulation results demonstrate excellent logic application performance of the PDPADPP-based ambipolar transistor and illustrate that the device annealed at 240 °C exhibits ideal circuit characteristics.


Assuntos
Acrilonitrila , Simulação por Computador , Eletricidade , Elétrons , Nitrilas , Polímeros
4.
Macromol Rapid Commun ; : e2400265, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760951

RESUMO

In organic field-effect transistors (OFETs) using disordered organic semiconductors, interface traps that hinder efficient charge transport, stability, and device performance are inevitable. Benchmark poly(9,9-dioctylfuorene-co-bithiophene) (F8T2) liquid-crystalline polymer semiconductor has been extensively investigated for organic electronic devices due to its promising combination of charge transport and light emission properties. This study demonstrates that high-capacitance single-layered ionic polyurethane (PU) dielectrics enable enhanced charge transport in F8T2 OFETs. The ionic PU dielectrics are composed of a mild blending of PU ionogel and PU solution, thereby forming a solid-state film with robust interfacial characteristics with semiconductor layer and gate electrode in OFETs and measuring high capacitance values above 10 µF cm-2 owing to the combined dipole polarization and electric double layer formation. The optimized fabricated ionic PU-gated OFETs exhibit a low-voltage operation at -3 V with a remarkable hole mobility of over 5 cm2 V-1 s-1 (average = 2.50 ± 1.18 cm2 V-1 s-1), which is the highest mobility achieved so far for liquid-crystalline F8T2 OFETs. This device also provides excellent bias-stable characteristics in ambient air, exhibiting a negligible threshold voltage shift of -0.03 V in the transfer curves after extended bias stress, with a reduced trap density.

5.
Macromol Rapid Commun ; 45(6): e2300634, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38124531

RESUMO

Tunability in electronic and optical properties has been intensively explored for developing conjugated polymers and their applications in organic and perovskite-based electronics. Particularly, the charge carrier mobility of conjugated polymer semiconductors has been deemed to be a vital figure-of-merit for achieving high-performance organic field-effect transistors (OFETs). In this study, the systematic hole carrier mobility improvement of benzo[1,2-b:4,5-b']dithiophene-based conjugated polymer in perovskite-functionalized organic transistors is demonstrated. In conventional OFETs with a poly(methyl methacrylate) (PMMA) gate dielectric, improvements in hole mobility of 0.019 cm2 V-1 s-1 are measured using an off-center spin-coating technique, which exceeds those of on-center counterparts (0.22 ± 0.07 × 10-2 cm2 V-1 s-1). Furthermore, the mobility drastically increases by adopting solid-state electrolyte gating, corresponding to 2.99 ± 1.03 cm2 V-1 s-1 for the control, and the best hole mobility is 8.03 cm2 V-1 s-1 (average ≈ 6.94 ± 0.59 cm2 V-1 s-1) for perovskite-functionalized OFETs with a high current on/off ratio of >106. The achieved device performance would be attributed to the enhanced film crystallinity and charge carrier density in the hybrid perovskite-functionalized organic transistor channel, resulting from the high-capacitance electrolyte dielectric.


Assuntos
Compostos de Cálcio , Óxidos , Polímeros , Titânio , Transistores Eletrônicos , Semicondutores , Eletrólitos , Polimetil Metacrilato
6.
Sensors (Basel) ; 24(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732968

RESUMO

Gas detection is crucial for detecting environmentally harmful gases. Organic field-effect transistor (OFET)-based gas sensors have attracted attention due to their promising performance and potential for integration into flexible and wearable devices. This review examines the operating mechanisms of OFET-based gas sensors and explores methods for improving sensitivity, with a focus on porous structures. Researchers have achieved significant enhancements in sensor performance by controlling the thickness and free volume of the organic semiconductor layer. Additionally, innovative fabrication techniques like self-assembly and etching have been used to create porous structures, facilitating the diffusion of target gas molecules, and improving sensor response and recovery. These advancements in porous structure fabrication suggest a promising future for OFET-based gas sensors, offering increased sensitivity and selectivity across various applications.

7.
Molecules ; 29(11)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38893409

RESUMO

Merging the functionality of an organic field-effect transistor (OFET) with either a light emission or a photoelectric effect can increase the efficiency of displays or photosensing devices. In this work, we show that an organic semiconductor enables a multifunctional OFET combining electroluminescence (EL) and a photoelectric effect. Specifically, our computational and experimental investigations of a six-ring thiophene-phenylene co-oligomer (TPCO) revealed that this material is promising for OFETs, light-emitting, and photoelectric devices because of the large oscillator strength of the lowest-energy singlet transition, efficient luminescence, pronounced delocalization of the excited state, and balanced charge transport. The fabricated OFETs showed a photoelectric response for wavelengths shorter than 530 nm and simultaneously EL in the transistor channel, with a maximum at ~570 nm. The devices demonstrated an EL external quantum efficiency (EQE) of ~1.4% and a photoelectric responsivity of ~0.7 A W-1, which are among the best values reported for state-of-the-art organic light-emitting transistors and phototransistors, respectively. We anticipate that our results will stimulate the design of efficient materials for multifunctional organic optoelectronic devices and expand the potential applications of organic (opto)electronics.

8.
Angew Chem Int Ed Engl ; : e202413782, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39193821

RESUMO

Cross conjugation, though prevalent in many organic compounds, is typically considered less effective for electron delocalization compared to linear conjugation. Consequently, it is rarely used as the backbone structure for semiconducting conjugated polymers. In this study, we designed and synthesized a novel building block, TIDP, which features a central cyclic dipeptide with cross conjugation characteristics. Strong intramolecular hydrogen bonding interactions confer TIDP with a highly rigid and coplanar conformation. Importantly, theoretical calculations reveal that π electrons are well delocalized across the entire structure, despite its low aromaticity. Conjugated polymers incorporating TIDP exhibit high charge carrier mobilities, demonstrating the effective π electron delocalization of this innovative building block. Our findings show that with rational design, cross conjugation can achieve effective π electron delocalization, providing a valuable approach for developing high-performance conjugated polymers for organic electronic materials.

9.
Angew Chem Int Ed Engl ; 63(38): e202407890, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-38958602

RESUMO

Developing novel n-type organic semiconductors is an on-going research endeavour, given their pivotal roles in organic electronics and their relative scarcity compared to p-type counterparts. In this study, a new strategy was employed to synthesize n-type organic semiconductors featuring a fully fused conjugated backbone. By attaching two sets of adjacent amino and formyl groups to the indacenodithiophene-based central cores and triggering a tandem reaction sequence of a Knoevenagel condensation-intramolecular cyclization, DFA1 and DFA2 were realized. The solution-processed organic field effect transistors based on DFA1 exhibited unipolar n-type transport character with a decent electron mobility of ca. 0.10 cm2 V-1 s-1 (ca. 0.038 cm2 V-1 s-1 for DFA2 based devices). When employing DFA1 as a third component in organic solar cells, a high power conversion efficiency of 19.2 % can be achieved in ternary devices fabricated with PM6 : L8-BO : DFA1. This work provides a new pathway in the molecular engineering of n-type organic semiconductors, propelling relevant research forward.

10.
Beilstein J Org Chem ; 20: 1037-1052, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38746652

RESUMO

Presented here is the design, synthesis, and study of a variety of novel hydrogen-bonding-capable π-conjugated N-heteroacenes, 1,4-dihydropyrazino[2,3-b]quinoxaline-2,3-diones (DPQDs). The DPQDs were accessed from the corresponding weakly hydrogen-bonding dicyanopyrazinoquinoxaline (DCPQ) suspensions with excess potassium hydroxide, resulting in moderate to good yields. Both families of compounds were analyzed by UV-vis and NMR spectroscopy, where the consequences of hydrogen bonding capability could be assessed through the structure-property studies. Conversion of the DCPQs into hydrogen-bonding capable DPQDs results in modulation of frontier MO energies, higher molar extinction coefficients, enhanced crystallinity, and on-average higher thermal stability (where in some cases the 5% weight loss temperature is increased by up to 100 °C). Single crystal X-ray diffraction data could be obtained for three DPQDs. One reveals pairwise hydrogen bonding in the solid state as well as a herringbone packing arrangement rendering it a promising candidate for additional studies in the context of organic optoelectronic devices.

11.
Small ; 19(50): e2304634, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37626464

RESUMO

Suppressing the photoelectric response of organic semiconductors (OSs) is of great significance for improving the operational stability of organic field-effect transistors (OFETs) in light environments, but it is quite challenging because of the great difficulty in precisely modulating exciton dynamics. In this work, photostable OFETs are demonstrated by designing the micro-structure of OSs and introducing an electrical double layer at the OS/polyelectrolyte dielectric interface, in which multiple exciton dynamic processes can be modulated. The generation and dissociation of excitons are depressed due to the small light-absorption area of the microstripe structure and the excellent crystallinity of OSs. At the same time, a highly efficient exciton quenching process is activated by the electrical double layer at the OS/polyelectrolyte dielectric interface. As a result, the OFETs show outstanding tolerance to the light irradiation of up to 306 mW·cm-2 , which far surpasses the solar irradiance value in the atmosphere (≈138 mW·cm-2 ) and achieves the highest photostability ever reported in the literature. The findings promise a general and practicable strategy for the realization of photostable OFETs and organic circuits.

12.
Small ; 19(3): e2205570, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36408887

RESUMO

To improve the performance of organic field-effect transistors (OFETs) employing π-conjugated polymers, a basic understanding of the relationships between the material properties and device characteristics is crucial. Although the density of states (DOS) distribution is one of the essential material properties of semiconducting polymers, insights into how the DOS shape affects the mobility (µ), subthreshold swing (S), and contact resistance (RC ) in OFETs remain lacking. In this study, by combining sensitive DOS measurements and multilayered OFET structures, it is experimentally demonstrated that narrower DOS widths in the polymer channels lead to higher µ, smaller S, and lower RC . By contrast, variation of the DOS in the bulk layer does not affect the performance. These results demonstrate a direct relationship between the polymer properties and OFET performance and highlight the importance of controlling the DOS width in π-conjugated polymers.


Assuntos
Polímeros , Polímeros/química , Espectroscopia Fotoeletrônica
13.
Small ; 19(11): e2206938, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36642796

RESUMO

Organic flexible electronic devices are at the forefront of the electronics as they possess the potential to bring about a major lifestyle revolution owing to outstanding properties of organic semiconductors, including solution processability, lightweight and flexibility. For the integration of organic flexible electronics, the precise patterning and ordered assembly of organic semiconductors have attracted wide attention and gained rapid developments, which not only reduces the charge crosstalk between adjacent devices, but also enhances device uniformity and reproducibility. This review focuses on recent advances in the design, patterned assembly of organic semiconductors, and flexible electronic devices, especially for flexible organic field-effect transistors (FOFETs) and their multifunctional applications. First, typical organic semiconductor materials and material design methods are introduced. Based on these organic materials with not only superior mechanical properties but also high carrier mobility, patterned assembly strategies on flexible substrates, including one-step and two-step approaches are discussed. Advanced applications of flexible electronic devices based on organic semiconductor patterns are then highlighted. Finally, future challenges and possible directions in the field to motivate the development of the next generation of flexible electronics are proposed.

14.
Small ; 19(41): e2302406, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37271887

RESUMO

Due to their high sensitivity and selectivity, chemical sensors have gained significant attention in various fields, including drug security, environmental testing, food safety, and biological medicine. Among them, organic field-effect transistor (OFET) based chemical sensors have emerged as a promising alternative to traditional sensors, exhibiting several advantages such as multi-parameter detection, room temperature operation, miniaturization, flexibility, and portability. This review paper presents recent research progress on OFET-based chemical sensors, highlighting the enhancement of sensor performance, including sensitivity, selectivity, stability, etc. The main improvement programs are improving the internal and external structures of the device, as well as the organic semiconductor layer and dielectric structure. Finally, an outlook on the prospects and challenges of OFET-based chemical sensors is presented.

15.
Small ; 19(22): e2300151, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36869409

RESUMO

Solution-processable organic semiconductors are one of the promising materials for the next generation of organic electronic products, which call for high-performance materials and mature processing technologies. Among many solution processing methods, meniscus-guided coating (MGC) techniques have the advantages of large-area, low-cost, adjustable film aggregation, and good compatibility with the roll-to-roll process, showing good research results in the preparation of high-performance organic field-effect transistors. In this review, the types of MGC techniques are first listed and the relevant mechanisms (wetting mechanism, fluid mechanism, and deposition mechanism) are introduced. The MGC processes are focused and the effect of the key coating parameters on the thin film morphology and performance with examples is illustrated. Then, the performance of transistors based on small molecule semiconductors and polymer semiconductor thin films prepared by various MGC techniques is summarized. In the third section, various recent thin film morphology control strategies combined with the MGCs are introduced. Finally, the advanced progress of large-area transistor arrays and the challenges for roll-to-roll processes are presented using MGCs. Nowadays, the application of MGCs is still in the exploration stage, its mechanism is still unclear, and the precise control of film deposition still needs experience accumulation.

16.
Small ; 19(18): e2207921, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36732850

RESUMO

It is suggested that chiral photonic bio-enabled integrated thin-film electronic elements can pave the base for next-generation optoelectronic processing, including quantum coding for encryption as well as integrated multi-level logic circuits. Despite recent advances, thin-film electronics for encryption applications with large-scale reconfigurable and multi-valued logic systems are not reported to date. Herein, highly secure optoelectronic encryption logic elements are demonstrated by facilitating the humidity-sensitive helicoidal organization of chiral nematic phases of cellulose nanocrystals (CNCs) as an active electrolyte layer combined with printed organic semiconducting channels. The ionic-strength controlled tunable photonic band gap facilitates distinguishable and quantized 13-bit electric signals triggered by repetitive changes of humidity, voltage, and the polarization state of the incident light. As a proof-of-concept, the integrated circuits responding to circularly polarized light and humidity are demonstrated as unique physically unclonable functional devices with high-level logic rarely achieved. The convergence between functional nanomaterials and the multi-valued logic thin-film electronic elements can provide optoelectronic counterfeiting, imaging, and information processing with multilevel logic nodes.

17.
Chemistry ; 29(72): e202302524, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-37811670

RESUMO

In order to achieve a multifunctional compound with potential application in organic photonics and electronics, a multidonor benzothiadiazole derivative was rationally designed and synthesized employing microwave irradiation as energy source, increasing the process efficiency about yields and reaction times in comparison with conventional conditions. This powerful compound displayed solvatochromism and showed efficient behavior as red optical waveguide with low OLC around 10-2  dB µm-1 and with the capacity of light transmission in two directions. In addition, the proposed derivative acted as efficient p-type semiconductor in organic field-effect transistors (OFETs) with hole mobilities up 10-1  cm2  V-1 s-1 . This corroborates its multifunctional character, thus making it a potential candidate to be applied in hybrid organic field-effect optical waveguides (OFEWs).

18.
Chemistry ; 29(17): e202203873, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36639357

RESUMO

The development of electron-accepting units is of significant importance because the construction of donor (D)-acceptor (A) configurations is an effective strategy for tuning the electronic properties of π-conjugated systems. Although doubly fused pentagons represented by diketopyrrolopyrrole (DPP) have been used as an effective electron-accepting unit, the relatively high-lying frontier molecular orbital levels (FMOs) leave room for further improvement. We report herein the synthesis of a fluorinated dihydropentalene-1,4-dione (FPD) derivative as a strong electron-accepting unit and the development of D-A-D π-extended molecules. X-ray analyses revealed that the presence of fluorine atoms contributed to the formation of high planar structures and slipped-stacked packing. Electrochemical measurements indicated that the FPD derivatives showed relatively lower FMO energy levels than the corresponding DPP-containing derivatives. The D-A-D molecule based on terthiophene and FPD showed semiconducting responses. This study demonstrates that the FPD unit can function as a new acceptor unit for organic semiconductors.

19.
Chemistry ; 29(28): e202300480, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-36861387

RESUMO

Materials Synthesis and Processing Polycyclic aromatic hydrocarbon (PAH) diimides are indispensable candidates for n-type organic semiconductors in organic optoelectronic devices. Developing new PAH diimide building blocks are of remarkable significance for material diversity and further advance in organic semiconductors. In this contribution, 4,5,8,9-picene diimide (PiDI) was designed and synthesized. Controllable stepwise bromination of PiDI were accomplished to afford 13-monobromo-, 13,14-dibromo-, 2,13,14-tribromo- and 2,11,13,14-tetrabromo-PiDI. Moreover, cyanation of 2,11,13,14-tetrabromo-PiDI gave the corresponding tetracyanated PiDI, which can be utilized as n-type semiconductor with OFET electron mobility up 0.073 cm2 V-1 s-1 . This result demonstrates the potential of PiDI as a building block for constructing new high-performance electronic-transporting materials.

20.
Chemphyschem ; 24(2): e202200375, 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36150080

RESUMO

A series of new zinc porphyrins were synthesized, and their charge transport property was tuned by introducing various groups. Triarylamine was introduced to the porphyrin moiety at the meso-position as an electron donor, enhancing the charge carrier mobility. All the synthesized zinc porphyrins are thermally stable with a decomposition temperature over 178 °C. High frontier molecular orbitals levels of these compounds make them stable donor materials. SEM analysis of zinc porphyrins fabricated by spin-coating resulted in diversely self-assembled films. Field-effect transistors were fabricated using bottom-gate/top-contact architecture (BGTC) by solution-processable technique. The higher charge carrier mobility of 5.17 cm2 /Vs with on/off of 106 was obtained for trifluoromethyl substituted compound due to better molecular packing. In addition, GIXRD analysis revealed zinc porphyrins films crystalline nature, which supports its better charge carrier mobility. The present investigation has validated that zinc porphyrin building blocks are an attractive candidate for p-channel OFET devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA