Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 14(1)2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29149540

RESUMO

Organic microcrystals are of essential importance for high fluorescence efficiency, ordered molecular packing mode, minimized defects, and smooth shapes, which are extensively applied in organic optoelectronics. The molecular packing mode significantly influences the optical/electrical properties of organic microcrystals, which makes the controllable preparation of organic microcrystals with desired molecular packing mode extremely important. In the study, yellow-emissive α phase organic microcrystals with rectangular morphology and green-emissive ß phase perylene microcrystals with rhombic morphology are separately prepared by simply controlling the solution concentration. The distinct molecular staking modes of the H/J-aggregate are found in these two types of perylene microcrystals, which contribute to the different emission color, morphology, and radiative decay rate. What is more interesting, the α-doped ß phase and the ß-doped α phase organic microcrystals can also be fabricated by modulating the evaporation rate from 100 to 10 µL min-1 . The findings can contribute to the future development of organic optoelectronics at the microscale.

2.
Chem Asian J ; 17(13): e202200343, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35478382

RESUMO

For semiconductor photocatalysts with excellent performance in solar H2 production, broadening the utilization of solar irradiation is highly necessary to further improve the solar conversion efficiency. Herein, we combined a Cd0.5 Zn0.5 S photocatalyst with DPA/PdTPTBP microcrystals capable of red-to-blue photon upconversion, realizing substantial performance enhancement and an apparent quantum yield of 0.16% for H2 production driven by sub-bandgap photons (600∼650 nm). Meanwhile, this system could smoothly work with H2 production rate of 1.40 mmol g-1 h-1 for as long as 40 hours under 200 mW/cm2 irradiation with only 3% attenuation of photocatalytic activity. Moreover, the O2 -barrier property of DPA/PdTPTBP microcrystals assures that photocatalytic H2 production remains effective in the presence of 10% O2 by volume, which offers an opportunity for the photocatalytic application in O2 -enriched environments. The combination of O2 -resistant upconversion microcrystals and semiconductor catalysts is the most successful solution for the construction of TTA-UC-based photocatalytic H2 production system so far. The present study provides a clear guideline for designing new TTA-UC-based photocatalytic systems.

3.
Adv Mater ; : e1800187, 2018 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-29808488

RESUMO

Ambipolar organic field-effect transistors (OFETs) combining single-crystalline p- and n-type organic micro/nanocrystals have demonstrated superior performance to their amorphous or polycrystalline thin-film counterparts. However, large-area alignment and precise patterning of organic micro/nanocrystals for ambipolar OFETs remain challenges. Here, a surface-energy-controlled stepwise crystallization (SECSC) method is reported for large-scale, aligned, and precise patterning of single-crystalline laterally stacked p-n heterojunction microbelt (MB) arrays. In this method, the p- and n-type organic crystals are precipitated via a stepwise process: first, the lateral sides of prepatterned photoresist stripes provide high-surface-energy sites to guide the aligned growth of p-type organic crystals. Next, the formed p-type crystals serve as new high-surface-energy positions to induce the crystallization of n-type organic molecules at their sides, thus leading to the formation of laterally stacked p-n microbelts. Ambipolar OFETs based on the p-n heterojunction MB arrays exhibit balanced hole and electron mobilities of 0.32 and 0.43 cm2 V-1 s-1 , respectively, enabling the fabrication of complementary-like inverters with large voltage gains. This work paves the way toward rational design and construction of single-crystalline organic p-n heterojunction arrays for high-performance organic, integrated circuits.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA