Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 306
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Emerg Infect Dis ; 30(4): 761-765, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38526165

RESUMO

In September 2022, deaths of pigs manifesting pox-like lesions caused by swinepox virus were reported in Tshuapa Province, Democratic Republic of the Congo. Two human mpox cases were found concurrently in the surrounding community. Specific diagnostics and robust sequencing are needed to characterize multiple poxviruses and prevent potential poxvirus transmission.


Assuntos
Mpox , Poxviridae , Suipoxvirus , Humanos , Animais , Suínos , Mpox/epidemiologia , Monkeypox virus/genética , República Democrática do Congo/epidemiologia
2.
BMC Infect Dis ; 24(1): 262, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38408924

RESUMO

BACKGROUND: Widespread human-to-human transmission of the severe acute respiratory syndrome coronavirus two (SARS-CoV-2) stems from a strong affinity for the cellular receptor angiotensin converting enzyme two (ACE2). We investigate the relationship between a patient's nasopharyngeal ACE2 transcription and secondary transmission within a series of concurrent hospital associated SARS-CoV-2 outbreaks in British Columbia, Canada. METHODS: Epidemiological case data from the outbreak investigations was merged with public health laboratory records and viral lineage calls, from whole genome sequencing, to reconstruct the concurrent outbreaks using infection tracing transmission network analysis. ACE2 transcription and RNA viral load were measured by quantitative real-time polymerase chain reaction. The transmission network was resolved to calculate the number of potential secondary cases. Bivariate and multivariable analyses using Poisson and Negative Binomial regression models was performed to estimate the association between ACE2 transcription the number of SARS-CoV-2 secondary cases. RESULTS: The infection tracing transmission network provided n = 76 potential transmission events across n = 103 cases. Bivariate comparisons found that on average ACE2 transcription did not differ between patients and healthcare workers (P = 0.86). High ACE2 transcription was observed in 98.6% of transmission events, either the primary or secondary case had above average ACE2. Multivariable analysis found that the association between ACE2 transcription (log2 fold-change) and the number of secondary transmission events differs between patients and healthcare workers. In health care workers Negative Binomial regression estimated that a one-unit change in ACE2 transcription decreases the number of secondary cases (ß = -0.132 (95%CI: -0.255 to -0.0181) adjusting for RNA viral load. Conversely, in patients a one-unit change in ACE2 transcription increases the number of secondary cases (ß = 0.187 (95% CI: 0.0101 to 0.370) adjusting for RNA viral load. Sensitivity analysis found no significant relationship between ACE2 and secondary transmission in health care workers and confirmed the positive association among patients. CONCLUSION: Our study suggests that ACE2 transcription has a positive association with SARS-CoV-2 secondary transmission in admitted inpatients, but not health care workers in concurrent hospital associated outbreaks, and it should be further investigated as a risk-factor for viral transmission.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Enzima de Conversão de Angiotensina 2 , Colúmbia Britânica/epidemiologia , COVID-19/epidemiologia , Surtos de Doenças , Hospitais , RNA , SARS-CoV-2/genética
3.
J Infect Chemother ; 30(10): 1001-1007, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38521457

RESUMO

INTRODUCTION: During COVID-19 pandemic in Japan, nightclubs were identified as high-risk locations for COVID-19 outbreaks, but an outbreak investigation in this setting is challenging because of the anonymous and opportunistic nature of interactions. METHODS: The joint rapid response team collected epidemiological data, conducted descriptive epidemiology to determine the characteristics of cases associated with the nightclub, and implemented countermeasures. Polymerase chain reaction (PCR) tests were performed by the Local Institute of Public Health, Kagoshima University, and several commercial laboratories. RESULTS: Between June 15 and July 20, 2020, 121 individuals tested positive for SARS-CoV-2 (59 confirmed and 62 asymptomatic) of whom 8 were nightclub staff who had no travel history of outside Kagoshima, 66 were guests, and 47 were subsequent contacts. The median age was 32 years (interquartile range: 24-43 years). One individual showed severe symptoms but there were no fatal. The epidemic curve showed one peak on June 30 and July 1 with a limited number of cases subsequently. Of the 121 cases, 116 and 5 were in individuals living in and outside Kagoshima Prefecture, respectively. Haplotype network analysis showed 5 genome-wide single-nucleotide variants between the isolates before and during this outbreak. CONCLUSIONS: There is a possibility that unidentified guests from outside Kagoshima Prefecture could infect staff who could subsequently spread the virus to guests and other staff, who were mainly a younger population. The rapid outbreak response enabled onward transmission in the community to be minimized. This outbreak investigation could provide insights for effective responses to challenging situations in future pandemic.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/epidemiologia , COVID-19/transmissão , COVID-19/virologia , Japão/epidemiologia , Adulto , Masculino , Feminino , SARS-CoV-2/genética , Adulto Jovem , Pessoa de Meia-Idade , Surtos de Doenças , Pandemias , Idoso , Estudos Epidemiológicos
4.
BMC Public Health ; 24(1): 451, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38347565

RESUMO

BACKGROUND: Food safety is a critical factor in promoting public health and nutrition, especially in developing countries like India, which experience several foodborne disease outbreaks, often with multidrug-resistant pathogens. Therefore, implementing regular surveillance of enteric pathogens in the human-animal-environment interface is necessary to reduce the disease burden in the country. OBJECTIVE: To establish a network of laboratories for the identification of major food and waterborne pathogens prevailing in the northeast region of India through integrated surveillance of animal, food, human, and environment and investigate the antimicrobial susceptibility pattern of the pathogens of public health significance. METHODS: The Indian Council of Medical Research (ICMR) has identified FoodNet laboratories; based on their geographical location, inclination to undertake the study, preparedness, proficiency, and adherence to quality assurance procedures, through an 8-step process to systematically expand to cover the Northeastern Region (NER) with comprehensive diagnostic capacities for foodborne pathogens and diarrhea outbreak investigations. Network initiated in the NER given the unique food habits of the ethnic population. FINDINGS: This surveillance network for foodborne enteric pathogens was established in Assam, Arunachal Pradesh, Tripura, and Sikkim, and expanded to other four states, i.e., Manipur, Mizoram, Meghalaya, and Nagaland, thereby covering the entire NER by including nine medical and three veterinary centers. All these centers are strengthened with periodic training, technical support, funding, capacity building, quality assurance, monitoring, centralized digital data management, and website development. RESULTS: The ICMR-FoodNet will generate NER-specific data with close to real-time reporting of foodborne disease and outbreaks, and facilitate the updating of food safety management protocols, policy reforms, and public health outbreak response. During 2020-2023, 13,981 food samples were tested and the detection of enteric pathogens ranged from 3 to 4%. In clinical samples, the detection rate of the pathogens was high in the diarrheal stools (8.9%) when 3,107 samples were tested. Thirteen outbreaks were investigated during the study period. CONCLUSION: Foodborne diseases and outbreaks are a neglected subject. Given the frequent outbreaks leading to the deaths of children, it is crucial to generate robust data through well-established surveillance networks so that a strong food safety policy can be developed for better public health.


Assuntos
Doenças Transmitidas por Alimentos , Saúde Única , Criança , Animais , Humanos , Estados Unidos , Saúde Pública , Índia/epidemiologia , Doenças Transmitidas por Alimentos/epidemiologia , Doenças Transmitidas por Alimentos/prevenção & controle , Diarreia/epidemiologia , Surtos de Doenças/prevenção & controle
5.
Euro Surveill ; 29(36)2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39239728

RESUMO

Shiga-toxin producing Escherichia coli (STEC) O157 is a food-borne pathogen which causes gastrointestinal illness in humans. Ruminants are considered the main reservoir of infection, and STEC exceedance has been associated with heavy rainfall. In September 2022, a large outbreak of STEC O157:H7 was identified in the United Kingdom (UK). A national-level investigation was undertaken to identify the source of the outbreak and inform risk mitigation strategies. Whole genome sequencing (WGS) was used to identify outbreak cases. Overall, 259 cases with illness onset dates between 5 August and 12 October 2022, were confirmed across the UK. Epidemiological investigations supported a UK grown, nationally distributed, short shelf-life food item as the source of the outbreak. Analytical epidemiology and food chain analysis suggested lettuce as the likely vehicle of infection. Food supply chain tracing identified Grower X as the likely implicated producer. Independent of the food chain investigations, a novel geospatial analysis triangulating meteorological, flood risk, animal density and land use data was developed, also identifying Grower X as the likely source. Novel geospatial analysis and One Health approaches are potential tools for upstream data analysis to predict and prevent contamination events before they occur and to support evidence generation in outbreak investigations.


Assuntos
Mudança Climática , Surtos de Doenças , Infecções por Escherichia coli , Escherichia coli O157 , Microbiologia de Alimentos , Doenças Transmitidas por Alimentos , Lactuca , Lactuca/microbiologia , Humanos , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/transmissão , Reino Unido/epidemiologia , Escherichia coli O157/isolamento & purificação , Escherichia coli O157/genética , Doenças Transmitidas por Alimentos/epidemiologia , Doenças Transmitidas por Alimentos/microbiologia , Sequenciamento Completo do Genoma , Escherichia coli Shiga Toxigênica/isolamento & purificação , Escherichia coli Shiga Toxigênica/genética , Adulto , Pessoa de Meia-Idade , Feminino , Masculino , Contaminação de Alimentos/análise , Idoso , Animais , Adolescente , Criança
6.
Public Health ; 230: 157-162, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38554473

RESUMO

OBJECTIVES: To report epidemiological and virological results of an outbreak investigation of influenza-like illness (ILI) among refugees in Northern Italy. STUDY DESIGN: Outbreak investigation of ILI cases observed among nearly 100 refugees in Northern Italy unvaccinated for influenza. METHODS: An epidemiological investigation matched with a differential diagnosis was carried out for each sample collected from ILI cases to identify 10 viral pathogens (SARS-CoV-2, influenza virus type A and B, respiratory syncytial virus, metapneumovirus, parainfluenza viruses, rhinovirus, enterovirus, parechovirus, and adenovirus) by using specific real-time PCR assays according to the Centers for Disease Control and Prevention (CDC) protocols. In cases where the influenza virus type was identified, complete hemagglutinin (HA) gene sequencing and the related phylogenetic analysis were conducted. RESULTS: The outbreak was caused by influenza A(H3N2): the attack rate was 83.3% in children aged 9-14 years, 84.6% in those aged 15-24 years, and 28.6% in adults ≥25 years. Phylogenetic analyses uncovered that A(H3N2) strains were closely related since they segregated in the same cluster, showing both a high mean nucleotide identity (100%), all belonging to the genetic sub-group 3C.2a1b.2a.2, as those mainly circulating into the general population in the same period. CONCLUSIONS: The fact that influenza outbreak strains as well as the community strains were genetically related to the seasonal vaccine strain suggests that if an influenza prevention by vaccination strategy had been implemented, a lower attack rate of A(H3N2) and ILI cases might have been achieved.


Assuntos
Vírus da Influenza A , Vacinas contra Influenza , Influenza Humana , Refugiados , Viroses , Adulto , Criança , Humanos , Influenza Humana/epidemiologia , Vírus da Influenza A Subtipo H3N2/genética , Filogenia , Surtos de Doenças
7.
Foodborne Pathog Dis ; 21(4): 220-227, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38190304

RESUMO

Foodborne gastroenteritis outbreaks owing to Salmonella enterica serovar Weltevreden (Salmonella Weltevreden) represent a significant global public health problem. In the past two decades, Salmonella Weltevreden has emerged as a dominant foodborne pathogen, especially in South-East Asian countries. This report describes a community foodborne outbreak of gastroenteritis caused by Salmonella Weltevreden in August 2022 following consumption of panipuri from a street vendor in the Polba block in Hooghly district, West Bengal, India. This food item was consumed by 185 people, of whom 129 had acute watery diarrhea with other clinical symptoms and 65 of them were admitted to different District hospitals for treatment. Stool specimens collected from hospitalized cases were positive for S. enterica, and further serotyped as Salmonella Weltevreden. All the Salmonella Weltevreden strains possessed the Salmonella pathogenicity islands associated genes (invA/E, orgA, ttrc, ssaQ, mgtC, misL, spi4D), the enterotoxin (stn), and hyperinvasive locus gene (hilA). Except erythromycin, all the strains were susceptible for commonly used antimicrobials in the treatment of diarrhea. The XbaI-based pulsed-field gel electrophoresis analysis indicated that all the isolates responsible for the recent outbreak were similar, but diverged from other Salmonella Weltevreden that were previously reported in West Bengal. This report indicates that foodborne infection is a major public health concern in India and demands to strengthen capacity-building measures at the local health care levels for linking causative agents of outbreaks.


Assuntos
Gastroenterite , Salmonella enterica , Humanos , Sorogrupo , Salmonella enterica/genética , Salmonella , Gastroenterite/epidemiologia , Diarreia/epidemiologia , Surtos de Doenças , Índia/epidemiologia , Eletroforese em Gel de Campo Pulsado
8.
J Formos Med Assoc ; 123(1): 45-54, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37625983

RESUMO

BACKGROUND: The role of environmental contamination in COVID-19 transmission within hospitals is still of interest due to the significant impact of outbreaks globally. However, there is a scarcity of data regarding the utilization of environmental sampling for informing infection control measures during SARS-CoV-2 outbreaks. METHODS: This retrospective study analyzed incident event investigations conducted at a single center from May 1, 2021, to August 31, 2021. Investigations were initiated following the identification of a COVID-19 confirmed case (referred to as the index case) who had stayed in a hospital area outside the dedicated COVID-19 ward/bed and without specific COVID-19 precautions. Measures to prevent intra-hospital spread included contact tracing, adjusted testing policies, isolation of confirmed cases, quarantine of close contacts, environmental disinfection, and PCR testing of environmental samples. RESULTS: Among the 18 incident events investigated, the index case was a healthcare personnel in 8 events, a patient in 8 events, and a caregiver in 2 events. The median number of confirmed COVID-19 cases within 14 days was 13 (IQR, 7-31) for events with SARS-CoV-2 RNA detected on environmental surfaces, compared to only one (IQR, 1-1.5) for events without surface contamination (P = 0.04). Environmental contamination was independently associated with a higher number of COVID-19 cases (P < 0.001). CONCLUSION: This study highlights environmental contamination as an indicator of the severity of incident events and provides a framework for incident event management, including a protocol for environmental sampling. Implementing these measures can help prevent the spread of COVID-19 within healthcare facilities.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , COVID-19/prevenção & controle , SARS-CoV-2 , RNA Viral , Taiwan/epidemiologia , Estudos Retrospectivos , Centros de Atenção Terciária
9.
Mycopathologia ; 189(5): 72, 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39096450

RESUMO

Fungal infections pose an increasing threat to public health. New pathogens and changing epidemiology are a pronounced risk for nosocomial outbreaks. To investigate clonal transmission between patients and trace the source, genotyping is required. In the last decades, various typing assays have been developed and applied to different medically important fungal species. While these different typing methods will be briefly discussed, this review will focus on the development and application of short tandem repeat (STR) genotyping. This method relies on the amplification and comparison of highly variable STR markers between isolates. For most common fungal pathogens, STR schemes were developed and compared to other methods, like multilocus sequence typing (MLST), amplified fragment length polymorphism (AFLP) and whole genome sequencing (WGS) single nucleotide polymorphism (SNP) analysis. The pros and cons of STR typing as compared to the other methods are discussed, as well as the requirements for the development of a solid STR typing assay. The resolution of STR typing, in general, is higher than MLST and AFLP, with WGS SNP analysis being the gold standard when it comes to resolution. Although most modern laboratories are capable to perform STR typing, little progress has been made to standardize typing schemes. Allelic ladders, as developed for Aspergillus fumigatus, facilitate the comparison of STR results between laboratories and develop global typing databases. Overall, STR genotyping is an extremely powerful tool, often complimentary to whole genome sequencing. Crucial details for STR assay development, its applications and merit are discussed in this review.


Assuntos
Fungos , Técnicas de Genotipagem , Repetições de Microssatélites , Repetições de Microssatélites/genética , Fungos/genética , Fungos/classificação , Fungos/isolamento & purificação , Técnicas de Genotipagem/métodos , Humanos , Técnicas de Tipagem Micológica/métodos , Genótipo , Micoses/microbiologia , Polimorfismo de Nucleotídeo Único
10.
Food Control ; 1662024 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-39380968

RESUMO

In 2022, the Food and Drug Administration (FDA), the Centers for Disease Control and Prevention (CDC), and state health and regulatory partners investigated an outbreak of Salmonella enterica serovar Typhimurium infections linked to cantaloupes from southwest Indiana, resulting in 87 ill persons and 32 hospitalizations reported in 11 states. Epidemiologic and traceback evidence confirmed cantaloupe as the vehicle for these infections. Based on records collected by FDA, traceback of cantaloupe exposures for 14 ill people converged on a packing house in southwest Indiana, which supplied cantaloupe to eight of the 11 points of service where ill people purchased cantaloupe. Salmonella isolates were recovered from environmental samples collected by FDA from three growers and a packing house in southwest Indiana. Whole genome sequencing analyses of these isolates found that isolates collected from one grower matched the Salmonella Typhimurium outbreak strain, and samples collected from the other two growers and the packing house matched a 2020 Salmonella Newport outbreak strain. State and federal public health and agricultural partners identified potential conditions and practices that could have possibly resulted in the contamination of cantaloupe, including the presence of Salmonella spp. in on-farm, post-harvest, and off-farm environments. This is the third outbreak of salmonellosis confirmed to be linked to melons, sourced from southwest Indiana in the last decade. The 2012, 2020, and 2022 outbreaks of reoccurring and persisting strains of Salmonella illustrate the need for additional efforts to determine the source and extent of environmental contamination in the melon growing region of southwest Indiana and for outreach and education to help promote practices to reduce contamination of melons.

11.
Rural Remote Health ; 24(2): 8391, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38957085

RESUMO

INTRODUCTION: An outbreak of gastroenteritis due to Salmonella Give, a very rarely identified serotype in human isolates in Greece, occurred in participants of a religious festival in a rural area of southern Greece, in September 2022. The objectives of this study were to describe the outbreak in terms of epidemiology, identify the vehicle of transmission of the foodborne pathogen and recommend prevention measures. METHODS: The outbreak was linked to the consumption of a local traditional recipe of roasted pork meat served by a street food vendor. In 2018, the same food item, served in a restaurant in the same region, was implicated in another S. Give outbreak. RESULTS: Outbreak investigations revealed that outbreak-associated isolates, of food and human origin, belonged to the same S. Give strain. Significant deficiencies regarding food safety practices were identified. CONCLUSION: Technical knowledge about pathogen transmission paths is important in order for both food handlers and consumers to follow hygiene and sanitary measures, mainly in cases of mass gatherings, where large quantities of food are prepared, handled, cooked and served. Efficient official supervision, mainly during summer festivals, is required in order to avoid recurrence of foodborne infections by different combinations of pathogens/food commodities.


Assuntos
Surtos de Doenças , Carne de Porco , Humanos , Grécia/epidemiologia , Surtos de Doenças/prevenção & controle , Carne de Porco/microbiologia , Masculino , Intoxicação Alimentar por Salmonella/epidemiologia , Intoxicação Alimentar por Salmonella/prevenção & controle , Intoxicação Alimentar por Salmonella/microbiologia , Feminino , Adulto , Animais , Salmonella/isolamento & purificação , Pessoa de Meia-Idade , Gastroenterite/microbiologia , Gastroenterite/epidemiologia , Suínos , Microbiologia de Alimentos
12.
Brief Bioinform ; 22(1): 96-108, 2021 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-32568371

RESUMO

The unprecedented coverage offered by next-generation sequencing (NGS) technology has facilitated the assessment of the population complexity of intra-host RNA viral populations at an unprecedented level of detail. Consequently, analysis of NGS datasets could be used to extract and infer crucial epidemiological and biomedical information on the levels of both infected individuals and susceptible populations, thus enabling the development of more effective prevention strategies and antiviral therapeutics. Such information includes drug resistance, infection stage, transmission clusters and structures of transmission networks. However, NGS data require sophisticated analysis dealing with millions of error-prone short reads per patient. Prior to the NGS era, epidemiological and phylogenetic analyses were geared toward Sanger sequencing technology; now, they must be redesigned to handle the large-scale NGS datasets and properly model the evolution of heterogeneous rapidly mutating viral populations. Additionally, dedicated epidemiological surveillance systems require big data analytics to handle millions of reads obtained from thousands of patients for rapid outbreak investigation and management. We survey bioinformatics tools analyzing NGS data for (i) characterization of intra-host viral population complexity including single nucleotide variant and haplotype calling; (ii) downstream epidemiological analysis and inference of drug-resistant mutations, age of infection and linkage between patients; and (iii) data collection and analytics in surveillance systems for fast response and control of outbreaks.


Assuntos
Monitoramento Epidemiológico , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Infecções por Vírus de RNA/virologia , Vírus de RNA/genética , Humanos , Infecções por Vírus de RNA/epidemiologia , Vírus de RNA/classificação , Vírus de RNA/isolamento & purificação , Vírus de RNA/patogenicidade
13.
Eur J Clin Microbiol Infect Dis ; 42(12): 1469-1476, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37870711

RESUMO

PURPOSE: Traditional epidemiological investigations of healthcare-associated Clostridioides difficile infection (HA-CDI) are often insufficient. This study aimed to evaluate a procedure that includes secondary isolation and genomic typing of single toxigenic colonies using core genome multilocus sequence typing (cgMLST) for the investigation of C. difficile transmission. METHODS: We analyzed retrospectively all toxigenic C. difficile-positive stool samples stored at the Lausanne University Hospital over 6 consecutive months. All isolates were initially typed and classified using a modified double-locus sequence typing (DLST) method. Genome comparison of isolates with the same DLST and clustering were subsequently performed using cgMLST. The electronic administrative records of patients with CDI were investigated for spatiotemporal epidemiological links supporting hospital transmission. A comparative descriptive analysis between genomic and epidemiological data was then performed. RESULTS: From January to June 2021, 86 C. difficile isolates were recovered from thawed samples of 71 patients. Thirteen different DLST types were shared by > 1 patient, and 13 were observed in single patients. A genomic cluster was defined as a set of isolates from different patients with ≤ 3 locus differences, determined by cgMLST. Seven genomic clusters were identified, among which plausible epidemiological links were identified in only 4/7 clusters. CONCLUSION: Among clusters determined by cgMLST analysis, roughly 40% included unexplained HA-CDI acquisitions, which may be explained by unidentified epidemiological links, asymptomatic colonization, and/or shared common community reservoirs. The use of DLST, followed by whole genome sequencing analysis, is a promising and cost-effective stepwise approach for the investigation of CDI transmission in the hospital setting.


Assuntos
Clostridioides difficile , Infecções por Clostridium , Humanos , Tipagem de Sequências Multilocus/métodos , Clostridioides difficile/genética , Clostridioides/genética , Estudos Retrospectivos , Infecções por Clostridium/epidemiologia , Infecções por Clostridium/microbiologia , Hospitais , Genoma Bacteriano
14.
Euro Surveill ; 28(28)2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37440347

RESUMO

In November 2021, seven western lowland gorillas and four Asiatic lions were diagnosed with COVID-19 at Rotterdam Zoo. An outbreak investigation was undertaken to determine the source and extent of the outbreak and to identify possible transmission routes. Interviews were conducted with staff to identify human and animal contacts and cases, compliance with personal protective equipment (PPE) and potential transmission routes. Human and animal contacts and other animal species suspected to be susceptible to SARS-CoV-2 were tested for SARS-CoV-2 RNA. Positive samples were subjected to sequencing. All the gorillas and lions that could be tested (3/7 and 2/4, respectively) were RT-PCR positive between 12 November and 10 December 2021. No other animal species were SARS-CoV-2 RNA positive. Forty direct and indirect human contacts were identified. Two direct contacts tested RT-PCR positive 10 days after the first COVID-19 symptoms in animals. The zookeepers' viral genome sequences clustered with those of gorillas and lions. Personal protective equipment compliance was suboptimal at instances. Findings confirm transmission of SARS-CoV-2 among animals and between humans and animals but source and directionality could not be established. Zookeepers were the most likely source and should have periodic PPE training. Sick animals should promptly be tested and isolated/quarantined.


Assuntos
COVID-19 , Leões , Saúde Única , Animais , Humanos , SARS-CoV-2/genética , COVID-19/veterinária , Gorilla gorilla , RNA Viral/genética , Países Baixos/epidemiologia
15.
Euro Surveill ; 28(31)2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37535472

RESUMO

BackgroundEpidemics of keratoconjunctivitis may involve various aetiological agents. Microsporidia are an uncommon difficult-to-diagnose cause of such outbreaks.AimDuring the third quarter of 2022, a keratoconjunctivitis outbreak was reported across Israel, related to common water exposure to the Sea of Galilee. We report a comprehensive diagnostic approach that identified Vittaforma corneae as the aetiology, serving as proof of concept for using real-time metagenomics for outbreak investigation.MethodsCorneal scraping samples from a clinical case were subjected to standard microbiological testing. Samples were tested by calcofluor white staining and metagenomic short-read sequencing. We analysed the metagenome for taxonomical assignment and isolation of metagenome-assembled genome (MAG). Targets for a novel PCR were identified, and the assay was applied to clinical and environmental samples and confirmed by long-read metagenomic sequencing.ResultsFluorescent microscopy was suggestive of microsporidiosis. The most abundant species (96.5%) on metagenomics analysis was V. corneae. Annotation of the MAG confirmed the species assignment. A unique PCR target in the microsporidian rRNA gene was identified and validated against the clinical sample. The assay and metagenomic sequencing confirmed V. corneae in an environmental sludge sample collected at the exposure site.ConclusionsThe real-time utilisation of metagenomics allowed species detection and development of diagnostic tools, which aided in outbreak source tracking and can be applied for future cases. Metagenomics allows a fully culture-independent investigation and is an important modality for public health microbiology.


Assuntos
Ceratoconjuntivite , Microsporídios , Humanos , Metagenoma , Metagenômica , Israel/epidemiologia , Ceratoconjuntivite/diagnóstico , Ceratoconjuntivite/epidemiologia , Ceratoconjuntivite/genética , Microsporídios/genética , Surtos de Doenças , Sequenciamento de Nucleotídeos em Larga Escala
16.
J Infect Dis ; 225(9): 1554-1560, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35023551

RESUMO

BACKGROUND: Recently, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission through exposure to aerosols has been suggested. Therefore, we investigated the possibility of aerosol SARS-CoV-2 transmission within an apartment complex where residents reported testing positive for SARS-CoV-2 despite having no direct contact with other SARS-CoV-2-infected people. METHODS: Information on symptom onset and exposure history of the patients was collected by global positioning system (GPS) tracking to investigate possible points of contact or spread. Samples collected from patients and from various areas of the complex were analyzed using RNA sequencing. Phylogenetic analysis was also performed. RESULTS: Of 19 people with confirmed SARS-CoV-2 infection, 5 reported no direct contact with other residents and were from apartments in the same vertical line. Eight environmental samples tested positive for the virus. Phylogenetic analyses revealed that 3 of the positive cases and 1 environmental sample belonged to the B.1.497 lineage. Additionally, 3 clinical specimens and 1 environmental sample from each floor of the complex had the same amino acid substitution in the ORF1ab region. CONCLUSIONS: SARS-CoV-2 transmission possibly occurs between different floors of an apartment building through aerosol transmission via nonfunctioning drain traps.


Assuntos
COVID-19 , SARS-CoV-2 , Aerossóis , Humanos , Filogenia , SARS-CoV-2/genética
17.
Emerg Infect Dis ; 28(12): 2435-2445, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36328951

RESUMO

We analyzed monkeypox disease surveillance in Central African Republic (CAR) during 2001-2021. Surveillance data show 95 suspected outbreaks, 40 of which were confirmed as monkeypox, comprising 99 confirmed and 61 suspected monkeypox cases. After 2018, CAR's annual rate of confirmed outbreaks increased, and 65% of outbreaks occurred in 2 forested regions bordering the Democratic Republic of the Congo. The median patient age for confirmed cases was 15.5 years. The overall case-fatality ratio was 7.5% (12/160) for confirmed and suspected cases, 9.6% (8/83) for children <16 years of age. Decreasing cross-protective immunity from smallpox vaccination and recent ecologic alterations likely contribute to increased monkeypox outbreaks in Central Africa. High fatality rates associated with monkeypox virus clade I also are a local and international concern. Ongoing investigations of zoonotic sources and environmental changes that increase human exposure could inform practices to prevent monkeypox expansion into local communities and beyond endemic areas.


Assuntos
Mpox , Criança , Humanos , Adolescente , Mpox/epidemiologia , República Centro-Africana/epidemiologia , Monkeypox virus/genética , Surtos de Doenças , África Central/epidemiologia
18.
Emerg Infect Dis ; 28(11): 2290-2293, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36150455

RESUMO

Rift Valley fever, endemic or emerging throughout most of Africa, causes considerable risk to human and animal health. We report 7 confirmed Rift Valley fever cases, 1 fatal, in Kiruhura District, Uganda, during 2021. Our findings highlight the importance of continued viral hemorrhagic fever surveillance, despite challenges associated with the COVID-19 pandemic.


Assuntos
COVID-19 , Febre do Vale de Rift , Vírus da Febre do Vale do Rift , Animais , Humanos , Febre do Vale de Rift/epidemiologia , COVID-19/epidemiologia , Uganda/epidemiologia , Pandemias , Surtos de Doenças
19.
Emerg Infect Dis ; 28(11): 2326-2329, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36198315

RESUMO

Crimean-Congo hemorrhagic fever (CCHF) was detected in 2 refugees living in a refugee settlement in Kikuube district, Uganda. Investigations revealed a CCHF IgG seroprevalence of 71.3% (37/52) in goats within the refugee settlement. This finding highlights the need for a multisectoral approach to controlling CCHF in humans and animals in Uganda.


Assuntos
COVID-19 , Vírus da Febre Hemorrágica da Crimeia-Congo , Febre Hemorrágica da Crimeia , Refugiados , Animais , Humanos , Febre Hemorrágica da Crimeia/epidemiologia , Febre Hemorrágica da Crimeia/veterinária , Estudos Soroepidemiológicos , Uganda/epidemiologia , Pandemias , Surtos de Doenças , Cabras , Imunoglobulina G , Anticorpos Antivirais
20.
Emerg Infect Dis ; 28(4): 833-836, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35318922

RESUMO

We report an outbreak of severe acute respiratory syndrome coronavirus 2 involving 3 Malayan tigers (Panthera tigris jacksoni) at a zoo in Tennessee, USA. Investigation identified naturally occurring tiger-to-tiger transmission; genetic sequence change occurred with viral passage. We provide epidemiologic, environmental, and genomic sequencing data for animal and human infections.


Assuntos
COVID-19 , Tigres , Animais , COVID-19/epidemiologia , Surtos de Doenças , Humanos , SARS-CoV-2 , Tennessee/epidemiologia , Tigres/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA