Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 187(12): 2990-3005.e17, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38772370

RESUMO

Integrins link the extracellular environment to the actin cytoskeleton in cell migration and adhesiveness. Rapid coordination between events outside and inside the cell is essential. Single-molecule fluorescence dynamics show that ligand binding to the bent-closed integrin conformation, which predominates on cell surfaces, is followed within milliseconds by two concerted changes, leg extension and headpiece opening, to give the high-affinity integrin conformation. The extended-closed integrin conformation is not an intermediate but can be directly accessed from the extended-open conformation and provides a pathway for ligand dissociation. In contrast to ligand, talin, which links the integrin ß-subunit cytoplasmic domain to the actin cytoskeleton, modestly stabilizes but does not induce extension or opening. Integrin activation is thus initiated by outside-in signaling and followed by inside-out signaling. Our results further imply that talin binding is insufficient for inside-out integrin activation and that tensile force transmission through the ligand-integrin-talin-actin cytoskeleton complex is required.


Assuntos
Integrinas , Talina , Animais , Humanos , Camundongos , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/química , Adesão Celular , Células CHO , Cricetulus , Integrinas/metabolismo , Integrinas/química , Ligantes , Ligação Proteica , Conformação Proteica , Transdução de Sinais , Imagem Individual de Molécula , Talina/metabolismo , Talina/química
2.
Artigo em Inglês | MEDLINE | ID: mdl-38981976

RESUMO

Platelet hyperreactivity is one of the crucial causes of coagulative disorders in patients with COVID-19. Few studies have indicated that integrin αIIbß3 may be a potential target for spike protein binding to platelets. This study aims to investigate whether spike protein interacts with platelet integrin αIIbß3 and upregulates outside-in signaling to potentiate platelet aggregation. In this study, we found that spike protein significantly potentiated platelet aggregation induced by different agonists and platelet spreading in vitro. Mechanism studies revealed that spike protein upregulated the outside-in signaling, such as increased thrombin-induced phosphorylation of ß3, c-Src. Moreover, using tirofiban to inhibit spike protein binding to αIIbß3 or using PP2 to block outside-in signaling, we found that the potentiating effect of spike protein on platelet aggregation was abolished. These results demonstrate that SARS-CoV-2 spike protein directly enhances platelet aggregation via integrin αIIbß3 outside-in signaling, and suggest a potential target for platelet hyperreactivity in patients with COVID-19. HIGHLIGHTS: • Spike protein potentiates platelet aggregation and upregulates αIIbß3 outside-in signaling. • Spike protein interacts with integrin αIIbß3 to potentiate platelet aggregation. • Blocking outside-in signaling abolishes the effect of spike protein on platelets.

3.
Cell Biochem Funct ; 42(4): e4039, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38751189

RESUMO

Platelet hyperreactivity contributes to the pathogenesis of COVID-19, which is associated with a hypercoagulability state and thrombosis disorder. It has been demonstrated that Vitamin D deficiency is associated with the severity of COVID-19 infection. Vitamin D supplement is widely used as a dietary supplement due to its safety and health benefits. In this study, we investigated the direct effects and underlying mechanisms of 1,25(OH)2D3 on platelet hyperreactivity induced by SRAS-CoV-2 spike protein via Western blot and platelet functional studies in vitro. Firstly, we found that 1,25(OH)2D3 attenuated platelet aggregation and Src-mediated signaling. We further observed that 1,25(OH)2D3 attenuated spike protein-potentiated platelet aggregation in vitro. Mechanistically, 1,25(OH)2D3 attenuated spike protein upregulated-integrin αIIbß3 outside-in signaling such as platelet spreading and the phosphorylation of ß3, c-Src and Syk. Moreover, using PP2, the Src family kinase inhibitor to abolish spike protein-stimulated platelet aggregation and integrin αIIbß3 outside-in signaling, the combination of PP2 and 1,25(OH)2D3 did not show additive inhibitory effects on spike protein-potentiated platelet aggregation and the phosphorylation of ß3, c-Src and Syk. Thus, our data suggest that 1,25(OH)2D3 attenuates platelet aggregation potentiated by spike protein via downregulating integrin αIIbß3 outside-in signaling.


Assuntos
Agregação Plaquetária , Complexo Glicoproteico GPIIb-IIIa de Plaquetas , Transdução de Sinais , Glicoproteína da Espícula de Coronavírus , Agregação Plaquetária/efeitos dos fármacos , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/antagonistas & inibidores , Glicoproteína da Espícula de Coronavírus/metabolismo , Humanos , Transdução de Sinais/efeitos dos fármacos , SARS-CoV-2/efeitos dos fármacos , COVID-19/metabolismo , Plaquetas/metabolismo , Plaquetas/efeitos dos fármacos , Calcitriol/farmacologia , Quinases da Família src/metabolismo , Quinases da Família src/antagonistas & inibidores , Quinase Syk/metabolismo , Quinase Syk/antagonistas & inibidores , Fosforilação/efeitos dos fármacos , Tratamento Farmacológico da COVID-19
4.
Int J Mol Sci ; 25(5)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38474244

RESUMO

Adrenaline has recently been found to trigger phosphatidylserine (PS) exposure on blood platelets, resulting in amplification of the coagulation process, but the mechanism is only fragmentarily established. Using a panel of platelet receptors' antagonists and modulators of signaling pathways, we evaluated the importance of these in adrenaline-evoked PS exposure by flow cytometry. Calcium and sodium ion influx into platelet cytosol, after adrenaline treatment, was examined by fluorimetric measurements. We found a strong reduction in PS exposure after blocking of sodium and calcium ion influx via Na+/H+ exchanger (NHE) and Na+/Ca2+ exchanger (NCX), respectively. ADP receptor antagonists produced a moderate inhibitory effect. Substantial limitation of PS exposure was observed in the presence of GPIIb/IIIa antagonist, phosphoinositide-3 kinase (PI3-K) inhibitors, or prostaglandin E1, a cyclic adenosine monophosphate (cAMP)-elevating agent. We demonstrated that adrenaline may develop a procoagulant response in human platelets with the substantial role of ion exchangers (NHE and NCX), secreted ADP, GPIIb/IIIa-dependent outside-in signaling, and PI3-K. Inhibition of the above mechanisms and increasing cytosolic cAMP seem to be the most efficient procedures to control adrenaline-evoked PS exposure in human platelets.


Assuntos
Plaquetas , Ativação Plaquetária , Humanos , Plaquetas/metabolismo , Cálcio/metabolismo , Epinefrina/metabolismo , Inibidores da Agregação Plaquetária/farmacologia , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Sódio/metabolismo , Trombina/metabolismo
5.
Int J Mol Sci ; 22(3)2021 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-33572997

RESUMO

Focal adhesions (FAs) serve as dynamic signaling hubs within the cell. They connect intracellular actin to the extracellular matrix (ECM) and respond to environmental cues. In doing so, these structures facilitate important processes such as cell-ECM adhesion and migration. Pathogenic microbes often modify the host cell actin cytoskeleton in their pursuit of an ideal replicative niche or during invasion to facilitate uptake. As actin-interfacing structures, FA dynamics are also intimately tied to actin cytoskeletal organization. Indeed, exploitation of FAs is another avenue by which pathogenic microbes ensure their uptake, survival and dissemination. This is often achieved through the secretion of effector proteins which target specific protein components within the FA. Molecular mimicry of the leucine-aspartic acid (LD) motif or vinculin-binding domains (VBDs) commonly found within FA proteins is a common microbial strategy. Other effectors may induce post-translational modifications to FA proteins through the regulation of phosphorylation sites or proteolytic cleavage. In this review, we present an overview of the regulatory mechanisms governing host cell FAs, and provide examples of how pathogenic microbes have evolved to co-opt them to their own advantage. Recent technological advances pose exciting opportunities for delving deeper into the mechanistic details by which pathogenic microbes modify FAs.


Assuntos
Infecções Bacterianas/metabolismo , Fenômenos Fisiológicos Bacterianos , Adesões Focais/metabolismo , Interações Hospedeiro-Patógeno , Animais , Bactérias/metabolismo , Infecções Bacterianas/microbiologia , Proteínas de Bactérias/metabolismo , Matriz Extracelular/metabolismo , Matriz Extracelular/microbiologia , Adesões Focais/microbiologia , Humanos , Integrinas/metabolismo , Transdução de Sinais
6.
Int J Mol Sci ; 21(21)2020 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-33153214

RESUMO

Diabetes is associated with platelet hyper-reactivity and enhanced risk of thrombosis development. Here we compared protein expression in platelets from healthy donors and diabetic patients to identify differentially expressed proteins and their possible function in platelet activation. Mass spectrometry analyses identified cyclin Y (CCNY) in platelets and its reduced expression in platelets from diabetic patients, a phenomenon that could be attributed to the increased activity of calpains. To determine the role of CCNY in platelets, mice globally lacking the protein were studied. CCNY-/- mice demonstrated lower numbers of circulating platelets but platelet responsiveness to thrombin and a thromboxane A2 analogue were comparable with that of wild-type mice, as was agonist-induced α and dense granule secretion. CCNY-deficient platelets demonstrated enhanced adhesion to fibronectin and collagen as well as an attenuated spreading and clot retraction, indicating an alteration in "outside in" integrin signalling. This phenotype was accompanied by a significant reduction in the agonist-induced tyrosine phosphorylation of ß3 integrin. Taken together we have shown that CCNY is present in anucleated platelets where it is involved in the regulation of integrin-mediated outside in signalling associated with thrombin stimulation.


Assuntos
Plaquetas/metabolismo , Ciclinas/genética , Integrinas/metabolismo , Adulto , Animais , Ciclinas/metabolismo , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Ativação Plaquetária/genética , Adesividade Plaquetária/genética , Agregação Plaquetária/genética , Transdução de Sinais/genética , Adulto Jovem
7.
Inflamm Res ; 68(10): 877-887, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31342095

RESUMO

OBJECTIVE: Vascular endothelial (VE)-cadherin-mediated adherens junction is critical to maintain endothelial integrity. Besides its role of homophilic intercellular adhesion, VE-cadherin also has a role of outside-in signaling with functional consequences for vascular physiology. However, the nature of these signals remains not completely understood. MATERIALS AND METHODS: Human umbilical vein endothelial cells (HUVECs) were used in cell culture experiments. Confluent HUVECs were treated with VE-cadherin function-blocking antibodies BV9 (50 µg/ml) or IgG control. Antibody array was used to screen for cytokine/chemokine in supernatant. For VE-cadherin knockdown, siRNA transfection was used. ELISA, Western blot, and qRT-PCR were used to confirm the expression of screened cytokine/chemokine. To explore the possible mechanisms, Scr phosphorylation was detected and Scr inhibitor PP2 (1 µM) was used. To investigate in vivo relevance of the findings, BV9 and the indicated neutralizing antibodies were injected into mice and then lung vascular leak and inflammation were examined by Evans blue assay and lung tissue H&E, respectively. RESULTS: Using a non-biased, high-throughout human cytokine/chemokine antibody array, we first found that disruption of VE-cadherin-mediated adhesion by function-blocking antibody BV9 triggered the release of migration inhibitory factor (MIF). This VE-cadherin-mediated release of MIF further confirmed by ELISA with both VE-cadherin blocking antibody and siRNA technique was due to enhanced expression of MIF mRNA, which was mediated by Src kinase activation. In addition, in vivo lung vascular leak induced by VE-cadherin function-blocking antibody was partly alleviated by neutralizing MIF. CONCLUSIONS: VE-cadherin regulates MIF synthesis and release via Src kinase. Our data provide additional evidence to the concept that VE-cadherin transfers intracellular signals to coordinate the state of cell-cell adhesion with gene expression.


Assuntos
Antígenos CD/genética , Caderinas/genética , Oxirredutases Intramoleculares/genética , Fatores Inibidores da Migração de Macrófagos/genética , Animais , Anticorpos Monoclonais/farmacologia , Antígenos CD/imunologia , Antígenos CD/metabolismo , Caderinas/imunologia , Caderinas/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Oxirredutases Intramoleculares/metabolismo , Fatores Inibidores da Migração de Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , RNA Interferente Pequeno/genética
8.
Proc Natl Acad Sci U S A ; 110(28): 11517-22, 2013 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-23801760

RESUMO

Full-length tissue factor (flTF), the coagulation initiator, is overexpressed in breast cancer (BrCa), but associations between flTF expression and clinical outcome remain controversial. It is currently not known whether the soluble alternatively spliced TF form (asTF) is expressed in BrCa or impacts BrCa progression. We are unique in reporting that asTF, but not flTF, strongly associates with both tumor size and grade, and induces BrCa cell proliferation by binding to ß1 integrins. asTF promotes oncogenic gene expression, anchorage-independent growth, and strongly up-regulates tumor expansion in a luminal BrCa model. In basal BrCa cells that constitutively express both TF isoforms, asTF blockade reduces tumor growth and proliferation in vivo. We propose that asTF plays a major role in BrCa progression acting as an autocrine factor that promotes tumor progression. Targeting asTF may comprise a previously unexplored therapeutic strategy in BrCa that stems tumor growth, yet does not impair normal hemostasis.


Assuntos
Processamento Alternativo , Neoplasias da Mama/patologia , Integrina beta1/fisiologia , Tromboplastina/fisiologia , Adulto , Animais , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Humanos , Camundongos , Pessoa de Meia-Idade , Tromboplastina/genética
9.
Eur J Immunol ; 44(12): 3484-99, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25251823

RESUMO

The integrin lymphocyte function associated antigen-1 (LFA-1) plays a key role in leukocyte trafficking and in adaptive immune responses through interactions with adhesive ligands, such as ICAM-1. Specific blockade of these interactions has validated LFA-1 as a therapeutic target in many chronic inflammatory diseases, however LFA-1 antagonists have not been clinically successful due to the development of a general immunosuppression, causing fatal side effects. Growing evidence has now established that LFA-1 mediates an array of intracellular signaling pathways by triggering a number of downstream molecules. In this context, a class of multimodular domain-containing proteins capable of recruiting two or more effector molecules, collectively known as "adaptor proteins," has emerged as important mediators in LFA-1 signal transduction. Here, we provide an overview of the adaptor proteins involved in the intracellular signaling cascades by which LFA-1 regulates T-cell motility and immune responses. The complexity of the LFA-1-associated signaling delineated in this review suggests that it may be an important and challenging focus for future research, enabling the identification of "tunable" targets for the development of immunotherapies.


Assuntos
Movimento Celular/imunologia , Imunoterapia/métodos , Doenças Inflamatórias Intestinais/terapia , Antígeno-1 Associado à Função Linfocitária/imunologia , Transdução de Sinais/imunologia , Animais , Humanos , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/patologia
10.
PNAS Nexus ; 3(8): pgae332, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39170909

RESUMO

Lymphocyte interactions mediated by leukocyte integrin lymphocyte function-associated antigen 1 (LFA1) and intercellular adhesion molecules (ICAMs) are important for lymphocyte trafficking and antigen recognition. Integrins are regulated by the modulation of ligand-binding affinity and avidity (valency). Although the mechanism underlying high-affinity LFA1 binding has been investigated extensively, the molecular mechanisms by which low-affinity multivalent binding initiates adhesion remain unclear. We previously showed that ICAM1 and monoclonal antibodies that recognize specific LFA1 conformations induce the accumulation of LFA1 at the contact surface. In this study, we found that the small GTPase Rab8 is critical for intracellular transport and accumulation of LFA1 at cell contact areas mediated by low-affinity LFA1-dependent outside-in signaling. Super-resolution microscopy revealed that Rab8 co-localized with LFA1 in small vesicles near the contact membrane. Inactivation of Rab8 decreased ICAM1-dependent adhesion and substantially reduced LFA1 density on the contact membrane. The GTP-bound active form of Rab8 increased cell adhesiveness and promoted LFA1 accumulation at the contact area through co-trafficking with LFA1. Rab8 activation was induced by low-affinity conformation-dependent outside-in signaling via the guanine exchange factor Rabin8, which induced Rab8 activation at the cell contact area independent of Rap1. Single-molecule imaging of ICAM1 on a supported planner lipid bilayer demonstrated that Rab8 increased the frequency of LFA1-ICAM1 interactions without affecting their binding lifetime, indicating that Rab8 is mainly involved in the modulation of LFA1 avidity rather than LFA1 affinity. The present findings underscore the importance of low-affinity conformation-dependent outside-in signaling via the Rabin8-Rab8 axis leading to the initiation of LFA1 transport to the contact area.

11.
Biochem Biophys Res Commun ; 436(3): 406-12, 2013 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-23747731

RESUMO

Integrins are transmembrane adhesion molecules composed of α and ß subunits. In humans, 24 integrins are expressed in a tissue-specific manner. Each integrin plays a specific role within a tissue type to control cell adhesion. We previously found that the degree of transmembrane domain (TMD) interaction between the integrin αIIb and ß3 subunits is reversely correlated with the affinity of integrin αIIbß3 to its ligand. Here, we examined the TMD interactions of various integrins, including α4ß1, αLß2, α5ß1, αVß1, αIIbß3, and αVß3. Our findings revealed that the degree of the TMD interactions in integrins α4ß1 and αLß2 expressed in immune cells was low and in integrins αIIbß3 and αVß3 expressed in platelets was high, while integrins α5ß1 and αVß1 that are expressed in most adherent cells displayed intermediate TMD interactions. We identified sequence variation within the N-terminal TMD region as a factor responsible for the observed differential degree of TMD interaction among integrins. When the N-terminal interaction that was missing in integrin α5ß1 was restored with mutagenesis, the increase in TMD interaction inhibited the outside-in but not inside-out signaling of integrin α5ß1 and also accelerated the speed of cell migration. We suggest, therefore, that the degree of TMD interaction is designed to accommodate the specific, desired function of each integrin.


Assuntos
Integrina alfaVbeta3/metabolismo , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Mapeamento de Interação de Proteínas/métodos , Sequência de Aminoácidos , Animais , Plaquetas/metabolismo , Células CHO , Adesão Celular , Membrana Celular/metabolismo , Movimento Celular , Cricetinae , Fibronectinas/metabolismo , Células HEK293 , Humanos , Integrina alfa5beta1/metabolismo , Antígeno-1 Associado à Função Linfocitária/metabolismo , Dados de Sequência Molecular , Plasmídeos/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Alinhamento de Sequência , Relação Estrutura-Atividade
12.
Curr Protein Pept Sci ; 24(1): 31-42, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36380406

RESUMO

Platelets and their progenitors express high levels of integrin αIIbß3, which plays a key role in platelet functions, hemostasis, and arterial thrombosis. Because of their quick and high efficacy, the three anti-αIIbß3 drugs, abciximab, eptifibatide, and tirofiban, are regarded as potent anti-thrombotics and clinically approved by US Food and Drug Administration. However, because they interfere with the inside-out signaling of αIIbß3, which is required for stable platelet adhesion and aggregation, the application of abciximab, eptifibatide, and tirofiban is restricted to patients undergoing percutaneous coronary intervention. On the other hand, the outside-in signaling of αIIbß3 in platelets appears to be responsible for thrombus stabilization, and selective interference with the propagation of outside-in signals might signify a new therapeutic strategy to preferentially inhibit platelet-rich arterial thrombosis with less bleeding issues caused by way of compromised major hemostasis. The purpose of this review is to describe the bidirectional signal transduction of integrin αIIbß3 in platelets with a focus on outside-in signaling, more efficient and safer anti-αIIbß3 peptides, and the potential drug targets for future anti-platelet research.


Assuntos
Complexo Glicoproteico GPIIb-IIIa de Plaquetas , Trombose , Humanos , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Abciximab , Tirofibana/farmacologia , Eptifibatida , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Trombose/tratamento farmacológico , Trombose/metabolismo , Transdução de Sinais
13.
Life Sci ; 326: 121791, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37211346

RESUMO

AIMS: Platelet activation plays a central role in arterial thrombosis. Platelets are activated by adhesive proteins (i.e., collagen) or soluble agonists (i.e., thrombin), the respective receptor-specific signaling cause inside-out signaling, leading to the binding of fibrinogen to integrin αIIbß3. This binding triggers outside-in signaling, resulting in platelet aggregation. Garcinol, a polyisoprenylated benzophenone, is extracted from the fruit rind of Garcinia indica. Although garcinol exhibits considerable bioactivities, few studies have investigated the effect of garcinol on platelet activation. MAIN METHODS: Aggregometry, immunoblotting, flow cytometer, confocal microscopic analysis, fibrin clot retraction, animal studies such as fluorescein-induced platelet plug formation in mesenteric microvessels, acute pulmonary thromboembolism, and tail bleeding time were performed in this study. KEY FINDINGS: This study indicates that garcinol inhibited platelet aggregation stimulated by collagen, thrombin, arachidonic acid, and U46619. Garcinol reduced integrin αIIbß3 inside-out signaling, including ATP release; cytosolic Ca2+ mobilization; P-selectin expression; and Syk, PLCγ2/PKC, PI3K/Akt/GSK3ß, MAPKs, and NF-κB activation stimulated by collagen. Garcinol directly inhibited integrin αIIbß3 activation by interfering with FITC-PAC-1 and FITC-triflavin by collagen. Additionally, garcinol affected integrin αIIbß3-mediated outside-in signaling, such as decreasing platelet adhesion and the single-platelet spreading area; suppressing integrin ß3, Src, FAK, and Syk phosphorylation on immobilized fibrinogen; and inhibiting thrombin-stimulated fibrin clot retraction. Garcinol substantially reduced mortality caused by pulmonary thromboembolism and prolonged the occlusion time of thrombotic platelet plug formation without extending bleeding time in mice. SIGNIFICANCE: This study identified that garcinol, a novel antithrombotic agent, acts as a naturally occurring integrin αIIbß3 inhibitor.


Assuntos
Embolia Pulmonar , Trombose , Humanos , Camundongos , Animais , Plaquetas/metabolismo , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Fluoresceína-5-Isotiocianato/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Trombina/metabolismo , Ativação Plaquetária , Agregação Plaquetária , Trombose/metabolismo , Fosforilação , Colágeno/metabolismo , Fibrinogênio/metabolismo , Embolia Pulmonar/metabolismo
14.
Plants (Basel) ; 10(8)2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34451757

RESUMO

Pectin is an abundant cell wall polysaccharide with essential roles in various biological processes. The structural diversity of pectins, along with the numerous combinations of the enzymes responsible for pectin biosynthesis and modification, plays key roles in ensuring the specificity and plasticity of cell wall remodeling in different cell types and under different environmental conditions. This review focuses on recent progress in understanding various aspects of pectin, from its biosynthetic and modification processes to its biological roles in different cell types. In particular, we describe recent findings that cell wall modifications serve not only as final outputs of internally determined pathways, but also as key components of intercellular communication, with pectin as a major contributor to this process. The comprehensive view of the diverse roles of pectin presented here provides an important basis for understanding how cell wall-enclosed plant cells develop, differentiate, and interact.

15.
Cell Biosci ; 11(1): 32, 2021 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-33557943

RESUMO

BACKGROUND: Bidirectional integrin αIIbß3 signaling is essential for platelet activation. The platelet adaptor protein Disabled-2 (Dab2) is a key regulator of integrin signaling and is phosphorylated at serine 24 in eukaryotic cells. However, the mechanistic insight and function of Dab2-serine 24 phosphorylation (Dab2-pSer24) in platelet biology are barely understood. This study aimed to define whether and how Dab2 is phosphorylated at Ser24 during platelet activation and to investigate the effect of Dab2-pSer24 on platelet function. RESULTS: An antibody with confirmed specificity for Dab2-pSer24 was generated. By using this antibody as a tool, we showed that protein kinase C (PKC)-mediated Dab2-pSer24 was a conservative signaling event when human platelets were activated by the platelet agonists such as thrombin, collagen, ADP, 12-O-tetradecanoylphorbol-13-acetate, and the thromboxane A2 activator U46619. The agonists-stimulated Dab2-pSer24 was attenuated by pretreatment of platelets with the RGDS peptide which inhibits integrin outside-in signaling by competitive binding of integrin αIIb with fibrinogen. Direct activation of platelet integrin outside-in signaling by combined treatment of platelets with manganese dichloride and fibrinogen or by spreading of platelets on fibrinogen also resulted in Dab2-pSer24. These findings implicate that Dab2-pSer24 was associated with the outside-in signaling of integrin. Further analysis revealed that Dab2-pSer24 was downstream of Src-PKC-axis and phospholipase D1 underlying the integrin αIIbß3 outside-in signaling. A membrane penetrating peptide R11-Ser24 which contained 11 repeats of arginine linked to the Dab2-Ser24 phosphorylation site and its flanking sequences (RRRRRRRRRRR19APKAPSKKEKK29) and the R11-S24A peptide with Ser24Ala mutation were designed to elucidate the functions of Dab2-pSer24. R11-Ser24 but not R11-S24A inhibited agonists-stimulated Dab2-pSer24 and consequently suppressed platelet spreading on fibrinogen, with no effect on platelet aggregation and fibrinogen binding. Notably, Ser24 and the previously reported Ser723 phosphorylation (Dab2-pSer723) occurred exclusively in a single Dab2 molecule and resulted in distinctive subcellular distribution and function of Dab2. Dab2-pSer723 was mainly distributed in the cytosol of activated platelets and associated with integrin inside-out signaling, while Dab2-pSer24 was mainly distributed in the membrane fraction of activated platelets and associated with integrin outside-in signaling. CONCLUSIONS: These findings demonstrate for the first time that Dab2-pSer24 is conservative in integrin αIIbß3 outside-in signaling during platelet activation and plays a novel role in the control of cytoskeleton reorganization and platelet spreading on fibrinogen.

16.
Front Pharmacol ; 12: 685948, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34276375

RESUMO

Seaweeds are thought to be promising candidates for functional foods and to help prevent thrombotic and related cardiovascular diseases. Codium fragile (Suringer) Hariot has been traditionally used as a culinary ingredient, and it possesses a range of biological activities, including the inhibition of platelet function. However, the mechanism of this inhibition is unclear. The aim of this study was to examine the inhibitory effect of C. fragile in platelet function. The antiplatelet activity of C. fragile on agonist-activated platelet aggregation, granule secretion, calcium mobilization, platelet spreading, and clot retraction was assessed. The phosphorylation of c-Src, Syk, PLCγ2, and several proteins involving in the αIIbß3 integrin outside-in signaling pathway were also studied in thrombin and CRP-stimulated platelets. The antithrombotic effect was investigated in mice using ferric chloride-induced arterial thrombus formation in vivo. Transection tail bleeding time was used to evaluate whether C. fragile inhibited primary hemostasis. The main components and contents of C. fragile ethanol extract were confirmed by GC-MS analysis. C. fragile significantly impaired agonist-induced platelet aggregation granule secretion, calcium mobilization, platelet spreading, and clot retraction. Biochemical analysis revealed that C. fragile inhibited the agonist-induced activation of c-Src, Syk, and PLCγ2, as well as the phosphorylation of PI3K, AKT, and mitogen-activated protein kinases (MAPKs). The inhibitory effect of C. fragile resulted from an inhibition of platelet αIIbß3 integrin outside-in signal transduction during cell activation. Oral administration of C. fragile efficiently blocked FeCl3-induced arterial thrombus formation in vivo without prolonging bleeding time. GC-MS analysis revealed that phytol was the main constituent and the total content of isomers was 160.8 mg/kg. Our results demonstrated that C. fragile suppresses not only the inside-out signaling of αIIbß3 integrin but also outside-in signal transmission. Therefore, C. fragile could be an effective antiplatelet therapeutic candidate.

17.
J Leukoc Biol ; 108(6): 1815-1828, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32531836

RESUMO

Recruitment of leukocytes to sites of acute inflammation is guided by spatial and temporal cues that ensure appropriate cell numbers infiltrate the tissue at precise locations to protect it from infection and initiate repair. On inflamed endothelium, neutrophil rolling via selectins elicits cytosolic calcium release from endoplasmic reticulum (ER)-stores that are synergistic with chemokine signaling to activate formation of high affinity (HA) LFA-1 bonds to ICAM-1, which is necessary to anchor cells against the drag force of blood flow. Bond tension on LFA-1 within the area of adhesive contact with endothelium elicits calcium entry through calcium release-activated calcium channel protein 1 (Orai-1) membrane channels that in turn activate neutrophil shape change and migration. We hypothesized that mechanotransduction via LFA-1 is mediated by assembly of a cytosolic molecular complex consisting of Kindlin-3, receptor for activated C kinase 1 (RACK1), and Orai1. Initiation of Ca2+ flux at sites of adhesive contact required a threshold level of shear stress and increased with the magnitude of bond tension transduced across as few as 200 HA LFA-1. A sequential mechanism triggered by force acting on LFA-1/Kindlin-3 precipitated dissociation of RACK1, which formed a concentration gradient above LFA-1 bond clusters. This directed translocation of ER proximal to Orai1, where binding of inositol 1,4,5-triphosphate receptor type 1 and activation via stromal interaction molecule 1 elicited Ca flux and subsequent neutrophil shape change and motility. We conclude that neutrophils sense adhesive traction on LFA-1 bonds on a submicron scale to direct calcium influx, thereby ensuring sufficient shear stress of blood flow is present to trigger cell arrest and initiate transmigration at precise regions of vascular inflammation.


Assuntos
Antígeno-1 Associado à Função Linfocitária/imunologia , Mecanotransdução Celular/imunologia , Neutrófilos/imunologia , Resistência à Tração , Humanos , Inflamação/imunologia , Inflamação/patologia , Molécula 1 de Adesão Intercelular/imunologia , Proteínas de Membrana/imunologia , Proteínas de Neoplasias/imunologia , Neutrófilos/patologia , Proteína ORAI1/imunologia , Receptores de Quinase C Ativada/imunologia
18.
Front Immunol ; 9: 2774, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30546362

RESUMO

Neutrophils are the most motile of mammalian cells, a feature that enables them to protect the host against the rapid spread of pathogens from tissue into the circulatory system. A critical process is the recruitment of neutrophils to inflamed endothelium within post-capillary venules. This occurs through cooperation between at least four families of adhesion molecules and G-protein coupled signaling receptors. These adhesion molecules convert the drag force induced by blood flow acting on the cell surface into bond tension that resists detachment. A common feature of selectin-glycoprotein tethering and integrin-ICAM bond formation is the mechanics by which force acting on these specific receptor-ligand pairs influences their longevity, strength, and topographic organization on the plasma membrane. Another distinctly mechanical aspect of neutrophil guidance is the capacity of adhesive bonds to convert external mechanical force into internal biochemical signals through the transmission of force from the outside-in at focal sites of adhesive traction on inflamed endothelium. Within this region of the plasma membrane, we denote the inflammatory synapse, Ca2+ release, and intracellular signaling provide directional cues that guide actin assembly and myosin driven motive force. This review provides an overview of how bond formation and outside-in signaling controls neutrophil recruitment and migration relative to the hydrodynamic shear force of blood flow.


Assuntos
Vasos Sanguíneos/imunologia , Movimento Celular/imunologia , Células Endoteliais/imunologia , Integrinas/imunologia , Mecanotransdução Celular/imunologia , Neutrófilos/imunologia , Insuficiência Renal Crônica/imunologia , Adulto , Vasos Sanguíneos/patologia , Células Endoteliais/patologia , Feminino , Humanos , Inflamação/imunologia , Inflamação/patologia , Masculino , Neutrófilos/patologia , Insuficiência Renal Crônica/patologia
19.
Protein J ; 37(3): 280-289, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29785642

RESUMO

Bi-directional signaling of integrins plays an important role in platelet and leukocyte function. Talin plays a key role in integrin bi-directional signaling and its binding to integrin is highly regulated. The precise regulation of the recruitment and binding of talin to integrin is still being elucidated. In particular, the recruitment of talin to integrin is controlled by the RAP-1 and RIAM/lamellipodin signaling axis and the affinity between talin and integrin is regulated by the conformation or protease cleavage of talin. However, whether the binding between integrin and talin is also regulated by integrin conformation has not been thoroughly explored before. In this work, we used biochemical binding assays to study the potential role of integrin conformational changes in integrin-talin interactions. Constitutively active integrin αIIbb3 binds markedly stronger to talin than inactive αIIbb3. Inactive αIIbb3 markedly increases its binding to talin once activated, regardless of how αIIbb3 is activated. Further, the increased binding to talin is b3 tail dependent. Our results suggest that integrin conformation is another regulatory mechanism for integrin-talin interaction.


Assuntos
Complexo Glicoproteico GPIIb-IIIa de Plaquetas/química , Talina/química , Sequência de Aminoácidos , Anticorpos/química , Cátions Bivalentes , Ativação Enzimática , Expressão Gênica , Humanos , Manganês/química , Mutação , Oligopeptídeos/química , Ligação Proteica , Conformação Proteica , Talina/genética
20.
Int J Adv Res (Indore) ; 6(3): 1143-1149, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30931337

RESUMO

Platelets regulate inflammation as well as hemostasis. Inflammatory insults often induce hemostatic function through mechanisms that are not always understood. The triggering receptor expressed in myeloid cells (TREM)-like transcript 1 (TLT-1) is an abundantly expressed platelet receptor and its deletion leads to hemorrhage and edema after lipopolysaccharide and TNF-α treatment. To define a role for TLT-1 in immune derived bleeding we used a CXCL-2 mediated local inflammatory reaction in the vessels of the cremaster muscle of treml1 -/- and wild type mice. Our whole mount immunofluorescent staining of the cremaster muscle demonstrated a 50% reduction in clot size and increased extravasation of plasma molecules in treml1 -/- mice compared to wild type. We demonstrate that the decreased clotting in treml1 -/- mice is associated with a 2X reduction in integrin ß3 phosphorylation on residue Y773 after platelet activation, which is consistent with treml1 -/- mice displaying reduced outside-in signaling and smaller thrombi. We further substantiate TLT-1's role in the regulation of immune derived bleeding using the reverse arthus reaction and demonstrate TLT-1's role in thrombosis using the thromboplastin initiated and collagen/epinephrine models of pulmonary embolism. Thus, the data presented here demonstrate that TLT-1 regulates early clot formation though the stabilization of αIIbß3 outside-in signaling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA