Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
New Phytol ; 235(4): 1315-1329, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35588181

RESUMO

One of the key functions of mitochondria is the production of ATP to support cellular metabolism and growth. The last step of mitochondrial ATP synthesis is performed by the oxidative phosphorylation (OXPHOS) system, an ensemble of protein complexes embedded in the inner mitochondrial membrane. In the last 25 yr, many structures of OXPHOS complexes and supercomplexes have been resolved in yeast, mammals, and bacteria. However, structures of plant OXPHOS enzymes only became available very recently. In this review, we highlight the plant-specific features revealed by the recent structures and discuss how they advance our understanding of the function and assembly of plant OXPHOS complexes. We also propose new hypotheses to be tested and discuss older findings to be re-evaluated. Further biochemical and structural work on the plant OXPHOS system will lead to a deeper understanding of plant respiration and its regulation, with significant agricultural, environmental, and societal implications.


Assuntos
Membranas Mitocondriais , Fosforilação Oxidativa , Trifosfato de Adenosina/metabolismo , Animais , Mamíferos , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Saccharomyces cerevisiae/metabolismo
2.
Ultrastruct Pathol ; 46(5): 462-475, 2022 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-35946926

RESUMO

Huntington´s disease (HD) is a progressive neurodegenerative disease with onset in adulthood that leads to a complete disability and death in approximately 20 years after onset of symptoms. HD is caused by an expansion of a CAG triplet in the gene for huntingtin. Although the disease causes most damage to striatal neurons, other parts of the nervous system and many peripheral tissues are also markedly affected. Besides huntingtin malfunction, mitochondrial impairment has been previously described as an important player in HD. This study focuses on mitochondrial structure and function in cultivated skin fibroblasts from 10 HD patients to demonstrate mitochondrial impairment in extra-neuronal tissue. Mitochondrial structure, mitochondrial fission, and cristae organization were significantly disrupted and signs of elevated apoptosis were found. In accordance with structural changes, we also found indicators of functional alteration of mitochondria. Mitochondrial disturbances presented in fibroblasts from HD patients confirm that the energy metabolism damage in HD is not localized only to the central nervous system, but also may play role in the pathogenesis of HD in peripheral tissues. Skin fibroblasts can thus serve as a suitable cellular model to make insight into HD pathobiochemical processes and for the identification of possible targets for new therapies.


Assuntos
Doença de Huntington , Doenças Neurodegenerativas , Adulto , Fibroblastos/metabolismo , Humanos , Doença de Huntington/genética , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Mitocôndrias/patologia , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Neurônios/patologia
3.
Entropy (Basel) ; 24(12)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36554218

RESUMO

The results of many experimental and theoretical works indicate that after transport of protons across the mitochondrial inner membrane (MIM) in the oxidative phosphorylation (OXPHOS) system, they are retained on the membrane-water interface in nonequilibrium state with free energy excess due to low proton surface-to-bulk release. This well-established phenomenon suggests that proton trapping on the membrane interface ensures vectorial lateral transport of protons from proton pumps to ATP synthases (proton acceptors). Despite the key role of the proton transport in bioenergetics, the molecular mechanism of proton transfer in the OXPHOS system is not yet completely established. Here, we developed a dynamics model of long-range transport of energized protons along the MIM accompanied by collective excitation of localized waves propagating on the membrane surface. Our model is based on the new data on the macromolecular organization of the OXPHOS system showing the well-ordered structure of respirasomes and ATP synthases on the cristae membrane folds. We developed a two-component dynamics model of the proton transport considering two coupled subsystems: the ordered hydrogen bond (HB) chain of water molecules and lipid headgroups of MIM. We analytically obtained a two-component soliton solution in this model, which describes the motion of the proton kink, corresponding to successive proton hops in the HB chain, and coherent motion of a compression soliton in the chain of lipid headgroups. The local deformation in a soliton range facilitates proton jumps due to water molecules approaching each other in the HB chain. We suggested that the proton-conducting structures formed along the cristae membrane surface promote direct lateral proton transfer in the OXPHOS system. Collective excitations at the water-membrane interface in a form of two-component soliton ensure the coupled non-dissipative transport of charge carriers and elastic energy of MIM deformation to ATP synthases that may be utilized in ATP synthesis providing maximal efficiency in mitochondrial bioenergetics.

4.
J Biol Chem ; 295(4): 940-954, 2020 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-31819004

RESUMO

The deafness-associated m.12201T>C mutation affects the A5-U68 base-pairing within the acceptor stem of mitochondrial tRNAHis The primary defect in this mutation is an alteration in tRNAHis aminoacylation. Here, we further investigate the molecular mechanism of the deafness-associated tRNAHis 12201T>C mutation and test whether the overexpression of the human mitochondrial histidyl-tRNA synthetase gene (HARS2) in cytoplasmic hybrid (cybrid) cells carrying the m.12201T>C mutation reverses mitochondrial dysfunctions. Using molecular dynamics simulations, we demonstrate that the m.12201T>C mutation perturbs the tRNAHis structure and function, supported by decreased melting temperature, conformational changes, and instability of mutated tRNA. We show that the m.12201T>C mutation-induced alteration of aminoacylation tRNAHis causes mitochondrial translational defects and respiratory deficiency. We found that the transfer of HARS2 into the cybrids carrying the m.12201T>C mutation raises the levels of aminoacylated tRNAHis from 56.3 to 75.0% but does not change the aminoacylation of other tRNAs. Strikingly, HARS2 overexpression increased the steady-state levels of tRNAHis and of noncognate tRNAs, including tRNAAla, tRNAGln, tRNAGlu, tRNALeu(UUR), tRNALys, and tRNAMet, in cells bearing the m.12201T>C mutation. This improved tRNA metabolism elevated the efficiency of mitochondrial translation, activities of oxidative phosphorylation complexes, and respiration capacity. Furthermore, HARS2 overexpression markedly increased mitochondrial ATP levels and membrane potential and reduced production of reactive oxygen species in cells carrying the m.12201T>C mutation. These results indicate that HARS2 overexpression corrects the mitochondrial dysfunction caused by the tRNAHis mutation. These findings provide critical insights into the pathophysiology of mitochondrial disease and represent a step toward improved therapeutic interventions for mitochondrial disorders.


Assuntos
Aminoacil-tRNA Sintetases/genética , Surdez/enzimologia , Surdez/genética , Mitocôndrias/enzimologia , Mitocôndrias/patologia , Mutação/genética , RNA de Transferência de Histidina/genética , Trifosfato de Adenosina/metabolismo , Aminoacil-tRNA Sintetases/química , Aminoacil-tRNA Sintetases/metabolismo , Aminoacilação , Linhagem Celular , Respiração Celular , DNA Mitocondrial/metabolismo , Transporte de Elétrons , Humanos , Potencial da Membrana Mitocondrial , Proteínas Mitocondriais/metabolismo , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Desnaturação de Ácido Nucleico , Estabilidade de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , RNA de Transferência de Histidina/química , RNA de Transferência de Histidina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Frações Subcelulares/metabolismo
5.
J Biol Chem ; 295(9): 2544-2554, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-31974161

RESUMO

Mammalian mitochondria assemble four complexes of the respiratory chain (RCI, RCIII, RCIV, and RCV) by combining 13 polypeptides synthesized within mitochondria on mitochondrial ribosomes (mitoribosomes) with over 70 polypeptides encoded in nuclear DNA, translated on cytoplasmic ribosomes, and imported into mitochondria. We have previously observed that mitoribosome assembly is inefficient because some mitoribosomal proteins are produced in excess, but whether this is the case for other mitochondrial assemblies such as the RCs is unclear. We report here that pulse-chase stable isotope labeling with amino acids in cell culture (SILAC) is a valuable technique to study RC assembly because it can reveal considerable differences in the assembly rates and efficiencies of the different complexes. The SILAC analyses of HeLa cells indicated that assembly of RCV, comprising F1/Fo-ATPase, is rapid with little excess subunit synthesis, but that assembly of RCI (i.e. NADH dehydrogenase) is far less efficient, with dramatic oversynthesis of numerous proteins, particularly in the matrix-exposed N and Q domains. Unassembled subunits were generally degraded within 3 h. We also observed differential assembly kinetics for individual complexes that were immunoprecipitated with complex-specific antibodies. Immunoprecipitation with an antibody that recognizes the ND1 subunit of RCI co-precipitated a number of proteins implicated in FeS cluster assembly and newly synthesized ubiquinol-cytochrome c reductase Rieske iron-sulfur polypeptide 1 (UQCRFS1), the Rieske FeS protein in RCIII, reflecting some coordination between RCI and RCIII assemblies. We propose that pulse-chase SILAC labeling is a useful tool for studying rates of protein complex assembly and degradation.


Assuntos
Complexo I de Transporte de Elétrons/genética , Proteínas Ferro-Enxofre/genética , Mitocôndrias/genética , NADH Desidrogenase/genética , ATPases Translocadoras de Prótons/genética , Técnicas de Cultura de Células/métodos , Núcleo Celular/genética , DNA/genética , Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/química , Células HeLa , Humanos , Marcação por Isótopo/métodos , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Ribossomos Mitocondriais/metabolismo , NADH Desidrogenase/química , Peptídeos/genética , Transporte Proteico/genética , ATPases Translocadoras de Prótons/química
6.
Exp Physiol ; 106(1): 290-301, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32627238

RESUMO

NEW FINDINGS: What is the central question of this study? Heat acclimation increases tolerance to exercise performed in the heat and may improve maximal oxygen uptake (VO2 max) and performance in temperate environments. However, it is unknown if HA affects the expression of proteins related to mitochondrial biogenesis and oxidative capacity in skeletal muscle. What is the main finding and its importance? We showed that heat acclimation increased VO2 max in a temperate environment but did not change markers of mitochondrial biogenesis and oxidative phosphorylation in the skeletal muscle. ABSTRACT: Heat acclimation (HA) increases tolerance to exercise performed in the heat and may improve maximal oxygen uptake ( V̇O2max ) in temperate environments. However, it is unknown if HA affects the expression of proteins related to mitochondrial biogenesis and oxidative capacity in skeletal muscle. The purpose of this study was to investigate the effect of HA on skeletal muscle markers of mitochondrial biogenesis and oxidative phosphorylation in recreationally trained adults. Thirteen (7 males and 6 females) individuals underwent 10 days of HA. Participants performed two 45 min bouts of exercise (walking at 30-40% maximal velocity at 3% grade) with 10 min rest per session in a hot environment (∼42°C and 30-50% relative humidity). V̇O2max , ventilatory thresholds (VT), and protein expression of peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), mitochondrial transcription factor A (TFAM), calcium/calmodulin-dependent protein kinase (CaMK), electron transport chain (ETC) complexes I-IV, and heat shock protein 72 (Hsp72) in skeletal muscle were measured pre- and post-HA. Comparing day 1 to day 10, HA was confirmed by lower resting core temperature (Tcore ) (P = 0.026), final Tcore (P < 0.0001), mean heart rate (HR) (P = 0.002), final HR (P = 0.003), mean ratings of perceived exertion (RPE) (P = 0.026) and final RPE (P = 0.028). Pre- to post-HA V̇O2max (P = 0.045) increased but VT1 (P = 0.263) and VT2 (P = 0.239) were unchanged. Hsp72 (P = 0.007) increased, but skeletal muscle protein expression (PGC-1α, P = 0.119; TFAM, P = 0.763; CaMK, P = 0.19; ETC I, P = 0.629; ETC II, P = 0.724; ETC III, P = 0.206; ETC IV, P = 0.496) were not affected with HA. HA during low-intensity exercise increased V̇O2max in a temperate environment and Hsp72 but it did not affect markers of mitochondrial biogenesis and oxidative phosphorylation in the skeletal muscle.


Assuntos
Exercício Físico/fisiologia , Proteínas de Choque Térmico HSP72/metabolismo , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Fosforilação Oxidativa , Aclimatação/fisiologia , Adaptação Fisiológica/fisiologia , Humanos , Biogênese de Organelas , Consumo de Oxigênio/fisiologia
7.
Int J Mol Sci ; 21(9)2020 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-32397676

RESUMO

Mitochondrial oxidative phosphorylation disorders are extremely heterogeneous conditions. Their clinical and genetic variability makes the identification of reliable and specific biomarkers very challenging. Until now, only a few studies have focused on the effect of a defective oxidative phosphorylation functioning on the cell's secretome, although it could be a promising approach for the identification and pre-selection of potential circulating biomarkers for mitochondrial diseases. Here, we review the insights obtained from secretome studies with regard to oxidative phosphorylation dysfunction, and the biomarkers that appear, so far, to be promising to identify mitochondrial diseases. We propose two new biomarkers to be taken into account in future diagnostic trials.


Assuntos
DNA Mitocondrial/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Fator 15 de Diferenciação de Crescimento/metabolismo , Interleucina-6/metabolismo , Doenças Mitocondriais/metabolismo , Fosforilação Oxidativa , Fator A de Crescimento do Endotélio Vascular/metabolismo , Biomarcadores/metabolismo , Fatores de Crescimento de Fibroblastos/genética , Fator 15 de Diferenciação de Crescimento/genética , Humanos , Doenças Mitocondriais/genética , Via Secretória/efeitos dos fármacos , Via Secretória/genética , Fator A de Crescimento do Endotélio Vascular/genética
8.
Toxicol Appl Pharmacol ; 309: 2-14, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27554043

RESUMO

Mitochondrion is an accepted molecular target in cancer treatment since it exhibits a higher transmembrane potential in cancer cells, making it susceptible to be targeted by lipophilic-delocalized cations of triphenylphosphonium (TPP(+)). Thus, we evaluated five TPP(+)-linked decyl polyhydroxybenzoates as potential cytotoxic agents in several human breast cancer cell lines that differ in estrogen receptor and HER2/neu expression, and in metabolic profile. Results showed that all cell lines tested were sensitive to the cytotoxic action of these compounds. The mechanism underlying the cytotoxicity would be triggered by their weak uncoupling effect on the oxidative phosphorylation system, while having a wider and safer therapeutic range than other uncouplers and a significant lowering in transmembrane potential. Noteworthy, while the TPP(+)-derivatives alone led to almost negligible losses of ATP, when these were added in the presence of an AMP-activated protein kinase inhibitor, the levels of ATP fell greatly. Overall, data presented suggest that decyl polyhydroxybenzoates-TPP(+) and its derivatives warrant future investigation as potential anti-tumor agents.


Assuntos
Neoplasias da Mama/patologia , Hidroxibenzoatos/farmacologia , Mitocôndrias/efeitos dos fármacos , Compostos Organofosforados/química , Trifosfato de Adenosina/metabolismo , Apoptose/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/fisiopatologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Progressão da Doença , Feminino , Humanos , Hidroxibenzoatos/química , Concentração Inibidora 50 , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/fisiologia , Oxigênio/metabolismo
9.
Can J Psychiatry ; 61(8): 457-69, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27412728

RESUMO

Mitochondria are key players in the generation and regulation of cellular bioenergetics, producing the majority of adenosine triphosphate molecules by the oxidative phosphorylation system (OXPHOS). Linked to numerous signaling pathways and cellular functions, mitochondria, and OXPHOS in particular, are involved in neuronal development, connectivity, plasticity, and differentiation. Impairments in a variety of mitochondrial functions have been described in different general and psychiatric disorders, including schizophrenia (SCZ), a severe, chronic, debilitating illness that heavily affects the lives of patients and their families. This article reviews findings emphasizing the role of OXPHOS in the pathophysiology of SCZ. Evidence accumulated during the past few decades from imaging, transcriptomic, proteomic, and metabolomic studies points at OXPHOS deficit involvement in SCZ. Abnormalities have been reported in high-energy phosphates generated by the OXPHOS, in the activity of its complexes and gene expression, primarily of complex I (CoI). In addition, cellular signaling such as cAMP/protein kinase A (PKA) and Ca(+2), neuronal development, connectivity, and plasticity have been linked to OXPHOS function and are reported to be impaired in SCZ. Finally, CoI has been shown as a site of interaction for both dopamine (DA) and antipsychotic drugs, further substantiating its role in the pathology of SCZ. Understanding the role of mitochondria and the OXPHOS in particular may encourage new insights into the pathophysiology and etiology of this debilitating disorder.


Assuntos
Mitocôndrias/metabolismo , Doenças Mitocondriais/metabolismo , Fosforilação Oxidativa , Esquizofrenia/metabolismo , Transdução de Sinais/fisiologia , Humanos
10.
Mol Ecol ; 24(11): 2820-37, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25876460

RESUMO

Diversifying selection on metabolic pathways can reduce intraspecific gene flow and promote population divergence. An opportunity to explore this arises from mitonuclear discordance observed in an Australian bird Eopsaltria australis. Across >1500 km, nuclear differentiation is low and latitudinally structured by isolation by distance, whereas two highly divergent, parapatric mitochondrial lineages (>6.6% in ND2) show a discordant longitudinal geographic pattern and experience different climates. Vicariance, incomplete lineage sorting and sex-biased dispersal were shown earlier to be unlikely drivers of the mitonuclear discordance; instead, natural selection on a female-linked trait was the preferred hypothesis. Accordingly, here we tested for signals of positive, divergent selection on mitochondrial genes in E. australis. We used codon models and physicochemical profiles of amino acid replacements to analyse complete mitochondrial genomes of the two mitochondrial lineages in E. australis, its sister species Eopsaltria griseogularis, and outgroups. We found evidence of positive selection on at least five amino acids, encoded by genes of two oxidative phosphorylation pathway complexes NADH dehydrogenase (ND4 and ND4L) and cytochrome bc1 (cyt-b) against a background of widespread purifying selection on all mitochondrial genes. Three of these amino acid replacements were fixed in ND4 of the geographically most widespread E. australis lineage. The other two replacements were fixed in ND4L and cyt-b of the geographically more restricted E. australis lineage. We discuss whether this selection may reflect local environmental adaptation, a by-product of other selective processes, or genetic incompatibilities, and propose how these hypotheses can be tested in future.


Assuntos
Evolução Molecular , Genética Populacional , Genoma Mitocondrial , Passeriformes/genética , Seleção Genética , Substituição de Aminoácidos , Animais , Feminino , Variação Genética , Modelos Genéticos , Dados de Sequência Molecular , Filogenia , Análise de Sequência de DNA
11.
J Cell Biochem ; 114(12): 2785-94, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23836544

RESUMO

Xanthohumol (XN) and 8-prenylnaringenin (8PN) are hop (Humulus lupulus L.) polyphenols studied for their chemopreventive effects on certain cancer types. The breast cancer line MCF-7 was treated with doses ranging from 0.001 to 20 µM of XN or 8PN in order to assess the effects on cell viability and oxidative stress. Hoechst 33342 was used to measure cell viability and reactive oxygen species (ROS) production was determined by 2',7'-dichlorofluorescein diacetate. Catalase, superoxide dismutase, and glutathione reductase enzymatic activities were determined and protein expression of sirtuin1, sirtuin3, and oxidative phosphorylation system (OXPHOS) were done by Western blot. Treatments XN 0.01, 8PN 0.01, and 8PN 1 µM led to a decrease in ROS production along with an increase of OXPHOS and sirtuin expression; in contrast, XN 5 µM gave rise to an increase of ROS production accompanied by a decrease in OXPHOS and sirtuin expression. These results suggest that XN in low dose (0.01 µM) and 8PN at all assayed doses (0.001-20 µM) presumably improve mitochondrial function, whereas a high dose of XN (5 µM) worsens the functionality of this organelle.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Sobrevivência Celular/efeitos dos fármacos , Flavanonas/administração & dosagem , Flavonoides/administração & dosagem , Estresse Oxidativo/efeitos dos fármacos , Propiofenonas/administração & dosagem , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Catalase/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glutationa Redutase/metabolismo , Humanos , Células MCF-7 , Mitocôndrias , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo
12.
Mech Ageing Dev ; 213: 111838, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37329989

RESUMO

MicroRNAs (miRNA) are a class of small non-coding RNA, roughly 21-22 nucleotides in length, which are master gene regulators. These miRNAs bind to the mRNA's 3' - untranslated region and regulate post-transcriptional gene regulation, thereby influencing various physiological and cellular processes. Another class of miRNAs known as mitochondrial miRNA (MitomiRs) has been found to either originate from the mitochondrial genome or be translocated directly into the mitochondria. Although the role of nuclear DNA encoded miRNA in the progression of various neurological diseases such as Parkinson's disease, Alzheimer's disease, Huntington's disease, etc. is well known, accumulating evidence suggests the possible role of deregulated mitomiRs in the progression of various neurodegenerative diseases with unknown mechanism. We have attempted to outline the current state of mitomiRs role in controlling mitochondrial gene expression and function through this review, paying particular attention to their contribution to neurological processes, their etiology, and their potential therapeutic use.


Assuntos
Doença de Alzheimer , MicroRNAs , Doenças Mitocondriais , Doenças Neurodegenerativas , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Regulação da Expressão Gênica , Mitocôndrias/genética , Mitocôndrias/metabolismo , Doença de Alzheimer/metabolismo , Doenças Mitocondriais/metabolismo
13.
Biophys Rev ; 15(5): 859-873, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37975013

RESUMO

The role of protons in ATP synthase is typically considered to be energy storage in the form of an electrochemical potential, as well as an operating element proving rotation. However, this review emphasizes that protons also act as activators of conformational changes in F1 and as direct participants in phosphorylation reaction. The protons transferred through Fo do not immediately leave to the bulk aqueous phase, but instead provide for the formation of a pH gradient between acidifying Fo and alkalizing F1. It facilitates a directed inter-subunit proton transfer to F1, where they are used in the ATP synthesis reaction. This ensures that the enzyme activity is not limited by a lack of protons in the alkaline mitochondrial matrix or chloroplast stroma. Up to one hundred protons bind to the carboxyl groups of the F1 subunit, altering the electrical interactions between the amino acids of the enzyme. This removes the inhibition of ATP synthase caused by the electrostatic attraction of charged amino acids of the stator and rotor and also makes the enzyme more prone to conformational changes. Protonation occurs during ATP synthesis initiation and during phosphorylation, while deprotonation blocks the rotation inhibiting both synthesis and hydrolysis. Thus, protons participate in the functioning of all main components of ATP synthase molecular machine making it effectively a proton-driven electric machine. The review highlights the key role of protons as a coupling factor in ATP synthase with multifaceted functions, including charge and energy transport, torque generation, facilitation of conformational changes, and participation in the ATP synthesis reaction.

14.
Front Mol Neurosci ; 15: 1015220, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36590914

RESUMO

Introduction: DYRK1A is a dual-specificity kinase that is overexpressed in Down syndrome (DS) and plays a key role in neurogenesis, neuronal differentiation and function, cognitive phenotypes, and aging. Dyrk1A has also been implicated in cerebellar abnormalities observed in association with DS, and normalization of Dyrk1A dosage rescues granular and Purkinje cell densities in a trisomic DS mouse model. However, the underlying molecular mechanisms governing these processes are unknown. Methods: To shed light on the effects of Dyrk1A overexpression in the cerebellum, here we investigated the cerebellar proteome in transgenic Dyrk1A overexpressing mice in basal conditions and after treatment with green tea extract containing epigallocatechin-3-gallate (EGCG), a DYRK1A inhibitor. Results and Discussion: Our results showed that Dyrk1A overexpression alters oxidative phosphorylation and mitochondrial function in the cerebellum of transgenic mice. These alterations are significantly rescued upon EGCG-containing green tea extract treatment, suggesting that its effects in DS could depend in part on targeting mitochondria, as shown by the partially restoration by the treatment of the increased mtDNA copy number in TG non-treated mice.

15.
Trends Pharmacol Sci ; 43(9): 706-708, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35382944

RESUMO

Targeting metabolic reprogramming has proven successful in oncology, but this field requires better identification of drugs that inhibit mitochondrial metabolism in cancer cells. Recent work from Dr Wolf's group reveals that the primary target of the antitumor compound SMIP004-7 is mitochondrial complex I (NDUFS2 subunit), inhibition of which promotes anticancer immune surveillance.


Assuntos
Antineoplásicos , Neoplasias , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Complexo I de Transporte de Elétrons/metabolismo , Humanos , Mitocôndrias/metabolismo , Neoplasias/patologia
16.
Cereb Circ Cogn Behav ; 3: 100139, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36324419

RESUMO

Monogenic diseases, although rare, should be always considered in the diagnostic work up of vascular dementia (VaD), particularly in patients with early onset and a familial history of dementia or cerebrovascular disease. They include, other than CADASIL, Fabry disease, Col4A1-A2 related disorders, which are well recognized causes of VaD, other heritable diseases such as mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) and cathepsin-A related arteriopathy strokes and leukoencephalopathy (CARASAL). MELAS, caused by mtDNA (80% of adult cases m.3243A>G mutations) and more rarely POLG1 mutations, has minimum prevalence of 3.5/100,000. CARASAL, which is caused by mutations in the CTSA gene, has been described in about 19 patients so far. In both these two disorders cognitive features have not been fully explored and are described only in case series or families. This review paper is aimed at providing an update on the clinical manifestations, with particular focus on cognitive aspects, but also neuroradiological and genetic features of these less frequent monogenic diseases associated with VaD.

17.
Methods Mol Biol ; 2192: 287-311, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33230780

RESUMO

Blue-native polyacrylamide gel electrophoresis (BN-PAGE) is a technique optimized for the analysis of the five components of the mitochondrial oxidative phosphorylation (OXPHOS) system. BN-PAGE is based on the preservation of the interactions between the individual subunits within the integral complexes. To achieve this, the complexes are extracted from the mitochondrial inner membrane using mild detergents and separated by electrophoresis in the absence of denaturing agents. The electrophoretic procedures can then be combined with a variety of downstream detection techniques. Since its development in the 1990s, BN-PAGE has been applied in the study of mitochondria from all kinds of organisms and extensive amounts of data have been produced using this technique, being key for the understanding of many aspects of OXPHOS physiopathology.


Assuntos
Eletroforese em Gel Bidimensional/métodos , Mitocôndrias/química , Complexos Multiproteicos/química , Eletroforese em Gel de Poliacrilamida Nativa/métodos , Fosforilação Oxidativa , Animais , Doadores de Sangue , Humanos , Leucócitos/citologia , Fígado/citologia , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Membranas Mitocondriais/química , Membranas Mitocondriais/metabolismo , Complexos Multiproteicos/metabolismo , Miocárdio/citologia
18.
Theranostics ; 10(26): 12044-12059, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33204328

RESUMO

Objectives: Integrins, the coordinator of extracellular and intracellular signaling, are often found to be aberrant in tumors and can reshape the tumor microenvironment. Although previous studies showed that integrin beta 2 (ITGB2) is important for host defense, its expression profile and role in tumors, especially in cancer associated fibroblasts (CAFs) are still unknown. Methods: Immunofluorescence stain and fluorescence activated cell sorting were used to analyze the ITGB2 expression profile in oral squamous cell carcinoma (OSCC). RT-PCR and western blot were used to compare ITGB2 expression in normal fibroblasts (NFs) and cancer associated fibroblasts (CAFs). Clinical data and function-based experiments were used to investigate the promoting tumor growth ability of ITGB2 expressing CAFs. Enhanced glycolysis activity was identified by using bioinformatics analyses and GC/MS assays. MCT1 knockdown OSCC cell lines were constructed to explore the pro-proliferative mechanisms of ITGB2 expressing CAFs in multiple in vitro and in vivo assays. Results: We found that CAFs exhibited significantly higher ITGB2 expression than the matched NFs. In addition, higher ITGB2 expression in CAFs was correlated with higher TNM stages and more Ki67+ tumor cells, indicating its ability to promote OSCC proliferation. Further, co-culture assay demonstrated that ITGB2-mediated lactate release in CAFs promoted OSCC cell proliferation. Mechanically, ITGB2 regulated PI3K/AKT/mTOR pathways to enhance glycolysis activity in CAFs. Accordingly, lactate derived from ITGB2-expressing CAFs was absorbed and metabolized in OSCC to generate NADH, which was then oxidized in the mitochondrial oxidative phosphorylation system (OXPHOS) to produce ATP. Notably, inhibiting the OXPHOS system with metformin delayed the proliferative capacity of OSCC cells cultured in the ITGB2-expressing CAFs medium. Conclusions: Our study uncovered the ITGB2high pro-tumoral CAFs that activated the PI3K/AKT/mTOR axis to promote tumor proliferation in OSCC by NADH oxidation in the mitochondrial oxidative phosphorylation system.


Assuntos
Antígenos CD18/metabolismo , Fibroblastos Associados a Câncer/metabolismo , Neoplasias Bucais/patologia , NAD/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Linhagem Celular Tumoral , Proliferação de Células , Quimioterapia Adjuvante/métodos , Técnicas de Cocultura , Biologia Computacional , Complexo I de Transporte de Elétrons/antagonistas & inibidores , Complexo I de Transporte de Elétrons/metabolismo , Feminino , Seguimentos , Humanos , Masculino , Metformina/farmacologia , Metformina/uso terapêutico , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Mucosa Bucal/citologia , Mucosa Bucal/patologia , Mucosa Bucal/cirurgia , Neoplasias Bucais/mortalidade , Neoplasias Bucais/terapia , Oxirredução/efeitos dos fármacos , Fosforilação Oxidativa/efeitos dos fármacos , Intervalo Livre de Progressão , Carcinoma de Células Escamosas de Cabeça e Pescoço/mortalidade , Carcinoma de Células Escamosas de Cabeça e Pescoço/terapia , Microambiente Tumoral/efeitos dos fármacos , Regulação para Cima , Efeito Warburg em Oncologia/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Annu Rev Plant Biol ; 70: 23-50, 2019 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-30822116

RESUMO

Plant mitochondria play a major role during respiration by producing the ATP required for metabolism and growth. ATP is produced during oxidative phosphorylation (OXPHOS), a metabolic pathway coupling electron transfer with ADP phosphorylation via the formation and release of a proton gradient across the inner mitochondrial membrane. The OXPHOS system is composed of large, multiprotein complexes coordinating metal-containing cofactors for the transfer of electrons. In this review, we summarize the current state of knowledge about assembly of the OXPHOS complexes in land plants. We present the different steps involved in the formation of functional complexes and the regulatory mechanisms controlling the assembly pathways. Because several assembly steps have been found to be ancestral in plants-compared with those described in fungal and animal models-we discuss the evolutionary dynamics that lead to the conservation of ancestral pathways in land plant mitochondria.


Assuntos
Embriófitas , Fosforilação Oxidativa , Animais , Respiração Celular , Transporte de Elétrons , Mitocôndrias
20.
Cancers (Basel) ; 11(9)2019 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-31547300

RESUMO

Ovarian cancer (OC) is the most lethal gynecologic cancer characterized by an elevated apoptosis resistance that, potentially, leads to chemo-resistance in the recurrent disease. Mitochondrial oxidative phosphorylation was found altered in OC, and mitochondria were proposed as a target for therapy. Molecular evidence suggests that the deregulation of mitochondrial biogenesis, morphology, dynamics, and apoptosis is involved in carcinogenesis. However, these mitochondrial processes remain to be investigated in OC. Eighteen controls and 16 OC tissues (serous and mucinous) were collected. Enzymatic activities were performed spectrophotometrically, mitochondrial DNA (mtDNA) content was measured by real-time-PCR, protein levels were determined by Western blotting, and mitochondrial number and structure were measured by electron microscopy. Statistical analysis was performed using Student's t-test, Mann-Whitney U test, and principal component analysis (PCA). We found, in OC, that increased mitochondrial number associated with increased peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) and mitochondrial transcription factor A (TFAM) protein levels, as well as mtDNA content. The OC mitochondria presented an increased maximum length, as well as reduced cristae width and junction diameter, associated with increased optic atrophy 1 protein (OPA1) and prohibitin 2 (PHB2) protein levels. In addition, in OC tissues, augmented cAMP and sirtuin 3 (SIRT3) protein levels were observed. PCA of the 25 analyzed biochemical parameters classified OC patients in a distinct group from controls. We highlight a "mitochondrial signature" in OC that could result from cooperation of the cAMP pathway with the SIRT3, OPA1, and PHB2 proteins.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA