Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Small ; : e2402537, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38711307

RESUMO

Cu-based catalysts are the most intensively studied in the field of electrocatalytic CO2 reduction reaction (CO2RR), demonstrating the capacity to yield diverse C1 and C2+ products albeit with unsatisfactory selectivity. Manipulation of the oxidation state of Cu sites during CO2RR process proves advantageous in modulating the selectivity of productions, but poses a formidable challenge. Here, an oxygen spillover strategy is proposed to enhance the oxidation state of Cu during CO2RR by incorporating the oxygen donor Sb2O4. The Cu-Sb bimetallic oxide catalyst attains a remarkable CO2-to-CO selectivity approaching unity, in stark contrast to the diverse product distribution observed with bare CuO. The exceptional Faradaic efficiency of CO can be maintained across a wide range of potential windows of ≈700 mV in 1 m KOH, and remains independent of the Cu/Sb ratio (ranging from 0.1:1 to 10:1). Correlative calculations and experimental results reveal that oxygen spillover from Sb2O4 to Cu sites maintains the relatively high valence state of Cu during CO2RR, which diminishes the binding strength of *CO, thereby achieving heightened selectivity in CO production. These findings propose the role of oxygen spillover in CO2RR over Cu-based catalysts, and shed light on the rational design of highly selective CO2 reduction catalysts.

2.
ACS Appl Mater Interfaces ; 14(45): 51222-51233, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36326106

RESUMO

Rational design and synthesis of high-performance electrocatalysts for the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) are critical for practical application of Zn-air batteries (ZABs). In this work, the bifunctional composite Cu-Fe2O3/PNC was prepared by a simple and effective wet-hydrothermal coupled dry-annealing synthesis strategy. The Cu-Fe2O3/PNC displayed excellent catalytic activity in ORR and OER with a potential difference of 0.63 V. More importantly, the ZAB assembled with Cu-Fe2O3/PNC exhibited a high-power density of 138.00 mW cm-2 and an excellent long-term cyclability. X-ray photoelectron spectroscopy (XPS) demonstrated that the excellent performance is due to the strong electronic interaction between Cu and Fe2O3 that arises as a result of the fast electron transfer through the Cu-O-Fe bond and the higher concentration of surface oxygen vacancies. Meanwhile, the spillover factor Bsp/2zF of Cu/PNC and Cu-Fe2O3/PNC obtained by the rotating disk experiment was 1.00 × 10-7 and 1.10 × 10-7 cm2·s-1, respectively, indicating that the oxygen spillover effect between Cu and Fe2O3 lowers the energy barrier, increases the number of active sites, and alters the rate-determining reaction step. This work demonstrated the significant potential of Cu-Fe2O3/PNC in energy conversion and storage applications, providing a new perspective for the rational design of bifunctional electrocatalysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA