RESUMO
Heterogeneous high-valent cobalt-oxo [≡Co(IV)=O] is a widely focused reactive species in oxidant activation; however, the relationship between the catalyst interfacial defects and ≡Co(IV)=O formation remains poorly understood. Herein, photoexcited oxygen vacancies (OVs) were introduced into Co3O4 (OV-Co3O4) by a UV-induced modification method to facilitate chlorite (ClO2-) activation. Density functional theory calculations indicate that OVs result in low-coordinated Co atom, which can directionally anchor chlorite under the oxygen-atom trapping effect. Chlorite first undergoes homolytic O-Cl cleavage and transfers the dissociated O atom to the low-coordinated Co atom to form reactive ≡Co(IV)=O with a higher spin state. The reactive ≡Co(IV)=O rapidly extracts one electron from ClO2- to form chlorine dioxide (ClO2), accompanied by the Co atom returning a lower spin state. As a result of the oxygen-atom trapping effect, the OV-Co3O4/chlorite system achieved a 3.5 times higher efficiency of sulfamethoxazole degradation (~0.1331 min-1) than the pristine Co3O4/chlorite system. Besides, the refiled OVs can be easily restored by re-exposure to UV light, indicating the sustainability of the oxygen atom trap. The OV-Co3O4 was further fabricated on a polyacrylonitrile membrane for back-end water purification, achieving continuous flow degradation of pollutants with low cobalt leakage. This work presents an enhancement strategy for constructing OV as an oxygen-atom trapping site in heterogeneous advanced oxidation processes and provides insight into modulating the formation of ≡Co(IV)=O via defect engineering.
RESUMO
Electrocatalytic nitrogen reduction is a challenging process that requires achieving high ammonia yield rate and reasonable faradaic efficiency. To address this issue, this study developed a catalyst by in situ anchoring interfacial intergrown ultrafine MoO2 nanograins on N-doped carbon fibers. By optimizing the thermal treatment conditions, an abundant number of grain boundaries were generated between MoO2 nanograins, which led to an increased fraction of oxygen vacancies. This, in turn, improved the transfer of electrons, resulting in the creation of highly active reactive sites and efficient nitrogen trapping. The resulting optimal catalyst, MoO2/C700, outperformed commercial MoO2 and state-of-the-art N2 reduction catalysts, with NH3 yield and Faradic efficiency of 173.7 µg h-1 mg-1cat and 27.6%, respectively, under - 0.7 V vs. RHE in 1 M KOH electrolyte. In situ X-ray photoelectron spectroscopy characterization and density functional theory calculation validated the electronic structure effect and advantage of N2 adsorption over oxygen vacancy, revealing the dominant interplay of N2 and oxygen vacancy and generating electronic transfer between nitrogen and Mo(IV). The study also unveiled the origin of improved activity by correlating with the interfacial effect, demonstrating the big potential for practical N2 reduction applications as the obtained optimal catalyst exhibited appreciable catalytic stability during 60 h of continuous electrolysis. This work demonstrates the feasibility of enhancing electrocatalytic nitrogen reduction by engineering grain boundaries to promote oxygen vacancies, offering a promising avenue for efficient and sustainable ammonia production.
RESUMO
Modulation of water activation is crucial to water-involved chemical reactions in heterogeneous catalysis. Organic sulfur (COS and CS2) hydrolysis is such a typical reaction involving water (H2O) molecule as a reactant. However, limited by the strong O-H bond in H2O, satisfactory CS2 hydrolysis performance is attained at high temperature above 310 °C, which is at the sacrifice of the Claus conversion, strongly hindering sulfur recovery efficiency improvement and pollution emissions control of the Claus process. Herein, we report a facile oxygen vacancy (VO) engineering on titanium-based perovskite to motivate H2O activation for enhanced COS and CS2 hydrolysis at lower temperature. Increased amount of VO contributed to improved degree of H2O dissociation to generate more active -OH, due to lower energy barrier for H2O dissociation over surface rich in VO, particularly VO clusters. Besides, low-coordinated Ti ions adjacent to VO were active sites for H2O activation. Consequently, complete conversion of COS and CS2 was achieved over SrTiO3 after H2 reduction treatment at 225 °C, a favorable temperature for the Claus conversion, at which both satisfying COS and CS2 hydrolysis performance and improved sulfur recovery efficiency can be obtained simultaneously. Additionally, the origin of enhanced hydrolysis activity from boosted H2O activation by VO was revealed via in-depth mechanism study. This provides more explicit direction for further design of efficacious catalysts for H2O-involved reactions.
Assuntos
Oxigênio , Titânio , Temperatura , Hidrólise , Água/química , EnxofreRESUMO
The conversion of woody biomass to H2 through photocatalysis provides a sustainable strategy to generate renewable hydrogen fuel but was limited by the slow decomposition rate of woody biomass. Here, we fabricate ultrasmall TiO2 nanoparticles with tunable concentration of oxygen vacancy defects (VO-TiO2) as highly efficient photocatalysts for photocatalytic conversion of woody biomass to H2. Owing to the positive role of oxygen vacancy in reducing energy barrier for the generation of â¢OH which was the critical species to oxidize woody biomass, the obtained VO-TiO2 achieves rapid photocatalytic conversion of α-cellulose and poplar wood chip to H2 in the presence of Pt nanoclusters as the cocatalyst. As expected, the highest H2 generation rate in α-cellulose and poplar wood chip system respectively achieve 1146 and 59 µmol h-1 g-1, and an apparent quantum yield of 4.89% at 380 nm was obtained in α-cellulose aqueous solution.
RESUMO
Spinel oxides have emerged as a promising candidate in the realm of nanozymes with variable oxidation states, while their limited active sites and low conductivity hinder further application. In this work, we synthesize a series of metal-doped NiCo2O4 nanospheres decorated with Pd, which are deployed as highly efficient nanozymes for the detection of cancer biomarkers. Through meticulous modulation of the molar ratio between NiCo2O4 and Pd, we orchestrated precise control over the oxygen vacancies and electronic structure within the nanozymes, a key factor in amplifying the catalytic prowess. Leveraging the superior H2O2 reduction catalytic properties of Fe-NiCo2O4@Pd, we have successfully implemented its application in the electrochemical detection of biomarkers, achieving unparalleled analytical performance, much higher than that of Pd/C and other reported nanozymes. This research paves the way for innovative electron modification strategies in the design of high-performance nanozymes, presenting a formidable tool for clinical diagnostic analyses.
Assuntos
Cobalto , Peróxido de Hidrogênio , Óxidos , Paládio , Catálise , Paládio/química , Cobalto/química , Óxidos/química , Peróxido de Hidrogênio/química , Oxirredução , Níquel/química , Humanos , Técnicas EletroquímicasRESUMO
The atomic defect engineering could feasibly decorate the chemical behaviors of reaction intermediates to regulate catalytic performance. Herein, we created oxygen vacancies on the surface of In(OH)3 nanobelts for efficient urea electrosynthesis. When the oxygen vacancies were constructed on the surface of the In(OH)3 nanobelts, the faradaic efficiency for urea reached 80.1%, which is 2.9 times higher than that (20.7%) of the pristine In(OH)3 nanobelts. At -0.8 V versus reversible hydrogen electrode, In(OH)3 nanobelts with abundant oxygen vacancies exhibited partial current density for urea of -18.8 mA cm-2. Such a value represents the highest activity for urea electrosynthesis among recent reports. Density functional theory calculations suggested that the unsaturated In sites adjacent to oxygen defects helped to optimize the adsorbed configurations of key intermediates, promoting both the C-N coupling and the activation of the adsorbed CO2NH2 intermediate. In-situ spectroscopy measurements further validated the promotional effect of the oxygen vacancies on urea electrosynthesis.
RESUMO
We reversibly control ferromagnetic-antiferromagnetic ordering in an insulating ground state by annealing tensile-strained LaCoO3 films in hydrogen. This ionic-magnetic coupling occurs due to the hydrogen-driven topotactic transition between perovskite LaCoO3 and brownmillerite La2Co2O5 at a lower temperature (125-200 °C) and within a shorter time (3-10 min) than the oxygen-driven effect (500 °C, tens of hours). The X-ray and optical spectroscopic analyses reveal that the transition results from hydrogen-driven filling of correlated electrons in the Co 3d-orbitals, which successively releases oxygen by destabilizing the CoO6 octahedra into CoO4 tetrahedra. The transition is accelerated by surface exchange, diffusion of hydrogen in and oxygen out through atomically ordered oxygen vacancy "nanocomb" stripes in the tensile-strained LaCoO3 films. Our ionic-magnetic coupling with fast operation, good reproducibility, and long-term stability is a proof-of-principle demonstration of high-performance ultralow power magnetic switching devices for sensors, energy, and artificial intelligence applications, which are keys for attaining carbon neutrality.
RESUMO
The combination of ferroptosis and innovative tumor therapy methods offers another promising answer to the problem of tumors. In order to generate effective ferroptosis in tumor cells, iron-based nanomaterials are commonly utilized to introduce foreign iron as a trigger for ferroptosis. However, this usually necessitates the injection of larger doses of iron into the body. These exogenous iron increases are likely to create concealed concerns for symptoms such as liver damage and allergy. Herein, an iron-free radiosensitizer is introduced, oxygen-vacancy-rich MnO2 nanoflowers (ovs-MnO2), that promotes ferroptosis and modifies the tumor microenvironment to assist radiotherapy. ovs-MnO2 with enriched oxygen vacancies on the surface induces the release of intracellular free iron (Fe2+), which functions as an activator of Fenton reaction and enhances the accumulation of intracellular reactive oxygen species. On the other hand, Fe2+ also triggers the ferroptosis and promotes the accumulation of lipid peroxides. Subsequently, the depletion of glutathione and accumulation of lipid peroxidation in tumor cells leads to the inactivation of glutathione peroxidase 4 (GPX4) and ferroptosis, thereby enhancing the therapeutic efficacy of radiotherapy. The nanoplatform provides a novel strategy for generating novel nanomedicines for ferroptosis-assisted radiotherapy.
Assuntos
Ferroptose , Oxigênio , Espécies Reativas de Oxigênio , Ferroptose/efeitos dos fármacos , Humanos , Espécies Reativas de Oxigênio/metabolismo , Animais , Oxigênio/química , Oxigênio/metabolismo , Linhagem Celular Tumoral , Compostos de Manganês/química , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Neoplasias/metabolismo , Neoplasias/radioterapia , Manganês/química , Microambiente Tumoral/efeitos dos fármacos , Óxidos/química , Camundongos , Ferro/química , Ferro/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Radiossensibilizantes/química , Radiossensibilizantes/farmacologia , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismoRESUMO
Perovskite oxides are considered highly promising candidates for oxygen evolution reaction (OER) catalysts due to their low cost and adaptable electronic structure. However, modulating the electronic structure of catalysts without altering their nanomorphology is crucial for understanding the structure-property relationship. In this study, a simple plasma bombardment strategy is developed to optimize the catalytic activity of perovskite oxides. Experimental characterization of plasma-treated LaCo0.9Fe0.1O3 (P-LCFO) reveals abundant oxygen vacancies, which expose numerous active sites. Additionally, X-ray photoelectron spectroscopy and X-ray absorption fine structure analyses indicate a low Co valence state in P-LCFO, likely due to the presence of these oxygen vacancies, which contributes to an optimized electronic structure that enhances OER performance. Consequently, P-LCFO exhibits significantly improved OER catalytic activity, with a low overpotential of 294 mV at a current density of 10 mA cm-2, outperforming commercial RuO2. This work underscores the benefits of plasma engineering for studying structure-property relationships and developing highly active perovskite oxide catalysts for water splitting.
RESUMO
Double perovskite (DP) oxides are promising electrode materials for symmetric solid oxide cells (SSOCs) due to their excellent electrochemical activity and stability. B-site cation doping in DP oxides affects the reversibility of phase transformation and exsolution, which plays a crucial role in the catalyst recovery. Yet, few studies have been conducted on this topic. In this study, the Sr2Fe1.5-xCoxMo0.5O6-δ (CSFM, x = 0, 0.1, 0.3, 0.5) DP system demonstrates modulated exsolution and phase transformation reversibility by manipulating the oxygen vacancy concentration. The correlation between Co-doping level and oxygen vacancy concentration is investigated to optimize the exsolution and phase transformation properties. Sr2Fe1.2Co0.3Mo0.5O6-δ (3CSFM) exhibits reversible transformation between DP and Ruddlesden-Popper phases with a high density of exsolved CoFe nanoparticles under redox atmospheres. The quasi-symmetric cell with 3CSFM shows a peak power density of 1.27 W cm-2 at 850 °C in H2 fuel cell mode and a current density of 2.33 A cm-2 at 1.6 V and 800 °C in H2O electrolysis mode. The 3CSFM electrode exhibits robust stability during continuous operation for ≈700 h. These results demonstrate the significant role of B-site doping in designing DP materials capable of dynamic phase transformation in diverse environments.
RESUMO
The post-surgical melanoma recurrence and wound infections have persistently troubled clinical management. Piezocatalytic therapy features high efficiency in generating reactive oxygen species (ROS) for tumor therapy, but it faces limitations in piezoelectricity and redox-active site availability. Herein, Fe-doped ultrathin Bi4Ti3O12 nanosheets (designated as Fe-UBTO NSs) with synergistically piezo-chemocatalytic activity are engineered for antitumor and antibacterial treatment against cutaneous melanoma. The doping-engineered strategy induces oxygen vacancies and lattice distortions in Fe-UBTO NSs, which narrows bandgap to enhance piezocatalytic 1O2 and H2O2 generation by improving the electron-hole pairs separation, hindering their recombination, and increasing oxygen adsorption. Moreover, Fe doping establishes a piezo-chemocatalytic system, in which the piezocatalysis enables the self-supply of H2O2 and expedites electron transfer in Fenton reactions, inducing increased ·OH production. Besides, the atomic-level thickness and expanded surface area enhance the sensitivity to ultrasound stimuli and expose more redox-active sites, augmenting the piezo-chemocatalytic efficiency, and ultimately leading to abundant ROS generation. The Fe-UBTO-mediated piezo-chemocatalytic therapy causes intracellular oxidative stress, triggering apoptosis and excessive autophagy of tumor cells. Moreover, this strategy accelerates wound healing by facilitating sterilization, angiogenesis, and collagen deposition. This work provides distinct options to develop doping-engineered ultrathin nanosheets with augmented piezo-chemocatalytic activity for postoperative management of cutaneous melanoma.
Assuntos
Antibacterianos , Antineoplásicos , Melanoma , Nanoestruturas , Neoplasias Cutâneas , Antibacterianos/farmacologia , Antibacterianos/química , Melanoma/patologia , Melanoma/tratamento farmacológico , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/tratamento farmacológico , Antineoplásicos/farmacologia , Antineoplásicos/química , Nanoestruturas/química , Animais , Melanoma Maligno Cutâneo , Linhagem Celular Tumoral , Catálise , Humanos , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Peróxido de Hidrogênio/químicaRESUMO
The selective conversion of ethane (C2H6) to ethylene (C2H4) under mild conditions is highly wanted, yet very challenging. Herein, it is demonstrated that a Pt/WO3-x catalyst, constructed by supporting ultrafine Pt nanoparticles on the surface of oxygen-deficient tungsten oxide (WO3-x) nanoplates, is efficient and reusable for photocatalytic C2H6 dehydrogenation to produce C2H4 with high selectivity. Specifically, under pure light irradiation, the optimized Pt/WO3-x photocatalyst exhibits C2H4 and H2 yield rates of 291.8 and 373.4 µmol g-1 h-1, respectively, coupled with a small formation of CO (85.2 µmol g-1 h-1) and CH4 (19.0 µmol g-1 h-1), corresponding to a high C2H4 selectivity of 84.9%. Experimental and theoretical studies reveal that the vacancy-rich WO3-x catalyst enables broad optical harvesting to generate charge carriers by light for working the redox reactions. Meanwhile, the Pt cocatalyst reinforces adsorption of C2H6, desorption of key reaction species, and separation and migration of light-induced charges to promote the dehydrogenation reaction with high productivity and selectivity. In situ diffuse reflectance infrared Fourier transform spectroscopy and density functional theory calculation expose the key intermediates formed on the Pt/WO3-x catalyst during the reaction, which permits the construction of the possible C2H6 dehydrogenation mechanism.
RESUMO
Lithium-sulfur (Li-S) battery is identified as an ideal candidate for next-generation energy storage systems in consideration of its high theoretical energy density and abundant sulfur resources. However, the shuttling behavior of soluble polysulfides (LiPSs) and their sluggish reaction kinetics severely limit the practical application of the current Li-S battery. In this work, a series of In2O3 nanocubes with different oxygen vacancy concentrations are designed and prepared via a facile self-template method. The introduced oxygen vacancy on In2O3 can effectively rearrange the charge distribution and enhance sulfiphilic property. Moreover, the In2O3 with high oxygen vacancy concentration (H-In2O3) can slightly slow down the solid-liquid conversion process and significantly accelerate the liquid-solid conversion process, thus reducing the accumulation of LiPSs in electrolyte and inhibiting the shuttle effect. Contributed by the unique selective catalytic capability, the prepared H-In2O3 exhibits excellent electrochemical performance when used as sulfur host. For instance, a high reversible capacity of 609 mAh g-1 is obtained with only 0.044% capacity decay per cycle over 1000 cycles at 1.0 C. This work presents a typical example for designing advanced sulfur hosts, which is crucial for the commercialization of Li-S battery.
RESUMO
Oxygen vacancy (Vo), as one of the most common surface defects, significantly influence the physiochemical properties of metal oxides. However, it remains a challenge for existing techniques to visualize the evolution of Vo during redox process due to its heterogeneous distribution, small size, and dynamic nature. Herein, the real-time monitoring of such microscopic interfacial events is reported by advantage of the high-contrast fluorescence response of carbon dots (H-CDs) to Vo. The green emissive H-CDs possess a unique disc-shaped structure and exceptional hydrophilicity, allowing their tight adhesion to the surfaces of Vo-rich MgO by simple mixing. Subsequently, a water involved interfacial reaction occurred between H-CDs and Vo, resulting in gradual quenching of the original green emission and simultaneously emergence of bright red fluorescence. Moreover, the spatiotemporal diffusion dynamics and reaction kinetics are investigated by confocal laser scanning microscopy, revealing the time-dependent reorganization and structural heterogeneity at the interface. The finding provides a new toolbox for in situ imaging of Vo-triggered phenomena at a microscopic level, which will be helpful in promoting the rational design of oxide materials.
RESUMO
In recent years, the development of high-efficiency piezoelectric materials is an effective means to make full use of the mechanical energy widely existing in the environment. However, there are few reports on multi-strategies synergistically improving piezocatalytic activity, and the mechanism of synergistic enhancement of piezocatalytic activity also receives less attention. Herein, the SrTiO3 nanorods decorated with tunable surface oxygen vacancy concentrations are prepared. Oxygen vacancy-optimized SrTiO3 nanorods exhibit efficient and undifferentiated piezocatalytic degradation activities for both anionic and cationic dyes under ultrasonic vibration. More importantly, it can split water into H2 and H2O2 with high production rates of 540 and 332 µmol g-1 h-1 without adding any sacrificial agents and cocatalysts, respectively. Mechanism analyses demonstrate that the 1D structure is beneficial to mechanical energy harvesting, and the surface oxygen vacancy induces larger surface asymmetry and piezoelectric response, synergically enhancing the piezocatalytic activity of SrTiO3 nanorods. In addition, metal deposition experiments under different conditions show that SrTiO3 nanorods possess abundant reactive catalytic sites in the piezocatalytic reaction process. This work provides a further understanding of piezocatalysis in piezoelectric nanomaterials and is important for the development of efficient piezoelectric catalysts.
RESUMO
Because of their intrinsic polarization and related properties, ferroelectrics attract significant attention to address energy transformation and environmental protection. Here, by using trivalent-ion-lanthanum doping of BiFeO3 nanoparticles (NPs), it is shown that defects and piezoelectric potential are synergized to achieve a high piezocatalytic effect for decomposing the model Rhodamine B (RhB) pollutant, reaching a record-high piezocatalytic rate of 21 360 L mol-1 min-1 (i.e., 100% RhB degradation within 20 min) that exceeds most state-of-the art ferroelectrics. The piezocatalytic Bi0.99La0.01FeO3 NPs are also demonstrated to be versatile toward various pharmaceutical pollutants with over 90% removal efficiency, making them extremely efficient piezocatalysts for water purification. It is also shown that 1% La-doping introduces oxygen vacancies and Fe2+ defects. It is thus suggested that oxygen vacancies act as both active sites and charge providers, permitting more surface adsorption sites for the piezocatalysis process, and additional charges and better energy transfer between the NPs and surrounding molecules. Furthermore, the oxygen vacancies are proposed to couple to Fe2+ to form defect dipoles, which in turn introduces an internal field, resulting in more efficient charge de-trapping and separation when added to the piezopotential. This synergistic mechanism is believed to provide a new perspective for designing future piezocatalysts with high performance.
RESUMO
The development of high-performance, stable and platinum-free electrocatalysts for the hydrogen oxidation reaction (HOR) in alkaline media is crucial for the commercial application of anion exchange membrane fuel cells (AEMFCs). Ruthenium, as an emerging HOR electrocatalyst with a price advantage over platinum, still needs to solve the problems of low intrinsic activity and easy oxidation. Herein, Ru nanoparticles are anchored on the oxygen-vacancy-rich metalloid WO2.9 by interfacial engineering to create abundant and efficient Ru and WO2.9 interfacial active sites for accelerated HOR in alkaline media. Ru/WO2.9/C displays excellent catalytic activity with mass activity (8.29 A mgNM -1) and specific activity (1.32 mA cmNM -2), which are 2.5/3.3 and 21.8/8.3 times that of PtRu/C and Pt/C, respectively. Moreover, Ru/WO2.9/C exhibits excellent CO tolerance and operational stability. Experimental and theoretical studies reveal that the improved charge transfer from Ru to WO2.9 in the metal/metalloid heterostructure significantly tune the electronic structure of Ru sites and optimize the hydrogen binding energy (HBE) of Ru. While, WO2.9 provides abundant hydroxyl adsorption sites. Therefore, the equilibrium adsorption of hydrogen and hydroxyl at the interface of Ru/WO2.9 will be realized, and the oxidation of metal Ru would be avoided, thereby achieving excellent HOR activity and durability.
RESUMO
High-efficiency electromagnetic (EM) wave (EMW)-absorbing materials have attracted extensive scientific and technical interest. Although identifying the dominant EM loss mechanism in dielectric-loss materials is indispensable, it is challenging due to a complex synergism between dipole/interfacial polarization and conduction loss. Modulation of defects and microstructures can be a possible approach to determine the dominant EM loss mechanism and realize high-efficiency absorption. Herein, 2D reduced graphene oxide (rGO) flakes are integrated into a 3D hollow bowl-like structure, which increases defect sites (i.e., oxygen vacancy and lattice defect) and reduces the stacked thickness of rGO. Despite their lower stacked thicknesses, the hollow rGO bowls with more defects exhibit lower conductivities but higher permittivities. Accompanied by the transformation from 2D flakes to 3D hollow bowls, the dominant EM loss mechanism of rGO transforms from conduction loss to defect-induced polarization. Furthermore, the defect engineering and structural design endow rGO with well-matched impedance and strong EMW-absorbing capacity. A minimum reflection loss of -41.6 dB (1.3 mm) and an effective absorption bandwidth of 4.8 GHz (1.5 mm) is achieved at a filler loading of 5 wt%. This study will provide meaningful insights into the development of materials with superior EMW-absorbing performances via defect engineering and structural design.
RESUMO
Li-rich layered oxides (LLOs) are among the most promising cathode materials with high theoretical specific capacity (>250 mAh g-1 ). However, capacity decay and voltage hysteresis due tostructural degradation during cycling impede the commercial application of LLOs. Surface engineering and element doping are two methods widely applied tomitigate the structural degradation. Here, it is found that trace amount lanthanide element Yb doping can spontaneously form a surficial Yb-rich layer with high density of oxygen vacancy on the LLO-0.3% Yb (Li1.2 Mn0.54 Co0.13-x Ybx Ni0.13 O2 where x = 0.003) cathodes, which mitigating lattice oxygen loss and the non-preferred layered-to-spinel-to-rock salt tri-phase transition. Meanwhile, there are also some Yb ions doped into the lattice of LLO, which enhance the binding energy with oxygen and stabilize the lattice in grain interior during cycling. The dual effects of Yb doping greatly mitigate the structure degradation during cycling, and facilitate fast diffusion of lithium ions. As a result, the LLO-0.3% Yb sample achieves significantly improved cycling stability, with a capacity retention of 84.69% after 100 cycles at 0.2 C and 84.3% after 200 cycles at 1 C. These finding shighlight the promising rare element doping strategy that can have both surface engineering and doping effects in preparing LLO cathodes with high stability.
RESUMO
Electrochemical upcycling of end-of-life polyethylene terephthalate (PET) using renewable electricity offers a route to generate valuable chemicals while processing plastic wastes. However, it remains a huge challenge to design an electrocatalyst with reliable structure-property relationships for PET valorization. Herein, spinel Co3O4 with rich oxygen vacancies for improved activity toward formic acid (FA) production from PET hydrolysate is reported. Experimental investigations combined with theoretical calculations reveal that incorporation of VO into Co3O4 not only promotes the generation of reactive hydroxyl species (OH*) species at adjacent tetrahedral Co2+ (Co2+ Td), but also induces an electronic structure transition from octahedral Co3+ (Co3+ Oh) to octahedral Co2+ (Co2+ Oh), which typically functions as highly-active catalytic sites for ethylene glycol (EG) chemisorption. Moreover, the enlarged Co-O covalency induced by VO facilitates the electron transfer from EG* to OH* via Co2+ Oh-O-Co2+ Td interaction and the following CâC bond cleavage via direct oxidation with a glyoxal intermediate pathway. As a result, the VO-Co3O4 catalyst exhibits a high half-cell activity for EG oxidation, with a Faradaic efficiency (91%) and productivity (1.02 mmol cm-2 h-1) of FA. Lastly, it is demonstrated that hundred gram-scale formate crystals can be produced from the real-world PET bottles via two-electrode electroreforming, with a yield of 82%.