Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 413(23): 5885-5900, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34341841

RESUMO

A peptide from the P0 acidic ribosomal protein (pP0) of ticks conjugated to keyhole limpet hemocyanin from Megathura crenulata has shown to be effective against different tick species when used in host vaccination. Turning this peptide into a commercial anti-tick vaccine will depend on finding the appropriate, technically and economically feasible way to present it to the host immune system. Two conjugates (p64K-Cys1pP0 and p64K-ßAla1pP0) were synthesized using the p64K carrier protein from Neisseria meningitidis produced in Escherichia coli, the same cross-linking reagent, and two analogues of pP0. The SDS-PAGE analysis of p64K-Cys1pP0 showed a heterogeneous conjugate compared to p64K-ßAla1pP0 that was detected as a protein band at 91kDa. The pP0/p64K ratio determined by MALDI-MS for p64K-Cys1pP0 ranged from 1 to 8, being 3-5 the predominant ratio, while in the case of p64K-ßAla1pP0 this ratio was 5-7. Cys1pP0 was partially linked to 35 out of 39 Lys residues and the N-terminal end, while ßAla1pP0 was mostly linked to the six free cysteine residues, to the N-terminal end, and, in a lesser extent, to Lys residues. The assignment of the conjugation sites and side reactions were based on the identification of type 2 peptides. Rabbit immunizations showed the best anti-pP0 titers and the highest efficacy against Rhipicephalus sanguineus ticks when the p64K-Cys1pP0 was used as vaccine antigen. The presence of high molecular mass aggregates observed in the SDS-PAGE analysis of p64K-Cys1pP0 could be responsible for a better immune response against pP0 and consequently for its better efficacy as an anti-tick vaccine. Graphical abstract.


Assuntos
Proteínas da Membrana Bacteriana Externa/imunologia , Cromatografia Líquida/métodos , Neisseria meningitidis/imunologia , Espectrometria de Massas em Tandem/métodos , Carrapatos/imunologia , Vacinas/imunologia , Animais , Eletroforese em Gel de Poliacrilamida , Hemocianinas/imunologia , Coelhos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
2.
Electron. j. biotechnol ; 33: 29-35, May. 2018. tab, graf, ilus
Artigo em Inglês | LILACS | ID: biblio-1022834

RESUMO

Background: P64k is a Neisseria meningitidis high molecular weight protein present in meningococcal vaccine preparations. The lpdA gene, which encodes for this protein, was cloned in Escherichia coli and the P64k recombinant protein was expressed in E. coli K12 GC366 cells under the control of a tryptophan promoter. P64k was expressed as an intracellular soluble protein about 28% of the total cellular protein. Several scale-up criteria of fermentation processes were studied to obtain the recombinant P64k protein at the pilot production scale. Results: The best operational conditions at a larger scale production of P64k recombinant protein were studied and compared using the four following criteria: Constant Reynold's number (Re constant), Constant impeller tip speed (n di constant), Constant power consumption per unit liquid volume (P/V constant) and Constant volumetric oxygen transfer coefficients (KLa/k constant). The highest production of the recombinant protein was achieved based on the constant KLa/k scale-up fermentation criterion, calculating the aeration rate (Q) and the impeller agitation speed (n) by iterative process, keeping constant the KLa/k value from bench scale. The P64k protein total production at the 50 l culture scale was 546 mg l -1 in comparison with the 284 mg l -1 obtained at 1.5 l bench scale. Conclusions: The methodology described herein, for the KLa/k scale-up fermentation criterion, allowed us to obtain the P64k protein at 50 l scale. A fermentation process for the production of P64k protein from N. meningitidis was established, a protein to be used in future vaccine formulations in humans.


Assuntos
Proteínas da Membrana Bacteriana Externa/biossíntese , Proteínas Recombinantes/biossíntese , Escherichia coli/metabolismo , Neisseria meningitidis/metabolismo , Triptofano , Vacinas Meningocócicas , Fermentação , Peso Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA