Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Int J Mol Sci ; 23(12)2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35743105

RESUMO

The dystrophin-glycoprotein complex connects the cytoskeleton with base membrane components such as laminin through unique O-glycans displayed on α-dystroglycan (α-DG). Genetic impairment of elongation of these glycans causes congenital muscular dystrophies. We previously identified that glycerol phosphate (GroP) can cap the core part of the α-DG O-glycans and terminate their further elongation. This study examined the possible roles of the GroP modification in cancer malignancy, focusing on colorectal cancer. We found that the GroP modification critically depends on PCYT2, which serves as cytidine 5'-diphosphate-glycerol (CDP-Gro) synthase. Furthermore, we identified a significant positive correlation between cancer progression and GroP modification, which also correlated positively with PCYT2 expression. Moreover, we demonstrate that GroP modification promotes the migration of cancer cells. Based on these findings, we propose that the GroP modification by PCYT2 disrupts the glycan-mediated cell adhesion to the extracellular matrix and thereby enhances cancer metastasis. Thus, the present study suggests the possibility of novel approaches for cancer treatment by targeting the PCYT2-mediated GroP modification.


Assuntos
Distroglicanas , Neoplasias , RNA Nucleotidiltransferases/metabolismo , Distroglicanas/genética , Distroglicanas/metabolismo , Glicerol/metabolismo , Glicerofosfatos , Humanos , Fosfatos/metabolismo , Polissacarídeos/metabolismo , Regulação para Cima
2.
Brain ; 142(11): 3382-3397, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31637422

RESUMO

CTP:phosphoethanolamine cytidylyltransferase (ET), encoded by PCYT2, is the rate-limiting enzyme for phosphatidylethanolamine synthesis via the CDP-ethanolamine pathway. Phosphatidylethanolamine is one of the most abundant membrane lipids and is particularly enriched in the brain. We identified five individuals with biallelic PCYT2 variants clinically characterized by global developmental delay with regression, spastic para- or tetraparesis, epilepsy and progressive cerebral and cerebellar atrophy. Using patient fibroblasts we demonstrated that these variants are hypomorphic, result in altered but residual ET protein levels and concomitant reduced enzyme activity without affecting mRNA levels. The significantly better survival of hypomorphic CRISPR-Cas9 generated pcyt2 zebrafish knockout compared to a complete knockout, in conjunction with previously described data on the Pcyt2 mouse model, indicates that complete loss of ET function may be incompatible with life in vertebrates. Lipidomic analysis revealed profound lipid abnormalities in patient fibroblasts impacting both neutral etherlipid and etherphospholipid metabolism. Plasma lipidomics studies also identified changes in etherlipids that have the potential to be used as biomarkers for ET deficiency. In conclusion, our data establish PCYT2 as a disease gene for a new complex hereditary spastic paraplegia and confirm that etherlipid homeostasis is important for the development and function of the brain.


Assuntos
Fosfatidiletanolaminas/biossíntese , RNA Nucleotidiltransferases/genética , Paraplegia Espástica Hereditária/genética , Adolescente , Alelos , Animais , Atrofia , Encéfalo/patologia , Criança , Pré-Escolar , Deficiências do Desenvolvimento/genética , Epilepsia/genética , Feminino , Técnicas de Inativação de Genes , Variação Genética , Humanos , Lipidômica , Masculino , Camundongos , RNA Nucleotidiltransferases/deficiência , Adulto Jovem , Peixe-Zebra
3.
Arch Biochem Biophys ; 644: 81-92, 2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-29526533

RESUMO

Currently, there is a worldwide increase of patients with type 2 diabetes (T2D). During the progression of healthy obese to T2D status, there is an influx of immune cells, in particular macrophages, into visceral adipose tissue, accompanied by an increase of inflammatory cytokines, such as, IL6, TNFα and Hp. To get a better insight in the underlying mechanisms, we performed a quantitative LCMS analysis on a modified in vitro assay, combining 3T3L1 adipocytes and activated RAW264.7 macrophages, thus mimicking inflamed adipose tissue. Clinically known proteins, e.g. IL6, TNFα, AdipoQ, complement factor C3, B and D were identified, thus confirming the assay. In addition, we found 54 new proteins that can potentially be used for research into the mechanism of T2D. Comparison of our results to a study on human visceral fat of obese non-diabetic and obese diabetic subjects, indicated that AUH, NAGK, pCYT2, NNMT, STK39 and CSNK2A2 might indeed be linked to insulin resistance in humans. Moreover, the expression of some of these genes was also altered in human blood samples at early or later stages of insulin desensitization. Overall, we conclude that the direct contact co-culture of 3T3L1 adipocytes with activated macrophages could be a mechanistically relevant and partially translational model of inflamed visceral adipose tissue.


Assuntos
Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Macrófagos/metabolismo , Modelos Biológicos , Obesidade/metabolismo , Células 3T3-L1 , Adipócitos/patologia , Tecido Adiposo/patologia , Animais , Diabetes Mellitus Tipo 2/patologia , Feminino , Humanos , Inflamação/metabolismo , Inflamação/patologia , Resistência à Insulina , Macrófagos/patologia , Masculino , Camundongos , Obesidade/patologia , Células RAW 264.7
4.
Biochem Cell Biol ; 95(2): 223-231, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28068143

RESUMO

It was hypothesized that choline supplementation in insulin resistant (IR) CTP:phosphoethanolamine cytidylyltransferase deficient (Pcyt2+/-) mice would ameliorate muscle function by remodeling glucose and fatty acid (FA) metabolism. Pcyt2+/- mice either received no treatment or were allowed access to 2 mg/mL choline in drinking water for 4 weeks. Skeletal muscle was harvested from choline treated and untreated mice. Lipid analysis and metabolic gene expression and signaling pathways were compared between untreated Pcyt2+/- mice, treated Pcyt2+/- mice, and Pcyt2+/+ mice. The major positive effect of choline supplementation on IR muscle was the reduction of glucose utilization for FA and triglyceride (TAG) synthesis and increased muscle glucose storage as glycogen. Choline reduced the expression of genes for FA and TAG formation (Scd1, Fas, Srebp1c, Dgat1/2), upregulated the genes for FA oxidation (Cpt1, Pparα, Pgc1α), and had minor effects on phospholipid and lipolysis genes. Pcyt2+/- muscle had reduced insulin signaling (IRS1), autophagy (LC3), and choline transport (CTL1) proteins that were restored by choline treatment. Additionally, choline activated AMPK and Akt while inhibiting mTORC1 phosphorylation. These data established that choline supplementation could restore muscle glucose metabolism by reducing lipogenesis and improving mitochondrial and intracellular signaling for protein and energy metabolism in insulin resistant Pcyt2 deficient mice.


Assuntos
Adaptação Fisiológica/efeitos dos fármacos , Colina/farmacologia , Resistência à Insulina , Lipogênese/efeitos dos fármacos , RNA Nucleotidiltransferases/genética , Adaptação Fisiológica/genética , Administração Oral , Animais , Carnitina O-Palmitoiltransferase/genética , Carnitina O-Palmitoiltransferase/metabolismo , Diacilglicerol O-Aciltransferase/genética , Diacilglicerol O-Aciltransferase/metabolismo , Ácidos Graxos/metabolismo , Regulação da Expressão Gênica , Glucose/metabolismo , Proteínas Substratos do Receptor de Insulina/genética , Proteínas Substratos do Receptor de Insulina/metabolismo , Lipogênese/genética , Camundongos , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Músculo Esquelético , Proteínas de Transporte de Cátions Orgânicos/genética , Proteínas de Transporte de Cátions Orgânicos/metabolismo , PPAR alfa/genética , PPAR alfa/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , RNA Nucleotidiltransferases/deficiência , Transdução de Sinais , Estearoil-CoA Dessaturase/genética , Estearoil-CoA Dessaturase/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Triglicerídeos/metabolismo , Receptor fas/genética , Receptor fas/metabolismo
5.
J Biol Chem ; 289(13): 9053-64, 2014 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-24519946

RESUMO

CTP:phosphoethanolamine cytidylyltransferase (Pcyt2) is the main regulatory enzyme for de novo biosynthesis of phosphatidylethanolamine by the CDP-ethanolamine pathway. There are two isoforms of Pcyt2, -α and -ß; however, very little is known about their specific roles in this important metabolic pathway. We previously demonstrated increased phosphatidylethanolamine biosynthesis subsequent to elevated activity and phosphorylation of Pcyt2α and -ß in MCF-7 breast cancer cells grown under conditions of serum deficiency. Mass spectroscopy analyses of Pcyt2 provided evidence for isoform-specific as well as shared phosphorylations. Pcyt2ß was specifically phosphorylated at the end of the first cytidylyltransferase domain. Pcyt2α was phosphorylated within the α-specific motif that is spliced out in Pcyt2ß and on two PKC consensus serine residues, Ser-215 and Ser-223. Single and double mutations of PKC consensus sites reduced Pcyt2α phosphorylation, activity, and phosphatidylethanolamine synthesis by 50-90%. The phosphorylation and activity of endogenous Pcyt2 were dramatically increased with phorbol esters and reduced by specific PKC inhibitors. In vitro translated Pcyt2α was phosphorylated by PKCα, PKCßI, and PKCßII. Pcyt2α Ser-215 was also directly phosphorylated with PKCα. Mapping of the Pcyt2α- and -ß-phosphorylated sites to the solved structure of a human Pcyt2ß showed that they clustered within and flanking the central linker region that connects the two catalytic domains and is a novel regulatory segment not present in other cytidylyltransferases. This study is the first to demonstrate differences in phosphorylation between Pcyt2 isoforms and to uncover the role of the PKC-regulated phosphorylation.


Assuntos
Proteína Quinase C/metabolismo , RNA Nucleotidiltransferases/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Domínio Catalítico , Humanos , Isoenzimas/química , Isoenzimas/metabolismo , Células MCF-7 , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Ésteres de Forbol/farmacologia , Fosfopeptídeos/química , Fosfopeptídeos/metabolismo , Fosforilação/efeitos dos fármacos , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/genética , Inibidores de Proteínas Quinases/farmacologia , RNA Nucleotidiltransferases/química , Soro/metabolismo
6.
J Biochem ; 173(5): 333-335, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-36760122

RESUMO

Dystroglycan (DG), a muscular transmembrane protein, plays a critical role in transducing extracellular matrix-derived signals to the cytoskeleton and provides physical strength to skeletal muscle cell membranes. The extracellular domain of DG, α-DG, displays unique glycosylation patterns. Fully functional glycosylation is required for this domain to interact with components of extracellular matrices, including laminin. One of the unique sugar compositions found in such functional glycans on DG is two ribitol phosphates that are transferred by the sequential actions of fukutin (FKTN) and fukutin-related protein (FKRP), which use CDP-ribitol as a donor substrate. These are then further primed for matriglycan biosynthesis. A recent in vitro study reported that glycerol phosphate could be similarly added to α-DG by FKTN and FKRP if they used CDP-glycerol (CDP-Gro) as a donor substrate. However, the physiological relevance of these findings remains elusive. Imae et al. addressed the knowledge gap regarding whether CDP-Gro is present in mammals and how CDP-Gro is synthesized and functions in mammals.


Assuntos
Distroglicanas , Pentosiltransferases , Animais , Distroglicanas/metabolismo , Glicerol , Glicosilação , Pentosiltransferases/metabolismo , Ribitol/metabolismo , Ribitol/farmacologia
7.
Function (Oxf) ; 4(4): zqad020, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37342414

RESUMO

The maintenance of phospholipid homeostasis is increasingly being implicated in metabolic health. Phosphatidylethanolamine (PE) is the most abundant phospholipid on the inner leaflet of cellular membranes, and we have previously shown that mice with a heterozygous ablation of the PE synthesizing enzyme, Pcyt2 (Pcyt2+/-), develop obesity, insulin resistance, and NASH. Skeletal muscle is a major determinant of systemic energy metabolism, making it a key player in metabolic disease development. Both the total PE levels and the ratio of PE to other membrane lipids in skeletal muscle are implicated in insulin resistance; however, the underlying mechanisms and the role of Pcyt2 regulation in this association remain unclear. Here, we show how reduced phospholipid synthesis due to Pcyt2 deficiency causes Pcyt2+/- skeletal muscle dysfunction and metabolic abnormalities. Pcyt2+/- skeletal muscle exhibits damage and degeneration, with skeletal muscle cell vacuolization, disordered sarcomeres, mitochondria ultrastructure irregularities and paucity, inflammation, and fibrosis. There is intramuscular adipose tissue accumulation, and major disturbances in lipid metabolism with impaired FA mobilization and oxidation, elevated lipogenesis, and long-chain fatty acyl-CoA, diacylglycerol, and triacylglycerol accumulation. Pcyt2+/- skeletal muscle exhibits perturbed glucose metabolism with elevated glycogen content, impaired insulin signaling, and reduced glucose uptake. Together, this study lends insight into the critical role of PE homeostasis in skeletal muscle metabolism and health with broad implications on metabolic disease development.


Assuntos
Resistência à Insulina , Lipogênese , Camundongos , Animais , Resistência à Insulina/genética , Fosfatidiletanolaminas/metabolismo , Triglicerídeos/metabolismo , Músculo Esquelético/metabolismo
8.
Artigo em Inglês | MEDLINE | ID: mdl-35306146

RESUMO

Extracellular administration of side-chain oxysterols, such as 24S-hydroxycholesterol (24S-HC), 27-hydroxycholesterol (27-HC) and 25-hydroxycholesterol (25-HC) to cells suppresses HMG-CoA reductase (Hmgcr) and CTP:phosphoethanolamine cytidylyltransferase (Pcyt2) mRNA levels. Oxysterols are enzymatically produced in cells from cholesterol by cytochrome P450 46A1 (Cyp46A1), Cyp27A1, Cyp3A11 and cholesterol 25-hydroxylase (Ch25h). We analyzed which of these oxysterol-producing enzymes are expressed in NIH3T3 cells and found that only Cyp46A1 was expressed. When Cyp46A1 was overexpressed in NIH3T3 cells, intrinsic oxysterols increased in the order 24S-HC > 25-HC > 27-HC. We investigated the mechanism regulating the production of endogenous oxysterols in NIH3T3 cells by Cyp46A1 and found that the mRNA, relative protein levels and enzymatic activity of Cyp46A1, and the amounts of 24S-HC, 25-HC and 27-HC significantly increased under serum-starved conditions, and these increases were suppressed by FBS supplementation. The aqueous phase of FBS obtained by the Bligh & Dyer method significantly suppressed Cyp46A1 mRNA levels. Fractionation of the aqueous phase by HPLC and analysis of the inhibiting fractions by nanoLC and TripleTOF MS/MS identified insulin-like factor-II (IGF-II). Cyp46A1 mRNA levels in serum-starved NIH3T3 cells were significantly suppressed by the addition of IGFs and insulin and endogenous oxysterol levels were decreased. CYP46A1 mRNA levels in the T98G human glioblastoma cell line were also increased by serum starvation but not by FBS supplementation, and the aqueous phase did not inhibit the increase. These results suggest that mRNA levels of Cyp46A1 are regulated by factors in FBS.


Assuntos
Insulinas , Espectrometria de Massas em Tandem , Animais , Colesterol 24-Hidroxilase , Humanos , Camundongos , Células NIH 3T3 , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
9.
J Biochem ; 170(2): 183-194, 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34255834

RESUMO

α-Dystroglycan (α-DG) is a highly glycosylated cell-surface protein. Defective O-mannosyl glycan on α-DG is associated with muscular dystrophies and cancer. In the biosynthetic pathway of the O-mannosyl glycan, fukutin (FKTN) and fukutin-related protein (FKRP) transfer ribitol phosphate (RboP). Previously, we reported that FKTN and FKRP can also transfer glycerol phosphate (GroP) from CDP-glycerol (CDP-Gro) and showed the inhibitory effects of CDP-Gro on functional glycan synthesis by preventing glycan elongation in vitro. However, whether mammalian cells have CDP-Gro or associated synthetic machinery has not been elucidated. Therefore, the function of CDP-Gro in mammals is largely unknown. Here, we reveal that cultured human cells and mouse tissues contain CDP-Gro using liquid chromatography tandem-mass spectrometry (LC-MS/MS). By performing the enzyme activity assay of candidate recombinant proteins, we found that ethanolamine-phosphate cytidylyltransferase (PCYT2), the key enzyme in de novo phosphatidylethanolamine biosynthesis, has CDP-Gro synthetic activity from glycerol-3-phosphate (Gro3P) and CTP. In addition, knockdown of PCYT2 dramatically reduced cellular CDP-Gro. These results indicate that PCYT2 is a CDP-Gro synthase in mammals. Furthermore, we found that the expression of functionally glycosylated α-DG is increased by reducing PCYT2 expression. Our results suggest an important role for CDP-Gro in the regulation of α-DG function in mammals.


Assuntos
Distroglicanas/metabolismo , Açúcares de Nucleosídeo Difosfato/metabolismo , RNA Nucleotidiltransferases/metabolismo , Animais , Cromatografia Líquida/métodos , Cistina Difosfato/metabolismo , Glicerol/metabolismo , Glicosilação , Células HEK293 , Humanos , Masculino , Mamíferos , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Pentosiltransferases/metabolismo , Fosfatidiletanolaminas/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Polissacarídeos/metabolismo , Espectrometria de Massas em Tandem/métodos
10.
Front Genet ; 11: 604262, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33519909

RESUMO

PURPOSE: Triple-negative breast cancer (TNBC) is a type of breast cancer (BC) showing a high recurrence ratio and a low survival probability, which requires novel actionable molecular targets. The involvement of alternative splicing (AS) in TNBC promoted us to study the potential roles of AS events in the survival prognosis of TNBC patients. METHODS: A total of 150 TNBC patients from The Cancer Genome Atlas (TCGA) were involved in this work. To study the effects of AS in the recurrence-free survival (RFS) prognosis of TNBC, we performed the analyses as follows. First, univariate Cox regression model was applied to identify RFS-related AS events. Their host genes were analyzed by Metascape to discover the potential functions and involved pathways. Next, least absolute shrinkage and selection operator (LASSO) method was used to select the most informative RFS-related AS events to constitute an AS risk factor for RFS prognosis, which was evaluated by Kaplan-Meier (KM) and receiver operating characteristic (ROC) curves in all the data and also in different clinical subgroups. Furthermore, we analyzed the relationships between splicing factors (SFs) and these RFS-related AS events to seek the possibility that SFs regulated AS events to influence RFS. Then, we evaluated the potential of these RFS-related AS events in the overall survival (OS) prognosis from all the above aspects. RESULTS: We identified a total of 546 RFS-related AS events, which were enriched in some splicing and TNBC-associated pathways. Among them, seven RFS-related events were integrated into a risk factor, exhibiting satisfactory RFS prognosis alone and even better performance when combined with clinical tumor-node-metastasis stages. Furthermore, the correlation analysis between SFs and the seven AS events revealed the hypotheses that SRPK3 might upregulate PCYT2_44231_AA to have an effect on RFS prognosis and that three other SFs may work together to downregulate FLAD1_7874_RI to influence RFS prognosis. In addition, the seven RFS-related AS events were validated to be promising in the OS prognosis of TNBC as well. CONCLUSION: The abnormal AS events regulated by SFs may act as a kind of biomarker for the survival prognosis of TNBC.

11.
J Steroid Biochem Mol Biol ; 195: 105482, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31580889

RESUMO

CTP: phosphoethanolamine cytidylyltransferase (Pcyt2) is the rate-limiting enzyme in mammalian phosphatidylethanolamine (PE) biosynthesis. Previously, we reported that increasedPcyt2 mRNA levels after serum starvation are suppressed by 25-hydroxycholesterol (HC) (25-HC), and that nuclear factor-Y (NF-Y) is involved in the inhibitory effects. Transcription of Hmgcr, which encodes 3-hydroxy-3-methylglutaryl-CoA reductase, is suppressed in the same manner. However, no typical sterol regulatory element (SRE) was detected in the Pcyt2 promoter. We were therefore interested in the effect of 25-HC on the modification of histones and thus treated cells with histone acetyltransferase inhibitor (anacardic acid) or histone deacetylase inhibitor (trichostatin A). The suppressive effect of 25-HC on Pcyt2 and Hmgcr mRNA transcription was ameliorated by trichostatin A. Anacardic acid, 25-HC and 24(S)-HC suppressed their transcription by inhibiting H3K27 acetylation in their promoters as evaluated by chromatin immunoprecipitation (ChIP) assays. 27-HC, 22(S)-HC and 22(R)-HC also suppressed their transcription, but 7α-HC, 7ß-HC, the synthetic LXR agonist T0901317 and cholesterol did not. Furthermore, 25-HC inhibited p300 recruitment to the Pcyt2 and Hmgcr promoters, and suppressed H3K27 acetylation. 25-HC in the medium was easily conducted into cells. Based on these results, we concluded that 25-HC (and other side-chain oxysterols) in the medium was easily transferred into cells, suppressed H3K27 acetylation via p300 recruitment on the NF-Y complex in the Pcyt2 and Hmgcr promoters, and then suppressed transcription of these genes although LXR is not involved.


Assuntos
Fator de Ligação a CCAAT/metabolismo , Proteína p300 Associada a E1A/metabolismo , Histonas/metabolismo , Hidroxicolesteróis/farmacologia , Hidroximetilglutaril-CoA Redutases/genética , RNA Nucleotidiltransferases/genética , Acetilação/efeitos dos fármacos , Animais , Linhagem Celular , Humanos , Camundongos , Regiões Promotoras Genéticas , Transcrição Gênica/efeitos dos fármacos
12.
Cell Rep ; 29(1): 89-103.e7, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31577958

RESUMO

Tolerance to severe tumor microenvironments, including hypoxia and nutrient starvation, is a common feature of aggressive cancer cells and can be targeted. However, metabolic alterations that support cancer cells upon nutrient starvation are not well understood. Here, by comprehensive metabolome analyses, we show that glutamine deprivation leads to phosphoethanolamine (PEtn) accumulation in cancer cells via the downregulation of PEtn cytidylyltransferase (PCYT2), a rate-limiting enzyme of phosphatidylethanolamine biosynthesis. PEtn accumulation correlated with tumor growth under nutrient starvation. PCYT2 suppression was partially mediated by downregulation of the transcription factor ELF3. Furthermore, PCYT2 overexpression reduced PEtn levels and tumor growth. In addition, PEtn accumulation and PCYT2 downregulation in human breast tumors correlated with poor prognosis. Thus, we show that glutamine deprivation leads to tumor progression by regulating PE biosynthesis via the ELF3-PCYT2 axis. Furthermore, manipulating glutamine-responsive genes could be a therapeutic approach to limit cancer progression.


Assuntos
Regulação para Baixo/genética , Etanolaminas/metabolismo , Glutamina/metabolismo , RNA Nucleotidiltransferases/genética , Inanição/metabolismo , Animais , Linhagem Celular , Linhagem Celular Tumoral , Progressão da Doença , Células HeLa , Células Hep G2 , Células Endoteliais da Veia Umbilical Humana , Humanos , Células MCF-7 , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-ets/genética , Transcrição Gênica/genética
14.
J Nutr Biochem ; 26(11): 1221-34, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26242921

RESUMO

Choline plays a critical role in systemic lipid metabolism and hepatic function. Here we conducted a series of experiments to investigate the effect of choline supplementation on metabolically altered Pcyt2(+/-) mice. In Pcyt2(+/-) mice, the membrane phosphatidylethanolamine (PE) turnover is reduced and the formation of fatty acids (FA) and triglycerides (TAG) increased, resulting in hypertriglyceridemia, liver steatosis and obesity. One month of choline supplementation reduced the incorporation of FA into TAG and facilitated TAG degradation in Pcyt2(+/-) adipocytes, plasma and liver. Choline particularly stimulated adipocyte and liver TAG lipolysis by specific lipases (ATGL, LPL and HSL) and inhibited TAG formation by DGAT1 and DGAT2. Choline also activated the liver AMPK and mitochondrial FA oxidation gene PPARα and reduced the FA synthesis genes SREBP1, SCD1 and FAS. Liver (HPLC) and plasma (tandem mass spectroscopy and (1)H-NMR) metabolite profiling established that Pcyt2(+/-) mice have reduced membrane cholesterol/sphingomyelin ratio and the homocysteine/methionine cycle that were improved by choline supplementation. These data suggest that supplementary choline is beneficial for restoring FA and TAG homeostasis under conditions of obesity caused by impaired PE synthesis.


Assuntos
Colina/farmacologia , Fígado/efeitos dos fármacos , RNA Nucleotidiltransferases/deficiência , Proteínas Quinases Ativadas por AMP/metabolismo , Acilação , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Carnitina/análogos & derivados , Suplementos Nutricionais , Ácidos Graxos/genética , Ácidos Graxos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Fígado/metabolismo , Camundongos Mutantes , Fosfatidilcolinas/metabolismo , Fosfatidilserinas/metabolismo , RNA Nucleotidiltransferases/genética , Triglicerídeos/sangue , Triglicerídeos/metabolismo , Aumento de Peso/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA