Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Brain Behav Immun ; 97: 371-375, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34333113

RESUMO

The splanchnic anti-inflammatory pathway, the efferent arm of the endogenous inflammatory reflex, has been shown to suppress the acute inflammatory response of rats to systemic lipopolysaccharide (LPS). Here we show for the first time that this applies also to mice, and that the reflex may be engaged by a range of inflammatory stimuli. Experiments were performed on mice under deep anaesthesia. Half the animals were subjected to bilateral section of the splanchnic sympathetic nerves, to disconnect the splanchnic anti-inflammatory pathway, while the remainder underwent a sham operation. Mice were then challenged intravenously with one of three inflammatory stimuli: the toll-like receptor (TLR)-4 agonist, LPS (60 µg/kg), the TLR-3 agonist Polyinosinic:polycytidylic acid (Poly I:C, 1 mg/kg) or the TLR-2 and -6 agonist dipalmitoyl-S-glyceryl cysteine (Pam2cys, 34 µg/kg). Ninety minutes later, blood was sampled by cardiac puncture for serum cytokine analysis. The splanchnic anti-inflammatory reflex action was assessed by comparing cytokine levels between animals with cut versus those with intact splanchnic nerves. A consistent pattern emerged: Tumor necrosis factor (TNF) levels in response to all three challenges were raised by prior splanchnic nerve section, while levels of the anti-inflammatory cytokine interleukin 10 (IL-10) were reduced. The raised TNF:IL-10 ratio after splanchnic nerve section indicates an enhanced inflammatory state when the reflex is disabled. These findings show for the first time that the inflammatory reflex drives a coordinated anti-inflammatory action also in mice, and demonstrate that its anti-inflammatory action is engaged, in similar fashion, by inflammatory stimuli mimicking a range of bacterial and viral infections.


Assuntos
Lipopolissacarídeos , Nervos Esplâncnicos , Animais , Citocinas , Camundongos , Ratos , Reflexo , Fator de Necrose Tumoral alfa
2.
EMBO Rep ; 20(9): e47381, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31338952

RESUMO

mRNA transport determines spatiotemporal protein expression. Transport units are higher-order ribonucleoprotein complexes containing cargo mRNAs, RNA-binding proteins and accessory proteins. Endosomal mRNA transport in fungal hyphae belongs to the best-studied translocation mechanisms. Although several factors are known, additional core components are missing. Here, we describe the 232 kDa protein Upa2 containing multiple PAM2 motifs (poly[A]-binding protein [Pab1]-associated motif 2) as a novel core component. Loss of Upa2 disturbs transport of cargo mRNAs and associated Pab1. Upa2 is present on almost all transport endosomes in an mRNA-dependent manner. Surprisingly, all four PAM2 motifs are dispensable for function during unipolar hyphal growth. Instead, Upa2 harbours a novel N-terminal effector domain as important functional determinant as well as a C-terminal GWW motif for specific endosomal localisation. In essence, Upa2 meets all the criteria of a novel core component of endosomal mRNA transport and appears to carry out crucial scaffolding functions.


Assuntos
Endossomos/metabolismo , Proteínas Fúngicas/metabolismo , RNA Mensageiro/metabolismo , Ustilago/metabolismo , Transporte Biológico/fisiologia , Western Blotting , Biologia Computacional , Proteínas Fúngicas/genética , Microscopia de Fluorescência , Filogenia , Técnicas do Sistema de Duplo-Híbrido , Ustilago/genética
3.
RNA Biol ; 18(2): 259-274, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33522422

RESUMO

La-related proteins (LARPs) share a La motif (LaM) followed by an RNA recognition motif (RRM). Together these are termed the La-module that, in the prototypical nuclear La protein and LARP7, mediates binding to the UUU-3'OH termination motif of nascent RNA polymerase III transcripts. We briefly review La and LARP7 activities for RNA 3' end binding and protection from exonucleases before moving to the more recently uncovered poly(A)-related activities of LARP1 and LARP4. Two features shared by LARP1 and LARP4 are direct binding to poly(A) and to the cytoplasmic poly(A)-binding protein (PABP, also known as PABPC1). LARP1, LARP4 and other proteins involved in mRNA translation, deadenylation, and decay, contain PAM2 motifs with variable affinities for the MLLE domain of PABP. We discuss a model in which these PABP-interacting activities contribute to poly(A) pruning of active mRNPs. Evidence that the SARS-CoV-2 RNA virus targets PABP, LARP1, LARP 4 and LARP 4B to control mRNP activity is also briefly reviewed. Recent data suggests that LARP4 opposes deadenylation by stabilizing PABP on mRNA poly(A) tails. Other data suggest that LARP1 can protect mRNA from deadenylation. This is dependent on a PAM2 motif with unique characteristics present in its La-module. Thus, while nuclear La and LARP7 stabilize small RNAs with 3' oligo(U) from decay, LARP1 and LARP4 bind and protect mRNA 3' poly(A) tails from deadenylases through close contact with PABP.Abbreviations: 5'TOP: 5' terminal oligopyrimidine, LaM: La motif, LARP: La-related protein, LARP1: La-related protein 1, MLLE: mademoiselle, NTR: N-terminal region, PABP: cytoplasmic poly(A)-binding protein (PABPC1), Pol III: RNA polymerase III, PAM2: PABP-interacting motif 2, PB: processing body, RRM: RNA recognition motif, SG: stress granule.


Assuntos
Autoantígenos/metabolismo , Poli A , Proteínas de Ligação a Poli(A)/metabolismo , Ribonucleoproteínas/metabolismo , Motivos de Aminoácidos , Humanos , Filogenia , Ligação Proteica , Biossíntese de Proteínas , Domínios Proteicos , Estabilidade de RNA , RNA Mensageiro/metabolismo , RNA Viral/metabolismo , SARS-CoV-2/genética , Antígeno SS-B
4.
Fungal Genet Biol ; 126: 12-16, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30738139

RESUMO

Active movement of mRNAs by sophisticated transport machineries determines precise spatiotemporal expression of encoded proteins. A prominent example discovered in fungi is microtubule-dependent transport via endosomes. This mode of transport was thought to be only operational in the basidiomycete Ustilago maydis. Here, we report that distinct core components are evolutionarily conserved in fungal species of distantly related phyla like Mucoromycota. Interestingly, orthologues of the key RNA-binding protein Rrm4 from the higher basidiomycete Coprinopsis cinerea and the mucoromycete Rhizophagus irregularis shuttle on endosomes in hyphae of U. maydis. Thus, endosomal mRNA transport appears to be more wide-spread than initially anticipated.


Assuntos
Evolução Biológica , Endossomos/metabolismo , Fungos/genética , Transporte de RNA , RNA Mensageiro/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fungos/metabolismo , Hifas/metabolismo , Motivo de Reconhecimento de RNA
5.
Molecules ; 24(19)2019 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-31569697

RESUMO

Cancer vaccine is a promising immunotherapeutic approach to train the immune system with vaccines to recognize and eliminate tumors. Adjuvants are compounds that are necessary in cancer vaccines to mimic an infection process and amplify immune responses. The Toll-like receptor 2 and 6 (TLR2/TLR6) agonist dipalmitoyl-S-glyceryl cysteine (Pam2Cys) was demonstrated as an ideal candidate for synthetic vaccine adjuvants. However, the synthesis of Pam2Cys requires expensive N-protected cysteine as a key reactant, which greatly limits its application as a synthetic vaccine adjuvant in large-scaled studies. Here, we report the development of N-acetylated Pam2Cys analogs as TLR2/TLR6 agonists. Instead of N-protected cysteine, the synthesis utilizes N-acetylcysteine to bring down the synthetic costs. The N-acetylated Pam2Cys analogs were demonstrated to activate TLR2/TLR6 in vitro. Moreover, molecular docking studies were performed to provide insights into the molecular mechanism of how N-acetylated Pam2Cys analogs bind to TLR2/TLR6. Together, these results suggest N-acetylated Pam2Cys analogs as inexpensive and promising synthetic vaccine adjuvants to accelerate the development of cancer vaccines in the future.


Assuntos
Lipopeptídeos/química , Lipopeptídeos/farmacologia , Receptor 2 Toll-Like/agonistas , Receptor 2 Toll-Like/química , Receptor 6 Toll-Like/agonistas , Receptor 6 Toll-Like/química , Humanos , Lipopeptídeos/síntese química , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular
6.
Bioorg Med Chem Lett ; 28(9): 1638-1641, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29598910

RESUMO

Toll-like receptor 2 (TLR2), a member of the TLR innate immune receptor family, recognizes lipoproteins from bacteria and modulates the immune response by inducing the expression of various cytokines. TLR2 has a large hydrophobic pocket that recognizes long fatty acyl groups on TLR2 ligands. However, few studies have focused on the property of the hydrophobic TLR2 pocket. Based on the X-ray crystal structure of TLR2, small polar regions were found in the hydrophobic TLR2 pocket. Interactions between the polar residues and ligands were explored here by designing and synthesizing a Pam2CSK4 derivative of the TLR2 ligands, containing an amide group within the lipid moiety. We evaluated the binding affinities and immunomodulatory activities of these ligands. Results suggested that the amide groups in the lipid chain interacted with the polar residues in the hydrophobic lipid-binding pocket of TLR2.


Assuntos
Adjuvantes Imunológicos/farmacologia , Lipídeos/farmacologia , Receptor 2 Toll-Like/antagonistas & inibidores , Adjuvantes Imunológicos/síntese química , Adjuvantes Imunológicos/química , Animais , Citocinas/biossíntese , Relação Dose-Resposta a Droga , Humanos , Interações Hidrofóbicas e Hidrofílicas , Ligantes , Lipídeos/síntese química , Lipídeos/química , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Camundongos , Estrutura Molecular , Células RAW 264.7 , Relação Estrutura-Atividade , Receptor 2 Toll-Like/imunologia
7.
Inflamm Res ; 66(12): 1099-1105, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28889202

RESUMO

INTRODUCTION: We aimed to investigate the involvement of surface TLRs and endosomal TLRs in the regulation of SARM expression by TLR2 ligands (Pam2CSK4 and Pam3CSK4). MATERIALS AND METHODS: Mouse macrophage cell line (RAW264.7) was treated with either Pam2CSK4 or Pam3CSK4 (TLR2 ligands) at a concentration of 100 ng/ml. At indicated time points, the treated cells were lysed. The gene and protein expression of SARM were determined by RT-PCR and immunoblotting, respectively. For silencing of TLR9 function, the cells were transfected with TLR9 siRNAs before stimulation by these two TLR2 ligands RESULTS: The SARM expression was upregulated at both transcriptional and translational levels in time-dependent manner during activation of Pam2CSK4 and Pam3CSK4 in mouse macrophages. Blocking of ligand internalization by cytochalasin D showed interference effect with SARM expression. Moreover, our results also demonstrated that endosomal acidification and TLR9 were required for SARM expression suggesting the essential role of endosomal compartment acidification and TLR9 in regulating SARM expression. CONCLUSION: Our findings suggested the collaboration of TLR2-TLR9 at least in the regulation of SARM expression. However, the underlying mechanism that participated in these two TLRs cooperation is underinvestigated.


Assuntos
Proteínas do Domínio Armadillo/metabolismo , Proteínas do Citoesqueleto/metabolismo , Receptor 2 Toll-Like/metabolismo , Receptor Toll-Like 9/metabolismo , Animais , Anticorpos Monoclonais/farmacologia , Anticorpos Neutralizantes/farmacologia , Proteínas do Domínio Armadillo/genética , Proteínas do Citoesqueleto/genética , Ligantes , Lipopeptídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Células RAW 264.7 , RNA Interferente Pequeno/genética , Receptor 2 Toll-Like/imunologia , Receptor Toll-Like 9/genética
8.
Eur Polym J ; 93: 670-681, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32226094

RESUMO

Peptide based-vaccines are becoming one of the most widely investigated prophylactic and therapeutic health care interventions against a variety of diseases, including cancer. However, the lack of a safe and highly efficient adjuvant (immune stimulant) is regarded as the biggest obstacle to vaccine development. The incorporation of a peptide antigen in a nanostructure-based delivery system was recently shown to overcome this obstacle. Nanostructures are often formed from antigens conjugated to molecules such as polymers, lipids, and peptide, with the help of self-assembly phenomenon. This review describes the application of self-assembly process for the production of peptide-based vaccine candidates and the ability of these nanostructures to stimulate humoral and cellular immune responses.

9.
Biochem Biophys Res Commun ; 457(3): 445-50, 2015 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-25596131

RESUMO

Myeloid-derived suppressor cells (MDSCs) are immature myeloid cells that exhibit potent immunosuppressive activity. They are increased in tumor-bearing hosts and contribute to tumor development. Toll-like receptors (TLRs) on MDSCs may modulate the tumor-supporting properties of MDSCs through pattern-recognition. Pam2 lipopeptides represented by Pam2CSK4 serve as a TLR2 agonist to exert anti-tumor function by dendritic cell (DC)-priming that leads to NK cell activation and cytotoxic T cell proliferation. On the other hand, TLR2 enhances tumor cell progression/invasion by activating tumor-infiltrating macrophages. How MDSCs respond to TLR2 agonists has not yet been determined. In this study, we found intravenous administration of Pam2CSK4 systemically up-regulated the frequency of MDSCs in EG7 tumor-bearing mice. The frequency of tumor-infiltrating MDSCs was accordingly increased in response to Pam2CSK4. MDSCs were not increased by Pam2CSK4 stimuli in TLR2 knockout (KO) mice. Adoptive transfer experiments using CFSE-labeled MDSCs revealed that the TLR2-positive MDSCs survived long in tumor-bearing mice in response to Pam2CSK4 treatment. Since the increased MDSC population sustained immune-suppressive properties, our study suggests that Pam2CSK4-triggered TLR2 activation enhances the MDSC potential and suppress antitumor immune response in tumor microenvironment.


Assuntos
Lipopeptídeos/farmacologia , Células Mieloides/efeitos dos fármacos , Células Mieloides/metabolismo , Receptor 2 Toll-Like/metabolismo , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Feminino , Imunoterapia , Ligantes , Lipopeptídeos/imunologia , Lipopeptídeos/metabolismo , Linfoma/imunologia , Linfoma/metabolismo , Linfoma/terapia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Células Mieloides/imunologia , Transdução de Sinais/efeitos dos fármacos , Receptor 2 Toll-Like/deficiência , Receptor 2 Toll-Like/genética , Microambiente Tumoral
10.
Bioorg Med Chem Lett ; 25(23): 5570-5, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26514746

RESUMO

Human papillomaviruses (HPVs) are associated with various cancers, with HPV16 linked to more than half of cervical cancer cases. Vaccines to prevent HPV infection and cancer development have proven effective, but are not useful in individuals with prior HPV exposure. Treatment vaccines to eradicate or control HPV-associated lesions are therefore desirable for these patients. Herein we describe the development of a process to enable the production of semisynthetic vaccines based on the site-specific attachment of synthetic bacterial lipid analogs (e.g., Pam2Cys) to a non-oncogenic mutant HPV16 E7 protein to generate molecularly defined vaccines. Many cytotoxic lymphocyte (CTL) epitopes from E7 are delivered by this approach; potentially ensuring that large numbers of immunized individuals can generate CTLs to clear HPV infected cells. Delivery of this construct reduced the growth of HPV16-associated tumors in a TC1 mouse model, the effects of which were better than the potent CTL epitope HPV16 E7(44-57) administered with Montanide ISA51 adjuvant.


Assuntos
Adjuvantes Imunológicos/uso terapêutico , Vacinas Anticâncer/uso terapêutico , Lipopeptídeos/química , Neoplasias/tratamento farmacológico , Proteínas E7 de Papillomavirus/efeitos dos fármacos , Infecções por Papillomavirus/terapia , Proteínas Recombinantes , Adjuvantes Imunológicos/síntese química , Sequência de Aminoácidos , Animais , Vacinas Anticâncer/síntese química , Técnicas de Química Sintética , Eletroforese em Gel de Poliacrilamida , Feminino , Humanos , Lipopeptídeos/síntese química , Lipopeptídeos/genética , Camundongos , Dados de Sequência Molecular , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
11.
J Dairy Sci ; 98(3): 1836-50, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25597966

RESUMO

Staphylococcus aureus is a common cause of chronic mammary gland infections in dairy cattle. However, the inflammatory response and duration of infection following pathogen exposure is variable between individual animals. To investigate interanimal differences in immune response, dermal fibroblast cultures were established from skin biopsies collected from 50 early lactation Holstein cows. The fibroblasts ability to produce IL-8 in response to a 24-h treatment with a synthetic toll-like receptor 2/6 agonist (Pam2CSK4) was used to assign a response phenotype to the animals. Five high-responding and 5 low-responding animals were then selected for an intramammary challenge with S. aureus to evaluate differences in the inflammatory response, chronicity of infection, and development of antibodies to the pathogen. All animals exhibited clinical symptoms of mastitis at 24h postchallenge. Animals previously classified as high responders experienced a greater inflammatory response characterized by elevated levels of milk somatic cell count, IL-8, and BSA following the challenge compared with low responders. In addition, antibodies toward the challenge strain of S. aureus reached higher levels in whey from the challenged gland of high responders compared with low responders. Despite the antibody response, all 5 high responders were chronically infected for the 6-wk duration of the study, whereas 2 of the low responders cleared the infection, although 1 of these did become reinfected. The observed differences between animals classified as low and high responders based on their fibroblast responsiveness suggests that this cell type can be used to further examine the causes of interanimal variation in response to mammary infection.


Assuntos
Doenças dos Bovinos/imunologia , Mastite Bovina/imunologia , Infecções Estafilocócicas/veterinária , Staphylococcus aureus/fisiologia , Animais , Bovinos , Doenças dos Bovinos/microbiologia , Contagem de Células/veterinária , Feminino , Fibroblastos/imunologia , Fibroblastos/microbiologia , Interleucina-8/imunologia , Mastite Bovina/microbiologia , Leite/química , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/microbiologia , Receptor 2 Toll-Like/agonistas , Receptor 6 Toll-Like/agonistas
12.
Biochem Biophys Res Commun ; 455(3-4): 323-31, 2014 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-25446091

RESUMO

The poly(A) tail of mRNAs plays pivotal roles in the posttranscriptional control of gene expression at both translation and mRNA stability. Recent findings demonstrate that the poly(A) tail is globally stabilized by some stresses. However, the mechanism underlying this phenomenon has not been elucidated. Here, we show that arsenite-induced oxidative stress inhibits deadenylation of mRNA primarily through downregulation of Tob and Pan3, both of which mediate the recruitment of deadenylases to mRNA. Arsenite selectively induces the proteolytic degradation of Tob and Pan3, and siRNA-mediated knockdown of Tob and Pan3 recapitulates stabilization of the mRNA poly(A) tail observed during arsenite stress. Although arsenite also inhibits translation by activating the eIF2α kinase HRI, arsenite-induced mRNA stabilization can be observed under HRI-depleted conditions. These results highlight the essential role of Tob and Pan3 in the stress-induced global stabilization of mRNA.


Assuntos
Arsenitos/química , Proteínas de Transporte/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , RNA Mensageiro/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Motivos de Aminoácidos , Regulação para Baixo , Células HeLa , Humanos , Estresse Oxidativo , Poli A/química , Ligação Proteica , Proteólise , Estabilidade de RNA , RNA Interferente Pequeno/metabolismo
13.
J Leukoc Biol ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38872374

RESUMO

By providing innate immune modulatory stimuli, the early life immune system can be enhanced to increase resistance to infections. Activation of innate cell surface receptors called pattern recognition receptors (PRRs) by TLR ligands is one promising approach that can help to control infections as described for listeriosis and cryptosporidiosis. In this study, the effect of TLR2/TLR1 and TLR2/TLR6 agonists was compared when injected into neonatal mice. Surprisingly, the stimulation of TLR2/TLR6 led to the death of the neonatal mice which was not observed in adult mice. The TLR2/TLR6 agonist administration induced higher systemic and intestinal inflammation both in adult and neonatal mice when compared to TLR2/TLR1 agonist. The mortality of neonatal mice was IFN-γ dependent and involved the intestinal production of IL-22 and IL-17A. This study clearly demonstrates that targeting TLRs as new control strategy of neonatal infections has to be used with caution. Depending on its heterodimeric form, the TLR2 stimulation can induce adverse effects more or less severe relying on the age-related immune functions of the host.

14.
Microbiol Spectr ; 11(3): e0429322, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37191536

RESUMO

Belonging to a group of membrane proteins, bacterial lipoproteins (LPPs) are defined by a unique lipid structure at their N-terminus providing the anchor in the bacterial cell membrane. In Gram-positive bacteria, LPPs play a key role in host immune activation triggered through a Toll-like receptor 2 (TLR2)-mediated action resulting in macrophage stimulation and subsequent tissue damage demonstrated in in vivo experimental models. Yet the physiologic links between LPP activation, cytokine release, and any underlying switches in cellular metabolism remain unclear. In this study, we demonstrate that Staphylococcus aureus Lpl1 not only triggers cytokine production but also confers a shift toward fermentative metabolism in bone marrow-derived macrophages (BMDMs). Lpl1 consists of di- and tri-acylated LPP variants; hence, the synthetic P2C and P3C, mimicking di-and tri-acylated LPPs, were employed to reveal their effect on BMDMs. Compared to P3C, P2C was found to shift the metabolism of BMDMs and the human mature monocytic MonoMac 6 (MM6) cells more profoundly toward the fermentative pathway, as indicated by lactate accumulation, glucose consumption, pH reduction, and oxygen consumption. In vivo, P2C caused more severe joint inflammation, bone erosion, and lactate and malate accumulation than P3C. These observed P2C effects were completely abrogated in monocyte/macrophage-depleted mice. Taken together, these findings now solidly confirm the hypothesized link between LPP exposure, a macrophage metabolic shift toward fermentation, and ensuing bone destruction. IMPORTANCE Osteomyelitis caused by S. aureus is a severe infection of the bone, typically associated with severe bone function impairment, therapeutic failure, high morbidity, invalidity, and occasionally even death. The hallmark of staphylococcal osteomyelitis is the destruction of the cortical bone structures, yet the mechanisms contributing to this pathology are hitherto poorly understood. One bacterial membrane constituent found in all bacteria is bacterial lipoproteins (LPPs). Previously, we have shown that injection of purified S. aureus LPPs into wild-type mouse knee joints caused a TLR2-dependent chronic destructive arthritis but failed to elicit such effect in monocyte/macrophage-depleted mice. This observation stirred our interest in investigating the interaction of LPPs and macrophages and analyzing the underlying physiological mechanisms. This ascertainment of LPP-induced changes in the physiology of macrophages provides an important clue in the understanding of the mechanisms of bone disintegration, opening novel avenues to manage the course of S. aureus disease.


Assuntos
Osteomielite , Receptor 2 Toll-Like , Animais , Camundongos , Humanos , Receptor 2 Toll-Like/metabolismo , Staphylococcus aureus/metabolismo , Macrófagos , Citocinas/metabolismo , Glicólise , Lipoproteínas/metabolismo , Proteínas de Bactérias/metabolismo
15.
Med Oncol ; 39(5): 60, 2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35484352

RESUMO

In an endeavour to understand metastasis from oral squamous cell carcinomas, we characterised the metastatic potential of a human tongue derived cell line (SCC-4 cells) and compared this phenotype to pre-cancerous dysplastic oral keratinocyte (DOK) cells derived from human tongue and primary gingival keratinocytes (PGK). We demonstrate that SCC-4 cells constitutively synthesize and release significant amounts of IL-6, a process that is enhanced by the addition of the TLR2/TLR6 agonist, Pam2CSK4. The expression of TLR2/6 and IL-6Ra/gp130 receptors was also confirmed in SCC-4 cells. Cancerous SCC-4 human tongue cells also have a classic EMT profile, unlike precancerous human tongue DOK cells. We also established that IL-6 is driving anoikis resistance in an autocrine fashion and that anti-IL-6 neutralising antibodies, anti-IL-6 receptor antibodies and anti-TLR2 receptor antibodies inhibit anoikis resistance in cancerous SCC-4 human tongue cells. The data suggest a promising role for anti-IL-6 receptor antibody and anti-TLR2 receptor antibody treatment for oral cancer.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Neoplasias da Língua , Anoikis , Carcinoma de Células Escamosas/patologia , Humanos , Interleucina-6 , Neoplasias Bucais/patologia , Oligopeptídeos , Carcinoma de Células Escamosas de Cabeça e Pescoço , Receptor 2 Toll-Like/agonistas , Receptor Toll-Like 9/agonistas , Neoplasias da Língua/patologia
16.
Front Immunol ; 13: 992062, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36569949

RESUMO

As the global COVID-19 pandemic continues and new SARS-CoV-2 variants of concern emerge, vaccines remain an important tool for preventing the pandemic. The inactivated or subunit vaccines themselves generally exhibit low immunogenicity, which needs adjuvants to improve the immune response. We previously developed a receptor binding domain (RBD)-targeted and self-assembled nanoparticle to elicit a potent immune response in both mice and rhesus macaques. Herein, we further improved the RBD production in the eukaryote system by in situ Crispr/Cas9-engineered CHO cells. By comparing the immune effects of various Toll-like receptor-targeted adjuvants to enhance nanoparticle vaccine immunization, we found that Pam2CSK4, a TLR2/6 agonist, could mostly increase the titers of antigen-specific neutralizing antibodies and durability in humoral immunity. Remarkably, together with Pam2CSK4, the RBD-based nanoparticle vaccine induced a significant Th1-biased immune response and enhanced the differentiation of both memory T cells and follicular helper T cells. We further found that Pam2CSK4 upregulated migration genes and many genes involved in the activation and proliferation of leukocytes. Our data indicate that Pam2CSK4 targeting TLR2, which has been shown to be effective in tuberculosis vaccines, is the optimal adjuvant for the SARS-CoV-2 nanoparticle vaccine, paving the way for an immediate clinical trial.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Animais , Humanos , Camundongos , Cricetinae , Receptor 2 Toll-Like/genética , Cricetulus , Macaca mulatta , Pandemias , SARS-CoV-2 , COVID-19/prevenção & controle , Adjuvantes Imunológicos/farmacologia , Adjuvantes Farmacêuticos , Imunidade Celular
17.
Front Immunol ; 12: 729951, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34527000

RESUMO

Circulating platelets establish a variety of immunological programs and orchestrate inflammatory responses at the endothelium. Platelets express the innate immunity family of Toll-like receptors (TLRs). While TLR2/TLR1 ligands are known to activate platelets, the effects of TLR2/TLR6 ligands on platelet function remain unclear. Here, we aim to determine whether the TLR2/TLR6 agonists Pam2CSK4 and FSL-1 activate human platelets. In addition, human umbilical vein endothelial cells (HUVECs) and platelets were co-cultured to analyze the role of platelet TLR2/TLR6 on inflammation and adhesion to endothelial cells. Pam2CSK4, but not FSL-1, induced platelet granule secretion and integrin αIIbß3 activation in a concentration-dependent manner. Moreover, Pam2CSK4 promoted platelet aggregation and increased platelet adhesion to collagen-coated surfaces. Mechanistic studies with blocking antibodies and pharmacologic inhibitors demonstrated that the TLR2/Nuclear factor-κB axis, Bruton's-tyrosine kinase, and a secondary ADP feedback loop are involved in Pam2CSK4-induced platelet functional responses. Interestingly, Pam2CSK4 showed cooperation with immunoreceptor tyrosine-based activation motif (ITAM)-mediated signaling to enhance platelet activation. Finally, the presence of platelets increased inflammatory responses in HUVECs treated with Pam2CSK4, and platelets challenged with Pam2CSK4 showed increased adhesion to HUVECs under static and physiologically relevant flow conditions. Herein, we define a functional role for platelet TLR2-mediated signaling, which may represent a druggable target to dampen excessive platelet activation in thrombo-inflammatory diseases.


Assuntos
Tirosina Quinase da Agamaglobulinemia/metabolismo , Plaquetas/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , NF-kappa B/metabolismo , Oligopeptídeos/farmacologia , Adesividade Plaquetária/efeitos dos fármacos , Agregação Plaquetária/efeitos dos fármacos , Receptor 2 Toll-Like/agonistas , Receptor Toll-Like 9/agonistas , Difosfato de Adenosina/metabolismo , Plaquetas/enzimologia , Células Cultivadas , Diglicerídeos/farmacologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Transdução de Sinais , Receptor 2 Toll-Like/metabolismo
18.
Biomolecules ; 10(6)2020 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-32517187

RESUMO

Eukaryotic cells determine the protein output of their genetic program by regulating mRNA transcription, localization, translation and turnover rates. This regulation is accomplished by an ensemble of RNA-binding proteins (RBPs) that bind to any given mRNA, thus forming mRNPs. Poly(A) binding proteins (PABPs) are prominent members of virtually all mRNPs that possess poly(A) tails. They serve as multifunctional scaffolds, allowing the recruitment of diverse factors containing a poly(A)-interacting motif (PAM) into mRNPs. We present the crystal structure of the variant PAM motif (termed PAM2w) in the N-terminal part of the positive translation factor LARP4B, which binds to the MLLE domain of the poly(A) binding protein C1 cytoplasmic 1 (PABPC1). The structural analysis, along with mutational studies in vitro and in vivo, uncovered a new mode of interaction between PAM2 motifs and MLLE domains.


Assuntos
Proteína I de Ligação a Poli(A)/química , Proteínas com Motivo de Reconhecimento de RNA/química , Ribonucleoproteínas/química , Motivos de Aminoácidos , Células Cultivadas , Cristalografia por Raios X , Células HEK293 , Humanos , Modelos Moleculares , Ligação Proteica , Domínios Proteicos
19.
Psychopharmacology (Berl) ; 237(6): 1723-1735, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32162104

RESUMO

RATIONALE: Working memory deficits are present in schizophrenia (SZ) but remain insufficiently resolved by medications. Similar cognitive dysfunctions can be produced acutely in animals by elevating brain levels of kynurenic acid (KYNA). KYNA's effects may reflect interference with the function of both the α7 nicotinic acetylcholine receptor (α7nAChR) and the glycineB site of the NMDA receptor. OBJECTIVES: The aim of the present study was to examine, using pharmacological tools, the respective roles of these two receptor sites on performance in a delayed non-match-to-position working memory (WM) task (DNMTP). METHODS: DNMTP consisted of 120 trials/session (5, 10, and 15 s delays). Rats received two doses (25 or 100 mg/kg, i.p.) of L-kynurenine (KYN; bioprecursor of KYNA) or L-4-chlorokynurenine (4-Cl-KYN; bioprecursor of the selective glycineB site antagonist 7-Cl-kynurenic acid). Attenuation of KYN- or 4-Cl-KYN-induced deficits was assessed by co-administration of galantamine (GAL, 3 mg/kg) or PAM-2 (1 mg/kg), two positive modulators of α7nAChR function. Reversal of 4-Cl-KYN-induced deficits was examined using D-cycloserine (DCS; 30 mg/kg), a partial agonist at the glycineB site. RESULTS: Both KYN and 4-Cl-KYN administration produced dose-related deficits in DNMTP accuracy that were more severe at the longer delays. In KYN-treated rats, these deficits were reversed to control levels by GAL or PAM-2 but not by DCS. In contrast, DCS eliminated performance deficits in 4-Cl-KYN-treated animals. CONCLUSIONS: These experiments reveal that both α7nAChR and NMDAR activity are necessary for normal WM accuracy. They provide substantive new support for the therapeutic potential of positive modulators at these two receptor sites in SZ and other major brain diseases.


Assuntos
Encéfalo/metabolismo , Memória de Curto Prazo/fisiologia , Desempenho Psicomotor/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Analgésicos/farmacologia , Animais , Encéfalo/efeitos dos fármacos , Ácido Cinurênico/farmacologia , Cinurenina/farmacologia , Masculino , Memória de Curto Prazo/efeitos dos fármacos , Nicotina/farmacologia , Desempenho Psicomotor/efeitos dos fármacos , Ratos , Ratos Wistar , Receptores de N-Metil-D-Aspartato/agonistas , Receptor Nicotínico de Acetilcolina alfa7/agonistas
20.
J Biomol Struct Dyn ; 37(2): 411-439, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29363414

RESUMO

The binding site locations and structural components for type I and type II positive allosteric modulators (PAMs) of the α7 nicotinic acetylcholine receptor (nAChR) have not been fully characterized yet. In this regard, homology models of the human α7 nAChR and hα7/m5-HT3A chimera, built using the crystal structure of the serotonin type 3A receptor (5-ΗΤ3ΑR), were used for molecular docking and molecular dynamics simulations to study the molecular interactions of selected type I (5-hydroxyindol, NS-1738, and LY-2087101) and type II (PNU-120596, PAM-2, and TBS-516) PAMs. The docking results indicate: (1) a site located in the extracellular domain (ECD) for type I PAMs such as NS-1738 and LY-2087101, but not for 5-HI; (2) an overlapping site in the ECD-transmembrane domain (TMD) junction for all studied PAMs. Additional docking results on the hα7/m5-HT3A chimera supported experimental results indicating that the ECD site might be relevant for type I PAM activity; and (3) two TMD sites, an intrasubunit site that recognizes type II PAMs, and an intersubunit pocket with high specificity for 5-HI (type I PAM). The in silico α7TSLMF mutant results support the view that M1-Ser223 and M3-Ile281 are key residues for the interaction of PAM-2 and PNU-120596 with the intrasubunit cavity. Our in silico results are in agreement with experimental data showing that the intrasubunit cavity is relevant for the activity of type II PAMs, and suggest that the ECD-TMD junction and intersubunit sites could be significant for the activity of type I PAMs.


Assuntos
Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Agonistas Nicotínicos/química , Antagonistas Nicotínicos/química , Receptor Nicotínico de Acetilcolina alfa7/química , Regulação Alostérica , Sítio Alostérico , Sítios de Ligação , Domínio Catalítico , Estabilidade de Medicamentos , Humanos , Ligantes , Estrutura Molecular , Mutação , Agonistas Nicotínicos/farmacologia , Antagonistas Nicotínicos/farmacologia , Ligação Proteica , Relação Quantitativa Estrutura-Atividade , Receptor Nicotínico de Acetilcolina alfa7/agonistas , Receptor Nicotínico de Acetilcolina alfa7/antagonistas & inibidores , Receptor Nicotínico de Acetilcolina alfa7/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA