Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 314
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 187(17): 4790-4811.e22, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39047727

RESUMO

Characterizing the compositional and phenotypic characteristics of tumor-infiltrating B cells (TIBs) is important for advancing our understanding of their role in cancer development. Here, we establish a comprehensive resource of human B cells by integrating single-cell RNA sequencing data of B cells from 649 patients across 19 major cancer types. We demonstrate substantial heterogeneity in their total abundance and subtype composition and observe immunoglobulin G (IgG)-skewness of antibody-secreting cell isotypes. Moreover, we identify stress-response memory B cells and tumor-associated atypical B cells (TAABs), two tumor-enriched subpopulations with prognostic potential, shared in a pan-cancer manner. In particular, TAABs, characterized by a high clonal expansion level and proliferative capacity as well as by close interactions with activated CD4 T cells in tumors, are predictive of immunotherapy response. Our integrative resource depicts distinct clinically relevant TIB subsets, laying a foundation for further exploration of functional commonality and diversity of B cells in cancer.


Assuntos
Neoplasias , Análise de Célula Única , Humanos , Neoplasias/imunologia , Neoplasias/patologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Fenótipo , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Subpopulações de Linfócitos B/imunologia , Subpopulações de Linfócitos B/metabolismo , Imunoglobulina G/imunologia , Imunoglobulina G/metabolismo , Imunoterapia , Prognóstico
2.
Cell ; 187(6): 1422-1439.e24, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38447573

RESUMO

Neutrophils, the most abundant and efficient defenders against pathogens, exert opposing functions across cancer types. However, given their short half-life, it remains challenging to explore how neutrophils adopt specific fates in cancer. Here, we generated and integrated single-cell neutrophil transcriptomes from 17 cancer types (225 samples from 143 patients). Neutrophils exhibited extraordinary complexity, with 10 distinct states including inflammation, angiogenesis, and antigen presentation. Notably, the antigen-presenting program was associated with favorable survival in most cancers and could be evoked by leucine metabolism and subsequent histone H3K27ac modification. These neutrophils could further invoke both (neo)antigen-specific and antigen-independent T cell responses. Neutrophil delivery or a leucine diet fine-tuned the immune balance to enhance anti-PD-1 therapy in various murine cancer models. In summary, these data not only indicate the neutrophil divergence across cancers but also suggest therapeutic opportunities such as antigen-presenting neutrophil delivery.


Assuntos
Apresentação de Antígeno , Neoplasias , Neutrófilos , Animais , Humanos , Camundongos , Antígenos de Neoplasias , Leucina/metabolismo , Neoplasias/imunologia , Neoplasias/patologia , Neutrófilos/metabolismo , Linfócitos T , Análise da Expressão Gênica de Célula Única
3.
Cell ; 185(1): 184-203.e19, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34963056

RESUMO

Cancers display significant heterogeneity with respect to tissue of origin, driver mutations, and other features of the surrounding tissue. It is likely that individual tumors engage common patterns of the immune system-here "archetypes"-creating prototypical non-destructive tumor immune microenvironments (TMEs) and modulating tumor-targeting. To discover the dominant immune system archetypes, the University of California, San Francisco (UCSF) Immunoprofiler Initiative (IPI) processed 364 individual tumors across 12 cancer types using standardized protocols. Computational clustering of flow cytometry and transcriptomic data obtained from cell sub-compartments uncovered dominant patterns of immune composition across cancers. These archetypes were profound insofar as they also differentiated tumors based upon unique immune and tumor gene-expression patterns. They also partitioned well-established classifications of tumor biology. The IPI resource provides a template for understanding cancer immunity as a collection of dominant patterns of immune organization and provides a rational path forward to learn how to modulate these to improve therapy.


Assuntos
Censos , Neoplasias/genética , Neoplasias/imunologia , Transcriptoma/genética , Microambiente Tumoral/imunologia , Biomarcadores Tumorais , Análise por Conglomerados , Estudos de Coortes , Biologia Computacional/métodos , Citometria de Fluxo/métodos , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias/classificação , Neoplasias/patologia , RNA-Seq/métodos , São Francisco , Universidades
4.
Cell ; 184(2): 334-351.e20, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33434495

RESUMO

Despite considerable efforts, the mechanisms linking genomic alterations to the transcriptional identity of cancer cells remain elusive. Integrative genomic analysis, using a network-based approach, identified 407 master regulator (MR) proteins responsible for canalizing the genetics of individual samples from 20 cohorts in The Cancer Genome Atlas (TCGA) into 112 transcriptionally distinct tumor subtypes. MR proteins could be further organized into 24 pan-cancer, master regulator block modules (MRBs), each regulating key cancer hallmarks and predictive of patient outcome in multiple cohorts. Of all somatic alterations detected in each individual sample, >50% were predicted to induce aberrant MR activity, yielding insight into mechanisms linking tumor genetics and transcriptional identity and establishing non-oncogene dependencies. Genetic and pharmacological validation assays confirmed the predicted effect of upstream mutations and MR activity on downstream cellular identity and phenotype. Thus, co-analysis of mutational and gene expression profiles identified elusive subtypes and provided testable hypothesis for mechanisms mediating the effect of genetic alterations.


Assuntos
Neoplasias/genética , Transcrição Gênica , Adenocarcinoma/genética , Animais , Linhagem Celular Tumoral , Neoplasias do Colo/genética , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Genoma Humano , Células HEK293 , Humanos , Camundongos Nus , Mutação/genética , Reprodutibilidade dos Testes
5.
Cell ; 184(3): 792-809.e23, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33545035

RESUMO

Tumor-infiltrating myeloid cells (TIMs) are key regulators in tumor progression, but the similarity and distinction of their fundamental properties across different tumors remain elusive. Here, by performing a pan-cancer analysis of single myeloid cells from 210 patients across 15 human cancer types, we identified distinct features of TIMs across cancer types. Mast cells in nasopharyngeal cancer were found to be associated with better prognosis and exhibited an anti-tumor phenotype with a high ratio of TNF+/VEGFA+ cells. Systematic comparison between cDC1- and cDC2-derived LAMP3+ cDCs revealed their differences in transcription factors and external stimulus. Additionally, pro-angiogenic tumor-associated macrophages (TAMs) were characterized with diverse markers across different cancer types, and the composition of TIMs appeared to be associated with certain features of somatic mutations and gene expressions. Our results provide a systematic view of the highly heterogeneous TIMs and suggest future avenues for rational, targeted immunotherapies.


Assuntos
Células Mieloides/patologia , Neoplasias/genética , Neoplasias/patologia , Análise de Célula Única , Transcrição Gênica , Linhagem Celular Tumoral , Linhagem da Célula , Células Dendríticas/metabolismo , Feminino , Humanos , Proteínas de Membrana Lisossomal/metabolismo , Macrófagos/metabolismo , Masculino , Mastócitos/patologia , Monócitos/metabolismo , Proteínas de Neoplasias/metabolismo , Transcriptoma/genética
6.
Cell ; 173(2): 386-399.e12, 2018 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-29625054

RESUMO

The role of enhancers, a key class of non-coding regulatory DNA elements, in cancer development has increasingly been appreciated. Here, we present the detection and characterization of a large number of expressed enhancers in a genome-wide analysis of 8928 tumor samples across 33 cancer types using TCGA RNA-seq data. Compared with matched normal tissues, global enhancer activation was observed in most cancers. Across cancer types, global enhancer activity was positively associated with aneuploidy, but not mutation load, suggesting a hypothesis centered on "chromatin-state" to explain their interplay. Integrating eQTL, mRNA co-expression, and Hi-C data analysis, we developed a computational method to infer causal enhancer-gene interactions, revealing enhancers of clinically actionable genes. Having identified an enhancer ∼140 kb downstream of PD-L1, a major immunotherapy target, we validated it experimentally. This study provides a systematic view of enhancer activity in diverse tumor contexts and suggests the clinical implications of enhancers.


Assuntos
Elementos Facilitadores Genéticos/genética , Neoplasias/patologia , Aneuploidia , Antígeno B7-H1/genética , Cromatina/genética , Cromatina/metabolismo , Bases de Dados Genéticas , Regulação Neoplásica da Expressão Gênica , Humanos , Imunoterapia , Neoplasias/genética , Neoplasias/mortalidade , Neoplasias/terapia , Análise de Sequência de RNA , Taxa de Sobrevida
7.
Mol Cell ; 81(10): 2246-2260.e12, 2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-33861991

RESUMO

Exitron splicing (EIS) creates a cryptic intron (called an exitron) within a protein-coding exon to increase proteome diversity. EIS is poorly characterized, but emerging evidence suggests a role for EIS in cancer. Through a systematic investigation of EIS across 33 cancers from 9,599 tumor transcriptomes, we discovered that EIS affected 63% of human coding genes and that 95% of those events were tumor specific. Notably, we observed a mutually exclusive pattern between EIS and somatic mutations in their affected genes. Functionally, we discovered that EIS altered known and novel cancer driver genes for causing gain- or loss-of-function, which promotes tumor progression. Importantly, we identified EIS-derived neoepitopes that bind to major histocompatibility complex (MHC) class I or II. Analysis of clinical data from a clear cell renal cell carcinoma cohort revealed an association between EIS-derived neoantigen load and checkpoint inhibitor response. Our findings establish the importance of considering EIS alterations when nominating cancer driver events and neoantigens.


Assuntos
Epitopos/genética , Éxons/genética , Perfilação da Expressão Gênica , Íntrons/genética , Neoplasias/genética , Oncogenes , Splicing de RNA/genética , Sequência de Aminoácidos , Linhagem Celular , Estudos de Coortes , Humanos , Mutação/genética
8.
Am J Hum Genet ; 111(3): 562-583, 2024 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-38367620

RESUMO

Genetic variants are involved in the orchestration of alternative polyadenylation (APA) events, while the role of DNA methylation in regulating APA remains unclear. We generated a comprehensive atlas of APA quantitative trait methylation sites (apaQTMs) across 21 different types of cancer (1,612 to 60,219 acting in cis and 4,448 to 142,349 in trans). Potential causal apaQTMs in non-cancer samples were also identified. Mechanistically, we observed a strong enrichment of cis-apaQTMs near polyadenylation sites (PASs) and both cis- and trans-apaQTMs in proximity to transcription factor (TF) binding regions. Through the integration of ChIP-signals and RNA-seq data from cell lines, we have identified several regulators of APA events, acting either directly or indirectly, implicating novel functions of some important genes, such as TCF7L2, which is known for its involvement in type 2 diabetes and cancers. Furthermore, we have identified a vast number of QTMs that share the same putative causal CpG sites with five different cancer types, underscoring the roles of QTMs, including apaQTMs, in the process of tumorigenesis. DNA methylation is extensively involved in the regulation of APA events in human cancers. In an attempt to elucidate the potential underlying molecular mechanisms of APA by DNA methylation, our study paves the way for subsequent experimental validations into the intricate biological functions of DNA methylation in APA regulation and the pathogenesis of human cancers. To present a comprehensive catalog of apaQTM patterns, we introduce the Pancan-apaQTM database, available at https://pancan-apaqtm-zju.shinyapps.io/pancanaQTM/.


Assuntos
Diabetes Mellitus Tipo 2 , Neoplasias , Humanos , Poliadenilação/genética , Diabetes Mellitus Tipo 2/genética , Neoplasias/genética , Neoplasias/patologia , Regulação da Expressão Gênica , Metilação de DNA/genética , Regiões 3' não Traduzidas
9.
J Cell Mol Med ; 28(15): e18579, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39086142

RESUMO

The serine protease inhibitor clade E member 1 (SERPINE1) is a key modulator of the plasminogen/plasminase system and has been demonstrated to promote tumor progression and metastasis in various tumours. However, although much literature has explored the cancer-promoting mechanism of SERPINE1, the pan-cancer analyses of its predictive value and immune response remain unexplored. The differential expression, and survival analysis of SERPINE1 expression in multiple cancers were analysed using The Cancer Genome Atlas and Genotype-Tissue Expression database. Kaplan-Meier (K-M) plotter and survival data analysis were used to analyze the prognostic value of SERPINE1 expression, including overall survival (OS), disease-specific survival, disease-free interval and progression-free interval and investigated the relationship of SERPINE1 expression with microsatellite instability. We further analysed the correlation between the expression of SERPINE1 and immune infiltration. The Kyoto Encyclopaedia of Genes and Genomes pathway was used for enrichment analysis, and the Gene Set Enrichment Analysis (GSEA) database was used to perform pathway analysis. Finally, in vitro experiments demonstrated that knockdown or overexpression of SERPINE1 could alter the proliferation and migration of gastric cancer (GC) cells. The results indicated that SERPINE1 expression levels different significantly between cancer and normal tissues, meanwhile, it was highly expressed in various cancers. By analysing online data, it has been observed that the gene SERPINE1 exhibits heightened expression levels across a variety of human cancers, significantly impacting patient survival rates. Notably, the presence of SERPINE1 was strongly associated with decrease OS and disease-free survival in individuals diagnosed with GC. Furthermore, an observed link indicates that higher levels of SERPINE expression are associated with increased infiltration of immune cells in GC. Finally, in vitro experiments showed that knockdown or overexpression of SERPINE1 inhibited the growth, and migration, of GC cells. SERPINE1expression potentially represents a novel prognostic biomarker due to its significant association with immune cell infiltration in GC. This study shows that SERPINE1 is an oncogene that participates in regulating the immune infiltration and affecting the prognosis of patients in multiple cancers, especially in GC. These findings underscore the importance of further investigating the role of SERPINE1 in cancer progression and offer a promising direction for the development of new therapeutic strategies.


Assuntos
Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Inibidor 1 de Ativador de Plasminogênio , Neoplasias Gástricas , Humanos , Inibidor 1 de Ativador de Plasminogênio/genética , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/imunologia , Neoplasias Gástricas/patologia , Neoplasias Gástricas/metabolismo , Prognóstico , Proliferação de Células/genética , Linhagem Celular Tumoral , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Movimento Celular/genética , Estimativa de Kaplan-Meier , Instabilidade de Microssatélites
10.
Mol Cancer ; 23(1): 15, 2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-38225603

RESUMO

Mounting evidence suggests a strong association between tumor immunity and epigenetic regulation. The histone-lysine N-methyltransferase 2 (KMT2) family plays a crucial role in the methylation of histone H3 at lysine 4. By influencing chromatin structure and DNA accessibility, this modification serves as a key regulator of tumor progression and immune tolerance across various tumors. These findings highlight the potential significance of the KMT2 family in determining response to immune checkpoint inhibitor (ICI) therapy, which warrants further exploration. In this study, we integrated four ICI-treated cohorts (n = 2069) across 10 cancer types and The Cancer Genome Atlas pan-cancer cohort and conducted a comprehensive clinical and bioinformatic analysis. Our study indicated that patients with KMT2 family gene mutations benefited more from ICI therapy in terms of overall survival (P < 0.001, hazard ratio [HR] = 0.733 [95% confidence interval (CI): 0.632-0.850]), progression-free survival (P = 0.002, HR = 0.669 [95% CI: 0.518-0.864]), durable clinical benefit (P < 0.001, 54.1% vs. 32.6%), and objective response rate (P < 0.001, 40.6% vs. 22.0%). Through a comprehensive analysis of the tumor microenvironment across different KMT2 mutation statuses, we observed that tumors harboring the KMT2 mutation exhibited enhanced immunogenicity, increased infiltration of immune cells, and higher levels of immune cell cytotoxicity, suggesting a propensity towards a "hot tumor" phenotype. Therefore, our study indicates a potential association between KMT2 mutations and a more favorable response to ICI therapy and implicates different tumor microenvironments associated with ICI therapy response.


Assuntos
Epigênese Genética , Neoplasias , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Microambiente Tumoral , Mutação , Neoplasias/tratamento farmacológico , Neoplasias/genética
11.
Mol Cancer ; 23(1): 31, 2024 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-38347558

RESUMO

Minimally invasive testing is essential for early cancer detection, impacting patient survival rates significantly. Our study aimed to establish a pioneering cell-free immune-related miRNAs (cf-IRmiRNAs) signature for early cancer detection. We analyzed circulating miRNA profiles from 15,832 participants, including individuals with 13 types of cancer and control. The data was randomly divided into training, validation, and test sets (7:2:1), with an additional external test set of 684 participants. In the discovery phase, we identified 100 differentially expressed cf-IRmiRNAs between the malignant and non-malignant, retaining 39 using the least absolute shrinkage and selection operator (LASSO) method. Five machine learning algorithms were adopted to construct cf-IRmiRNAs signature, and the diagnostic classifies based on XGBoost algorithm showed the excellent performance for cancer detection in the validation set (AUC: 0.984, CI: 0.980-0.989), determined through 5-fold cross-validation and grid search. Further evaluation in the test and external test sets confirmed the reliability and efficacy of the classifier (AUC: 0.980 to 1.000). The classifier successfully detected early-stage cancers, particularly lung, prostate, and gastric cancers. It also distinguished between benign and malignant tumors. This study represents the largest and most comprehensive pan-cancer analysis on cf-IRmiRNAs, offering a promising non-invasive diagnostic biomarker for early cancer detection and potential impact on clinical practice.


Assuntos
MicroRNAs , Neoplasias Gástricas , Masculino , Humanos , MicroRNAs/genética , Reprodutibilidade dos Testes , Biomarcadores Tumorais/genética , Detecção Precoce de Câncer/métodos , Neoplasias Gástricas/diagnóstico
12.
Funct Integr Genomics ; 24(4): 136, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39138692

RESUMO

Protein disulfide isomerase A3 (PDIA3) is an endoplasmic reticulum (ER) protein. It has different functions including glycoprotein folding in the ER. The unfavorable prognosis of cancer patients was related to the abnormal PDIA3 expression level. However, it is unclear how PDIA3 correlates with the malignant characteristics of different tumors and its impact on tumor immunity. Pan-cancer data were downloaded from several databases for large-scale bioinformatics analysis. The immunological functions of PDIA3 were systematically explored at the single-cell sequencing level, including cell communication, cell metabolism, cell evolution and epigenetic modification. We performed immunofluorescence staining to visualize PDIA3 expression and infiltration of macrophages in pan-cancer samples. Further, we performed a loss-of-function assay of PDIA3 in vitro. The CCK8 assay, clone formation assay, and transwell assay were performed. M2 macrophages were co-cultured with different cell lines before the transwell assay was performed. The immunofluorescence staining of pan-cancer samples presented a higher expression of PDIA3 than those of the paired normal tissues. According to single-cell sequencing analysis, expression of PDIA3 was closely associated with cell communication, cell metabolism, cell evolution and epigenetic modification. The knockdown of PDIA3 in tumor cells inhibited cell proliferation and invasion, and restrained cocultured M2 macrophage migration. Furthermore, PDIA3 displayed predictive value in immunotherapy response in human cancer cohorts, indicating a potential therapeutic target. Our study showed that PDIA3 was associated with tumor malignant characteristics and could mediate the migration of M2 macrophages in various tumor types. PDIA3 could be a promising target to achieve tumor control and improve the immune response on a pan-cancer scale.


Assuntos
Macrófagos , Neoplasias , Isomerases de Dissulfetos de Proteínas , Análise de Célula Única , Humanos , Isomerases de Dissulfetos de Proteínas/genética , Isomerases de Dissulfetos de Proteínas/metabolismo , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/metabolismo , Neoplasias/patologia , Macrófagos/metabolismo , Macrófagos/imunologia , Proliferação de Células , Linhagem Celular Tumoral , Epigênese Genética , Regulação Neoplásica da Expressão Gênica
13.
Brief Bioinform ; 23(2)2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35037014

RESUMO

Optimal methods could effectively improve the accuracy of predicting and identifying candidate driver genes. Various computational methods based on mutational frequency, network and function approaches have been developed to identify mutation driver genes in cancer genomes. However, a comprehensive evaluation of the performance levels of network-, function- and frequency-based methods is lacking. In the present study, we assessed and compared eight performance criteria for eight network-based, one function-based and three frequency-based algorithms using eight benchmark datasets. Under different conditions, the performance of approaches varied in terms of network, measurement and sample size. The frequency-based driverMAPS and network-based HotNet2 methods showed the best overall performance. Network-based algorithms using protein-protein interaction networks outperformed the function- and the frequency-based approaches. Precision, F1 score and Matthews correlation coefficient were low for most approaches. Thus, most of these algorithms require stringent cutoffs to correctly distinguish driver and non-driver genes. We constructed a website named Cancer Driver Catalog (http://159.226.67.237/sun/cancer_driver/), wherein we integrated the gene scores predicted by the foregoing software programs. This resource provides valuable guidance for cancer researchers and clinical oncologists prioritizing cancer driver gene candidates by using an optimal tool.


Assuntos
Neoplasias , Oncogenes , Algoritmos , Biologia Computacional/métodos , Redes Reguladoras de Genes , Humanos , Mutação , Neoplasias/genética , Software
14.
Cancer Cell Int ; 24(1): 311, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39256838

RESUMO

BACKGROUND: Currently, there are no optimal biomarkers available for distinguishing patients who will respond to immune checkpoint inhibitors (ICIs) therapies. Consequently, the exploration of novel biomarkers that can predict responsiveness to ICIs is crucial in the field of immunotherapy. METHODS: We estimated the proportions of 22 immune cell components in 10 cancer types (6,128 tumors) using the CIBERSORT algorithm, and further classified patients based on their tumor immune cell proportions in a pan-cancer setting using k-means clustering. Differentially expressed immune genes between the patient subgroups were identified, and potential predictive biomarkers for ICIs were explored. Finally, the predictive value of the identified biomarkers was verified in patients with urothelial carcinoma (UC) and esophageal squamous cell carcinoma (ESCC) who received ICIs. RESULTS: Our study identified two subgroups of patients with distinct immune infiltrating phenotypes and differing clinical outcomes. The patient subgroup with improved outcomes displayed tumors enriched with genes related to immune response regulation and pathway activation. Furthermore, CCL5 and CSF2 were identified as immune-related hub-genes and were found to be prognostic in a pan-cancer setting. Importantly, UC and ESCC patients with high expression of CCL5 and low expression of CSF2 responded better to ICIs. CONCLUSION: We demonstrated CCL5 and CSF2 as potential novel biomarkers for predicting the response to ICIs in patients with UC and ESCC. The predictive value of these biomarkers in other cancer types warrants further evaluation in future studies.

15.
BMC Cancer ; 24(1): 1064, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39198775

RESUMO

PURPOSE: Recent studies have increasingly linked Ephrin receptor B2 (EPHB2) to cancer progression. However, comprehensive investigations into the immunological roles and prognostic significance of EPHB2 across various cancers remain lacking. METHODS: We employed various databases and bioinformatics tools to investigate the impact of EPHB2 on prognosis, immune infiltration, genome instability, and response to immunotherapy. Validation of the correlation between EPHB2 expression and M2 macrophages included analyses using bulk and single-cell transcriptomic datasets, spatial transcriptomics, and multi-fluorescence staining. Moreover, we performed cMap web tool to screen for EPHB2-targeted compounds and assessed their potential through molecular docking and dynamics simulations. Additionally, in vitro validation using lung adenocarcinoma (LUAD) cell lines was conducted to confirm the bioinformatics predictions about EPHB2. RESULTS: EPHB2 dysregulation was observed across multiple cancer types, where it demonstrated significant diagnostic and prognostic value. Gene Set Enrichment Analysis (GSEA) indicated that EPHB2 is involved in enhancing cellular proliferation, invasiveness of cancer cells, and modulation of the anti-cancer immune response. Furthermore, it is emerged as a pan-cancer marker for M2 macrophage infiltration, supported by integrated analyses of transcriptomics and multiple fluorescence staining. In LUAD cells, knockdown of EPHB2 expression led to a decrease in both cell proliferation and migratory activity. CONCLUSION: EPHB2 expression may serve as a pivotal indicator of M2 macrophage infiltration, offering vital insights into tumor dynamics and progression across various cancers, including lung adenocarcinoma, highlighting its significant prognostic and therapeutic potential for further exploration.


Assuntos
Biomarcadores Tumorais , Imunoterapia , Receptor EphB2 , Humanos , Receptor EphB2/genética , Receptor EphB2/metabolismo , Prognóstico , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Imunoterapia/métodos , Linhagem Celular Tumoral , Biologia Computacional/métodos , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/terapia , Regulação Neoplásica da Expressão Gênica , Proliferação de Células , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Perfilação da Expressão Gênica , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/imunologia , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/terapia , Movimento Celular , Simulação de Acoplamento Molecular
16.
BMC Cancer ; 24(1): 353, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38504158

RESUMO

NUP155 is reported to be correlated with tumor development. However, the role of NUP155 in tumor physiology and the tumor immune microenvironment (TIME) has not been previously examined. This study comprehensively investigated the expression, immunological function, and prognostic significance of NUP155 in different cancer types. Bioinformatics analysis revealed that NUP155 was upregulated in 26 types of cancer. Additionally, NUP155 upregulation was strongly correlated with advanced pathological or clinical stages and poor prognosis in several cancers. Furthermore, NUP155 was significantly and positively correlated with DNA methylation, tumor mutational burden, microsatellite instability, and stemness score in most cancers. Additionally, NUP155 was also found to be involved in TIME and closely associated with tumor infiltrating immune cells and immunoregulation-related genes. Functional enrichment analysis revealed a strong correlation between NUP155 and immunomodulatory pathways, especially antigen processing and presentation. The role of NUP155 in breast cancer has not been examined. This study, for the first time, demonstrated that NUP155 was upregulated in breast invasive carcinoma (BRCA) cells and revealed its oncogenic role in BRCA using molecular biology experiments. Thus, our study highlights the potential value of NUP155 as a biomarker in the assessment of prognostic prediction, tumor microenvironment and immunotherapeutic response in pan-cancer.


Assuntos
Neoplasias da Mama , Carcinoma , Humanos , Feminino , Neoplasias da Mama/genética , Apoptose , Mama , Proliferação de Células/genética , Prognóstico , Microambiente Tumoral/genética , Complexo de Proteínas Formadoras de Poros Nucleares/genética
17.
Pancreatology ; 24(3): 404-423, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38342661

RESUMO

Pancreatic cancer is one of digestive tract cancers with high mortality rate. Despite the wide range of available treatments and improvements in surgery, chemotherapy, and radiation therapy, the five-year prognosis for individuals diagnosed pancreatic cancer remains poor. There is still research to be done to see if immunotherapy may be used to treat pancreatic cancer. The goals of our research were to comprehend the tumor microenvironment of pancreatic cancer, found a useful biomarker to assess the prognosis of patients, and investigated its biological relevance. In this paper, machine learning methods such as random forest were fused with weighted gene co-expression networks for screening hub immune-related genes (hub-IRGs). LASSO regression model was used to further work. Thus, we got eight hub-IRGs. Based on hub-IRGs, we created a prognosis risk prediction model for PAAD that can stratify accurately and produce a prognostic risk score (IRG_Score) for each patient. In the raw data set and the validation data set, the five-year area under the curve (AUC) for this model was 0.9 and 0.7, respectively. And shapley additive explanation (SHAP) portrayed the importance of prognostic risk prediction influencing factors from a machine learning perspective to obtain the most influential certain gene (or clinical factor). The five most important factors were TRIM67, CORT, PSPN, SCAMP5, RFXAP, all of which are genes. In summary, the eight hub-IRGs had accurate risk prediction performance and biological significance, which was validated in other cancers. The result of SHAP helped to understand the molecular mechanism of pancreatic cancer.


Assuntos
Neoplasias Pancreáticas , Humanos , Área Sob a Curva , Redes Reguladoras de Genes , Imunoterapia , Aprendizado de Máquina , Microambiente Tumoral , Proteínas de Membrana
18.
J Neurooncol ; 167(3): 501-508, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38563856

RESUMO

OBJECTIVE: Brain metastases (BM) are associated with poor prognosis and increased mortality rates, making them a significant clinical challenge. Studying BMs can aid in improving early detection and monitoring. Systematic comparisons of anatomical distributions of BM from different primary cancers, however, remain largely unavailable. METHODS: To test the hypothesis that anatomical BM distributions differ based on primary cancer type, we analyze the spatial coordinates of BMs for five different primary cancer types along principal component (PC) axes. The dataset includes 3949 intracranial metastases, labeled by primary cancer types and with six features. We employ PC coordinates to highlight the distinctions between various cancer types. We utilized different Machine Learning (ML) algorithms (RF, SVM, TabNet DL) models to establish the relationship between primary cancer diagnosis, spatial coordinates of BMs, age, and target volume. RESULTS: Our findings revealed that PC1 aligns most with the Y axis, followed by the Z axis, and has minimal correlation with the X axis. Based on PC1 versus PC2 plots, we identified notable differences in anatomical spreading patterns between Breast and Lung cancer, as well as Breast and Renal cancer. In contrast, Renal and Lung cancer, as well as Lung and Melanoma, showed similar patterns. Our ML and DL results demonstrated high accuracy in distinguishing BM distribution for different primary cancers, with the SVM algorithm achieving 97% accuracy using a polynomial kernel and TabNet achieving 96%. The RF algorithm ranked PC1 as the most important discriminating feature. CONCLUSIONS: In summary, our results support accurate multiclass ML classification regarding brain metastases distribution.


Assuntos
Neoplasias Encefálicas , Aprendizado Profundo , Aprendizado de Máquina , Humanos , Neoplasias Encefálicas/secundário , Feminino , Masculino , Neoplasias/patologia , Algoritmos , Pessoa de Meia-Idade
19.
Mol Cell Probes ; 73: 101948, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38122949

RESUMO

INTRODUCTION: Pancreatic ductal adenocarcinoma (PDAC) is one of the most malignant gastrointestinal tumors worldwide with a dismal prognosis and high relapse rate. PDAC is considered a "cold cancer" for which immunotherapy is not effective. Therefore, to improve the prognosis for PDAC patients, it is urgent to explore the mechanism driving its insensitivity to immunotherapy. MATERIALS AND METHODS: We conducted pancancer analyses to test IGF2BP family expression and survival in patients with different cancers via TCGA and GETx databases. Then, we determined the immunological role and prognostic value of IGF2BP2 in vitro, in vivo and in clinical specimens. RESULTS: In the present study, we found that the m6A reader IGF2BP2 was the most clinically relevant member of the IGF2BP family for pancreatic cancer. High expression of IGF2BP2 was most associated with poor prognosis and an immunosuppressive microenvironment in PDAC. By IGF2BP2 knockdown, we found that tumor cell proliferation and invasive ability were significantly diminished. Importantly, we found that IGF2BP2 expression was closely associated with high expression of immunosuppressive molecules such as PD-L1. IGF2BP2 modulated downstream PD-L1 expression by regulating its mRNA stability via m6A methylation control, and we obtained the same verification in animal experiments and human tissue specimens. CONCLUSION: Our study contributes to existing knowledge regarding the IGF2BP2-regulated PD-L1 signaling pathway as a potential prognostic and immune biomarker in pancreatic cancer.


Assuntos
Adenina/análogos & derivados , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Humanos , Antígeno B7-H1/genética , Prognóstico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Microambiente Tumoral , Proteínas de Ligação a RNA
20.
BMC Womens Health ; 24(1): 213, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566121

RESUMO

BACKGROUND: Cuproptosis is a newly identified form of unprogrammed cell death. As a pivotal metabolic regulator, glutaminase (GLS) has recently been discovered to be linked to cuproptosis. Despite this discovery, the oncogenic functions and mechanisms of GLS in various cancers are still not fully understood. METHODS: In this study, a comprehensive omics analysis was performed to investigate the differential expression levels, diagnostic and prognostic potential, correlation with tumor immune infiltration, genetic alterations, and drug sensitivity of GLS across multiple malignancies. RESULTS: Our findings revealed unique expression patterns of GLS across various cancer types and molecular subtypes of carcinomas, underscoring its pivotal role primarily in energy and nutrition metabolism. Additionally, GLS showed remarkable diagnostic and prognostic performance in specific cancers, suggesting its potential as a promising biomarker for cancer detection and prognosis. Furthermore, we focused on uterine corpus endometrial carcinoma (UCEC) and developed a novel prognostic model associated with GLS, indicating a close correlation between GLS and UCEC. Moreover, our exploration into immune infiltration, genetic heterogeneity, tumor stemness, and drug sensitivity provided novel insights and directions for future research and laid the foundation for high-quality verification. CONCLUSION: Collectively, our study is the first comprehensive investigation of the biological and clinical significance of GLS in pan-cancer. In our study, GLS was identified as a promising biomarker for UCEC, providing valuable evidence and a potential target for anti-tumor therapy. Overall, our findings shed light on the multifaceted functions of GLS in cancer and offer new avenues for further research.


Assuntos
Carcinoma , Glutaminase , Humanos , Glutaminase/genética , Multiômica , Pesquisa , Biomarcadores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA