Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 976
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 187(6): 1476-1489.e21, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38401541

RESUMO

Attention filters sensory inputs to enhance task-relevant information. It is guided by an "attentional template" that represents the stimulus features that are currently relevant. To understand how the brain learns and uses templates, we trained monkeys to perform a visual search task that required them to repeatedly learn new attentional templates. Neural recordings found that templates were represented across the prefrontal and parietal cortex in a structured manner, such that perceptually neighboring templates had similar neural representations. When the task changed, a new attentional template was learned by incrementally shifting the template toward rewarded features. Finally, we found that attentional templates transformed stimulus features into a common value representation that allowed the same decision-making mechanisms to deploy attention, regardless of the identity of the template. Altogether, our results provide insight into the neural mechanisms by which the brain learns to control attention and how attention can be flexibly deployed across tasks.


Assuntos
Atenção , Tomada de Decisões , Aprendizagem , Lobo Parietal , Recompensa , Animais , Haplorrinos
2.
Cell ; 184(14): 3748-3761.e18, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34171308

RESUMO

Lateral intraparietal (LIP) neurons represent formation of perceptual decisions involving eye movements. In circuit models for these decisions, neural ensembles that encode actions compete to form decisions. Consequently, representation and readout of the decision variables (DVs) are implemented similarly for decisions with identical competing actions, irrespective of input and task context differences. Further, DVs are encoded as partially potentiated action plans through balance of activity of action-selective ensembles. Here, we test those core principles. We show that in a novel face-discrimination task, LIP firing rates decrease with supporting evidence, contrary to conventional motion-discrimination tasks. These opposite response patterns arise from similar mechanisms in which decisions form along curved population-response manifolds misaligned with action representations. These manifolds rotate in state space based on context, indicating distinct optimal readouts for different tasks. We show similar manifolds in lateral and medial prefrontal cortices, suggesting similar representational geometry across decision-making circuits.


Assuntos
Tomada de Decisões , Percepção de Movimento/fisiologia , Lobo Parietal/fisiologia , Animais , Comportamento Animal , Julgamento , Macaca mulatta , Masculino , Modelos Neurológicos , Neurônios/fisiologia , Estimulação Luminosa , Córtex Pré-Frontal/fisiologia , Psicofísica , Análise e Desempenho de Tarefas , Fatores de Tempo
3.
Cell ; 177(7): 1858-1872.e15, 2019 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-31080067

RESUMO

Decision making is often driven by the subjective value of available options, a value which is formed through experience. To support this fundamental behavior, the brain must encode and maintain the subjective value. To investigate the area specificity and plasticity of value coding, we trained mice in a value-based decision task and imaged neural activity in 6 cortical areas with cellular resolution. History- and value-related signals were widespread across areas, but their strength and temporal patterns differed. In expert mice, the retrosplenial cortex (RSC) uniquely encoded history- and value-related signals with persistent population activity patterns across trials. This unique encoding of RSC emerged during task learning with a strong increase in more distant history signals. Acute inactivation of RSC selectively impaired the reward-history-based behavioral strategy. Our results indicate that RSC flexibly changes its history coding and persistently encodes value-related signals to support adaptive behaviors.


Assuntos
Comportamento Animal/fisiologia , Tomada de Decisões/fisiologia , Giro do Cíngulo/fisiologia , Aprendizagem/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Animais , Camundongos , Camundongos Transgênicos
4.
Cell ; 170(5): 986-999.e16, 2017 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-28823559

RESUMO

Neuronal representations change as associations are learned between sensory stimuli and behavioral actions. However, it is poorly understood whether representations for learned associations stabilize in cortical association areas or continue to change following learning. We tracked the activity of posterior parietal cortex neurons for a month as mice stably performed a virtual-navigation task. The relationship between cells' activity and task features was mostly stable on single days but underwent major reorganization over weeks. The neurons informative about task features (trial type and maze locations) changed across days. Despite changes in individual cells, the population activity had statistically similar properties each day and stable information for over a week. As mice learned additional associations, new activity patterns emerged in the neurons used for existing representations without greatly affecting the rate of change of these representations. We propose that dynamic neuronal activity patterns could balance plasticity for learning and stability for memory.


Assuntos
Aprendizagem , Neurônios/citologia , Lobo Parietal/citologia , Animais , Masculino , Memória , Camundongos , Camundongos Endogâmicos C57BL , Optogenética , Lobo Parietal/fisiologia , Análise de Célula Única
5.
Proc Natl Acad Sci U S A ; 120(42): e2216942120, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37812698

RESUMO

The covariability of neural responses in the neuron population is highly relevant to the information encoding. Cognitive processes, such as attention, are found to modulate the covariability in the visual cortex to improve information encoding, suggesting the computational advantage of covariability modulation in the neural system. However, is the covariability modulation a general mechanism for enhanced information encoding throughout the information processing pathway, or only adopted in certain processing stages, depending on the property of neural representation? Here, with ultrahigh-field MRI, we examined the covariability, which was estimated by noise correlation, in different attention states in the early visual cortex and posterior parietal cortex (PPC) of the human brain, and its relationship to the quality of information encoding. Our results showed that while attention decreased the covariability to improve the stimulus encoding in the early visual cortex, covariability modulation was not observed in the PPC, where covariability had little impact on information encoding. Further, attention promoted the information flow between the early visual cortex and PPC, with an apparent emphasis on a flow from high- to low-dimensional representations, suggesting the existence of a reduction in the dimensionality of neural representation from the early visual cortex to PPC. Finally, the neural response patterns in the PPC could predict the amplitudes of covariability change in the early visual cortex, indicating a top-down control from the PPC to early visual cortex. Our findings reveal the specific roles of the sensory cortex and PPC during attentional modulation of covariability, determined by the complexity and fidelity of the neural representation in each cortical region.


Assuntos
Lobo Parietal , Percepção Visual , Humanos , Percepção Visual/fisiologia , Lobo Parietal/fisiologia , Atenção/fisiologia , Encéfalo , Cognição
6.
Proc Natl Acad Sci U S A ; 120(2): e2212120120, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36598952

RESUMO

The process by which sensory evidence contributes to perceptual choices requires an understanding of its transformation into decision variables. Here, we address this issue by evaluating the neural representation of acoustic information in the auditory cortex-recipient parietal cortex, while gerbils either performed a two-alternative forced-choice auditory discrimination task or while they passively listened to identical acoustic stimuli. During task engagement, stimulus identity decoding performance from simultaneously recorded parietal neurons significantly correlated with psychometric sensitivity. In contrast, decoding performance during passive listening was significantly reduced. Principal component and geometric analyses revealed the emergence of low-dimensional encoding of linearly separable manifolds with respect to stimulus identity and decision, but only during task engagement. These findings confirm that the parietal cortex mediates a transition of acoustic representations into decision-related variables. Finally, using a clustering analysis, we identified three functionally distinct subpopulations of neurons that each encoded task-relevant information during separate temporal segments of a trial. Taken together, our findings demonstrate how parietal cortex neurons integrate and transform encoded auditory information to guide sound-driven perceptual decisions.


Assuntos
Córtex Auditivo , Lobo Parietal , Animais , Lobo Parietal/fisiologia , Percepção Auditiva/fisiologia , Córtex Auditivo/fisiologia , Estimulação Acústica , Acústica , Gerbillinae
7.
Proc Natl Acad Sci U S A ; 120(11): e2214834120, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36893272

RESUMO

Human cortical expansion has occurred non-uniformly across the brain. We assessed the genetic architecture of cortical global expansion and regionalization by comparing two sets of genome-wide association studies of 24 cortical regions with and without adjustment for global measures (i.e., total surface area, mean cortical thickness) using a genetically informed parcellation in 32,488 adults. We found 393 and 756 significant loci with and without adjusting for globals, respectively, where 8% and 45% loci were associated with more than one region. Results from analyses without adjustment for globals recovered loci associated with global measures. Genetic factors that contribute to total surface area of the cortex particularly expand anterior/frontal regions, whereas those contributing to thicker cortex predominantly increase dorsal/frontal-parietal thickness. Interactome-based analyses revealed significant genetic overlap of global and dorsolateral prefrontal modules, enriched for neurodevelopmental and immune system pathways. Consideration of global measures is important in understanding the genetic variants underlying cortical morphology.


Assuntos
Estudo de Associação Genômica Ampla , Imageamento por Ressonância Magnética , Adulto , Humanos , Córtex Cerebral/anatomia & histologia , Córtex Pré-Frontal , Encéfalo
8.
J Neurosci ; 44(18)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38527809

RESUMO

Human neuroimaging studies of episodic memory retrieval routinely observe the engagement of specific cortical regions beyond the medial temporal lobe. Of these, medial parietal cortex (MPC) is of particular interest given its distinct functional characteristics during different retrieval tasks. Specifically, while recognition and autobiographical recall tasks are both used to probe episodic retrieval, these paradigms consistently drive distinct spatial patterns of response within MPC. However, other studies have emphasized alternate MPC functional dissociations in terms of brain network connectivity profiles or stimulus category selectivity. As the unique contributions of MPC to episodic memory remain unclear, adjudicating between these different accounts can provide better consensus regarding MPC function. Therefore, we used a precision-neuroimaging dataset (7T functional magnetic resonance imaging) to examine how MPC regions are differentially engaged during recognition memory and how these task-related dissociations may also reflect distinct connectivity and stimulus category functional profiles. We observed interleaved, though spatially distinct, subregions of MPC where responses were sensitive to either recognition decisions or the semantic representation of stimuli. In addition, this dissociation was further accentuated by functional subregions displaying distinct profiles of connectivity with the hippocampus during task and rest. Finally, we show that recent observations of dissociable person and place selectivity within the MPC reflect category-specific responses from within identified semantic regions that are sensitive to mnemonic demands. Together, by examining precision functional mapping within individuals, these data suggest that previously distinct observations of functional dissociation within MPC conform to a common principle of organization throughout hippocampal-neocortical memory systems.


Assuntos
Imageamento por Ressonância Magnética , Lobo Parietal , Reconhecimento Psicológico , Humanos , Lobo Parietal/fisiologia , Lobo Parietal/diagnóstico por imagem , Masculino , Feminino , Reconhecimento Psicológico/fisiologia , Adulto , Adulto Jovem , Memória Episódica , Mapeamento Encefálico , Hipocampo/fisiologia , Hipocampo/diagnóstico por imagem , Rememoração Mental/fisiologia
9.
J Neurosci ; 44(3)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-37985178

RESUMO

The dorsomedial posterior parietal cortex (dmPPC) is part of a higher-cognition network implicated in elaborate processes underpinning memory formation, recollection, episode reconstruction, and temporal information processing. Neural coding for complex episodic processing is however under-documented. Here, we recorded extracellular neural activities from three male rhesus macaques (Macaca mulatta) and revealed a set of neural codes of "neuroethogram" in the primate parietal cortex. Analyzing neural responses in macaque dmPPC to naturalistic videos, we discovered several groups of neurons that are sensitive to different categories of ethogram items, low-level sensory features, and saccadic eye movement. We also discovered that the processing of category and feature information by these neurons is sustained by the accumulation of temporal information over a long timescale of up to 30 s, corroborating its reported long temporal receptive windows. We performed an additional behavioral experiment with additional two male rhesus macaques and found that saccade-related activities could not account for the mixed neuronal responses elicited by the video stimuli. We further observed monkeys' scan paths and gaze consistency are modulated by video content. Taken altogether, these neural findings explain how dmPPC weaves fabrics of ongoing experiences together in real time. The high dimensionality of neural representations should motivate us to shift the focus of attention from pure selectivity neurons to mixed selectivity neurons, especially in increasingly complex naturalistic task designs.


Assuntos
Neurônios , Movimentos Sacádicos , Animais , Masculino , Macaca mulatta , Neurônios/fisiologia , Cognição , Lobo Parietal/fisiologia
10.
Cereb Cortex ; 34(1)2024 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-38011084

RESUMO

This study provides evidence that the posterior parietal cortex is causally involved in risky decision making via the processing of reward values but not reward probabilities. In the within-group experimental design, participants performed a binary lottery choice task following transcranial magnetic stimulation of the right posterior parietal cortex, left posterior parietal cortex, and a right posterior parietal cortex sham (placebo) stimulation. The continuous theta-burst stimulation protocol supposedly downregulating the cortical excitability was used. Both, mean-variance and the prospect theory approach to risky choice showed that the posterior parietal cortex stimulation shifted participants toward greater risk aversion compared with sham. On the behavioral level, after the posterior parietal cortex stimulation, the likelihood of choosing a safer option became more sensitive to the difference in standard deviations between lotteries, compared with sham, indicating greater risk avoidance within the mean-variance framework. We also estimated the shift in prospect theory parameters of risk preferences after posterior parietal cortex stimulation. The hierarchical Bayesian approach showed moderate evidence for a credible change in risk aversion parameter toward lower marginal reward value (and, hence, lower risk tolerance), while no credible change in probability weighting was observed. In addition, we observed anecdotal evidence for a credible increase in the consistency of responses after the left posterior parietal cortex stimulation compared with sham.


Assuntos
Lobo Parietal , Estimulação Magnética Transcraniana , Humanos , Teorema de Bayes , Lobo Parietal/fisiologia , Estimulação Magnética Transcraniana/métodos , Probabilidade , Recompensa
11.
Cereb Cortex ; 34(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38584088

RESUMO

The human brain is distinguished by its ability to perform explicit logical reasoning like transitive inference. This study investigated the functional role of the inferior parietal cortex in transitive inference with functional MRI. Participants viewed premises describing abstract relations among items. They accurately recalled the relationship between old pairs of items, effectively inferred the relationship between new pairs of items, and discriminated between true and false relationships for new pairs. First, the inferior parietal cortex, but not the hippocampus or lateral prefrontal cortex, was associated with transitive inference. The inferior parietal activity and functional connectivity were modulated by inference (new versus old pairs) and discrimination (true versus false pairs). Moreover, the new/old and true/false pairs were decodable from the inferior parietal representation. Second, the inferior parietal cortex represented an integrated relational structure (ordered and directed series). The inferior parietal activity was modulated by serial position (larger end versus center pairs). The inferior parietal representation was modulated by symbolic distance (adjacent versus distant pairs) and direction (preceding versus following pairs). It suggests that the inferior parietal cortex may flexibly integrate observed relations into a relational structure and use the relational structure to infer unobserved relations and discriminate between true and false relations.


Assuntos
Encéfalo , Resolução de Problemas , Humanos , Córtex Pré-Frontal/diagnóstico por imagem , Lobo Parietal/diagnóstico por imagem , Mapeamento Encefálico
12.
Cereb Cortex ; 34(7)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-39042030

RESUMO

Hippocampus-parietal cortex circuits are thought to play a crucial role in memory and attention, but their neural basis remains poorly understood. We employed intracranial intracranial electroencephalography (iEEG) to investigate the neurophysiological underpinning of these circuits across three memory tasks spanning verbal and spatial domains. We uncovered a consistent pattern of higher causal directed connectivity from the hippocampus to both lateral parietal cortex (supramarginal and angular gyrus) and medial parietal cortex (posterior cingulate cortex) in the delta-theta band during memory encoding and recall. This connectivity was independent of activation or suppression states in the hippocampus or parietal cortex. Crucially, directed connectivity from the supramarginal gyrus to the hippocampus was enhanced in participants with higher memory recall, highlighting its behavioral significance. Our findings align with the attention-to-memory model, which posits that attention directs cognitive resources toward pertinent information during memory formation. The robustness of these results was demonstrated through Bayesian replication analysis of the memory encoding and recall periods across the three tasks. Our study sheds light on the neural basis of casual signaling within hippocampus-parietal circuits, broadening our understanding of their critical roles in human cognition.


Assuntos
Eletrocorticografia , Hipocampo , Memória Episódica , Lobo Parietal , Humanos , Hipocampo/fisiologia , Masculino , Lobo Parietal/fisiologia , Feminino , Adulto , Vias Neurais/fisiologia , Memória Espacial/fisiologia , Adulto Jovem , Rememoração Mental/fisiologia , Eletroencefalografia
13.
Proc Natl Acad Sci U S A ; 119(42): e2209427119, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36227915

RESUMO

Traumatic brain injury (TBI) is a leading cause of long-term neurological disability in the world and the strongest environmental risk factor for the development of dementia. Even mild TBI (resulting from concussive injuries) is associated with a greater than twofold increase in the risk of dementia onset. Little is known about the cellular mechanisms responsible for the progression of long-lasting cognitive deficits. The integrated stress response (ISR), a phylogenetically conserved pathway involved in the cellular response to stress, is activated after TBI, and inhibition of the ISR-even weeks after injury-can reverse behavioral and cognitive deficits. However, the cellular mechanisms by which ISR inhibition restores cognition are unknown. Here, we used longitudinal two-photon imaging in vivo after concussive injury in mice to study dendritic spine dynamics in the parietal cortex, a brain region involved in working memory. Concussive injury profoundly altered spine dynamics measured up to a month after injury. Strikingly, brief pharmacological treatment with the drug-like small-molecule ISR inhibitor ISRIB entirely reversed structural changes measured in the parietal cortex and the associated working memory deficits. Thus, both neural and cognitive consequences of concussive injury are mediated in part by activation of the ISR and can be corrected by its inhibition. These findings suggest that targeting ISR activation could serve as a promising approach to the clinical treatment of chronic cognitive deficits after TBI.


Assuntos
Concussão Encefálica , Lesões Encefálicas Traumáticas , Disfunção Cognitiva , Demência , Animais , Concussão Encefálica/complicações , Lesões Encefálicas Traumáticas/complicações , Disfunção Cognitiva/etiologia , Transtornos da Memória , Camundongos
14.
J Neurosci ; 43(23): 4315-4328, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37137703

RESUMO

Neural activity in the lateral intraparietal cortex (LIP) correlates with both sensory evaluation and motor planning underlying visuomotor decisions. We previously showed that LIP plays a causal role in visually-based perceptual and categorical decisions, and preferentially contributes to evaluating sensory stimuli over motor planning. In that study, however, monkeys reported their decisions with a saccade to a colored target associated with the correct motion category or direction. Since LIP is known to play a role in saccade planning, it remains unclear whether LIP's causal role in such decisions extend to decision-making tasks which do not involve saccades. Here, we employed reversible pharmacological inactivation of LIP neural activity while two male monkeys performed delayed match to category (DMC) and delayed match to sample (DMS) tasks. In both tasks, monkeys needed to maintain gaze fixation throughout the trial and report whether a test stimulus was a categorical match or nonmatch to the previous sample stimulus by releasing a touch bar. LIP inactivation impaired monkeys' behavioral performance in both tasks, with deficits in both accuracy and reaction time (RT). Furthermore, we recorded LIP neural activity in the DMC task targeting the same cortical locations as in the inactivation experiments. We found significant neural encoding of the sample category, which was correlated with monkeys' categorical decisions in the DMC task. Taken together, our results demonstrate that LIP plays a generalized role in visual categorical decisions independent of the task-structure and motor response modality.SIGNIFICANCE STATEMENT Neural activity in the lateral intraparietal cortex (LIP) correlates with perceptual and categorical decisions, in addition to its role in mediating saccadic eye movements. Past work found that LIP is causally involved in visual decisions that are rapidly reported by saccades in a reaction time based decision making task. Here we use reversible inactivation of LIP to test whether LIP is also causally involved in visual decisions when reported by hand movements during delayed matching tasks. Here we show that LIP inactivation impaired monkeys' task performance during both memory-based discrimination and categorization tasks. These results demonstrate that LIP plays a generalized role in visual categorical decisions independent of the task-structure and motor response modality.


Assuntos
Lobo Parietal , Movimentos Sacádicos , Masculino , Animais , Lobo Parietal/fisiologia , Fixação Ocular , Tempo de Reação/fisiologia , Estimulação Luminosa
15.
J Neurosci ; 43(1): 125-141, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36347621

RESUMO

The human action observation network (AON) encompasses brain areas consistently engaged when we observe other's actions. Although the core nodes of the AON are present from childhood, it is not known to what extent they are sensitive to different action features during development. Because social cognitive abilities continue to mature during adolescence, the AON response to socially-oriented actions, but not to object-related actions, may differ in adolescents and adults. To test this hypothesis, we scanned with functional magnetic resonance imaging (fMRI) male and female typically-developing teenagers (n = 28; 13 females) and adults (n = 25; 14 females) while they passively watched videos of manual actions varying along two dimensions: sociality (i.e., directed toward another person or not) and transitivity (i.e., involving an object or not). We found that action observation recruited the same fronto-parietal and occipito-temporal regions in adults and adolescents. The modulation of voxel-wise activity according to the social or transitive nature of the action was similar in both groups of participants. Multivariate pattern analysis, however, revealed that decoding accuracies in intraparietal sulcus (IPS)/superior parietal lobe (SPL) for both sociality and transitivity were lower for adolescents compared with adults. In addition, in the lateral occipital temporal cortex (LOTC), generalization of decoding across the orthogonal dimension was lower for sociality only in adolescents. These findings indicate that the representation of the content of others' actions, and in particular their social dimension, in the adolescent AON is still not as robust as in adults.SIGNIFICANCE STATEMENT The activity of the action observation network (AON) in the human brain is modulated according to the purpose of the observed action, in particular the extent to which it involves interaction with an object or with another person. How this conceptual representation of actions is implemented during development is largely unknown. Here, using multivoxel pattern analysis (MVPA) of functional magnetic resonance imaging (fMRI) data, we discovered that, while the action observation network is in place in adolescence, the fine-grain organization of its posterior regions is less robust than in adults to decode the abstract social dimensions of an action. This finding highlights the late maturation of social processing in the human brain.


Assuntos
Mapeamento Encefálico , Lobo Occipital , Adulto , Humanos , Masculino , Adolescente , Feminino , Criança , Mapeamento Encefálico/métodos , Lobo Occipital/fisiologia , Lobo Temporal/fisiologia , Lobo Parietal/fisiologia , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos
16.
J Neurosci ; 43(32): 5831-5847, 2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37474309

RESUMO

In daily life, prehension is typically not the end goal of hand-object interactions but a precursor for manipulation. Nevertheless, functional MRI (fMRI) studies investigating manual manipulation have primarily relied on prehension as the end goal of an action. Here, we used slow event-related fMRI to investigate differences in neural activation patterns between prehension in isolation and prehension for object manipulation. Sixteen (seven males and nine females) participants were instructed either to simply grasp the handle of a rotatable dial (isolated prehension) or to grasp and turn it (prehension for object manipulation). We used representational similarity analysis (RSA) to investigate whether the experimental conditions could be discriminated from each other based on differences in task-related brain activation patterns. We also used temporal multivoxel pattern analysis (tMVPA) to examine the evolution of regional activation patterns over time. Importantly, we were able to differentiate isolated prehension and prehension for manipulation from activation patterns in the early visual cortex, the caudal intraparietal sulcus (cIPS), and the superior parietal lobule (SPL). Our findings indicate that object manipulation extends beyond the putative cortical grasping network (anterior intraparietal sulcus, premotor and motor cortices) to include the superior parietal lobule and early visual cortex.SIGNIFICANCE STATEMENT A simple act such as turning an oven dial requires not only that the CNS encode the initial state (starting dial orientation) of the object but also the appropriate posture to grasp it to achieve the desired end state (final dial orientation) and the motor commands to achieve that state. Using advanced temporal neuroimaging analysis techniques, we reveal how such actions unfold over time and how they differ between object manipulation (turning a dial) versus grasping alone. We find that a combination of brain areas implicated in visual processing and sensorimotor integration can distinguish between the complex and simple tasks during planning, with neural patterns that approximate those during the actual execution of the action.


Assuntos
Objetivos , Desempenho Psicomotor , Feminino , Humanos , Masculino , Encéfalo/fisiologia , Mapeamento Encefálico/métodos , Força da Mão/fisiologia , Imageamento por Ressonância Magnética/métodos , Movimento/fisiologia , Lobo Parietal/diagnóstico por imagem , Lobo Parietal/fisiologia , Desempenho Psicomotor/fisiologia
17.
J Neurosci ; 43(38): 6508-6524, 2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37582626

RESUMO

Humans constantly receive massive amounts of information, both perceived from the external environment and imagined from the internal world. To function properly, the brain needs to correctly identify the origin of information being processed. Recent work has suggested common neural substrates for perception and imagery. However, it has remained unclear how the brain differentiates between external and internal experiences with shared neural codes. Here we tested this question in human participants (male and female) by systematically investigating the neural processes underlying the generation and maintenance of visual information from voluntary imagery, veridical perception, and illusion. The inclusion of illusion allowed us to differentiate between objective and subjective internality: while illusion has an objectively internal origin and can be viewed as involuntary imagery, it is also subjectively perceived as having an external origin like perception. Combining fMRI, eye-tracking, multivariate decoding, and encoding approaches, we observed superior orientation representations in parietal cortex during imagery compared with perception, and conversely in early visual cortex. This imagery dominance gradually developed along a posterior-to-anterior cortical hierarchy from early visual to parietal cortex, emerged in the early epoch of imagery and sustained into the delay epoch, and persisted across varied imagined contents. Moreover, representational strength of illusion was more comparable to imagery in early visual cortex, but more comparable to perception in parietal cortex, suggesting content-specific representations in parietal cortex differentiate between subjectively internal and external experiences, as opposed to early visual cortex. These findings together support a domain-general engagement of parietal cortex in internally generated experience.SIGNIFICANCE STATEMENT How does the brain differentiate between imagined and perceived experiences? Combining fMRI, eye-tracking, multivariate decoding, and encoding approaches, the current study revealed enhanced stimulus-specific representations in visual imagery originating from parietal cortex, supporting the subjective experience of imagery. This neural principle was further validated by evidence from visual illusion, wherein illusion resembled perception and imagery at different levels of cortical hierarchy. Our findings provide direct evidence for the critical role of parietal cortex as a domain-general region for content-specific imagery, and offer new insights into the neural mechanisms underlying the differentiation between subjectively internal and external experiences.


Assuntos
Ilusões , Percepção Visual , Humanos , Masculino , Feminino , Imaginação , Lobo Parietal , Encéfalo , Mapeamento Encefálico , Imageamento por Ressonância Magnética
18.
Neuroimage ; 289: 120550, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38382861

RESUMO

Visual crowding is the difficulty in identifying an object when surrounded by neighbouring flankers, representing a bottleneck for object perception. Crowding arises not only from the activity of visual areas but also from parietal areas and fronto-parietal network activity. Parietal areas would provide the dorsal-to-ventral guidance for object identification and the fronto-parietal network would modulate the attentional resolution. Several studies highlighted the relevance of beta oscillations (15-25 Hz) in these areas for visual crowding and other connatural visual phenomena. In the present study, we investigated the differential contribution of beta oscillations in the parietal cortex and fronto-parietal network in the resolution of visual crowding. During a crowding task with letter stimuli, high-definition transcranial Alternating Current Stimulation (tACS) in the beta band (18 Hz) was delivered bilaterally on parietal sites, on the right fronto-parietal network, and in a sham regime. Resting-state EEG was recorded before and after stimulation to measure tACS-induced aftereffects. The influence of crowding was reduced only when tACS was delivered bilaterally on parietal sites. In this condition, beta power was reduced after the stimulation. Furthermore, the magnitude of tACS-induced aftereffects varied as a function of individual differences in beta oscillations. Results corroborate the link between parietal beta oscillations and visual crowding, providing fundamental insights on brain rhythms underlying the dorsal-to-ventral guidance in visual perception and suggesting that beta tACS can induce plastic changes in these areas. Remarkably, these findings open new possibilities for neuromodulatory interventions for disorders characterised by abnormal crowding, such as dyslexia.


Assuntos
Lobo Parietal , Estimulação Transcraniana por Corrente Contínua , Humanos , Percepção Visual/fisiologia , Estimulação Transcraniana por Corrente Contínua/métodos
19.
Annu Rev Neurosci ; 39: 129-47, 2016 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-27070552

RESUMO

Categorization is our ability to flexibly assign sensory stimuli into discrete, behaviorally relevant groupings. Categorical decisions can be used to study decision making more generally by dissociating category identity of stimuli from the actions subjects use to signal their decisions. Here we discuss the evidence for such abstract categorical encoding in the primate brain and consider the relationship with other perceptual decision paradigms. Recent work on visual categorization has examined neuronal activity across a hierarchically organized network of cortical areas in monkeys trained to group visual stimuli into arbitrary categories. This has revealed a transformation of visual-feature encoding in early visual cortical areas into more flexible categorical representations in downstream parietal and prefrontal areas. These neuronal category representations are encoded as abstract internal cognitive states because they are not rigidly linked with either specific sensory stimuli or the actions that the monkeys use to signal their categorical choices.


Assuntos
Cognição/fisiologia , Tomada de Decisões/fisiologia , Córtex Visual/fisiologia , Percepção Visual/fisiologia , Animais , Comportamento/fisiologia , Humanos , Estimulação Luminosa/métodos
20.
Hum Brain Mapp ; 45(10): e26749, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38989605

RESUMO

The cerebellum has been involved in social abilities and autism. Given that the cerebellum is connected to the cortex via the cerebello-thalamo-cortical loop, the connectivity between the cerebellum and cortical regions involved in social interactions, that is, the right temporo-parietal junction (rTPJ) has been studied in individuals with autism, who suffer from prototypical deficits in social abilities. However, existing studies with small samples of categorical, case-control comparisons have yielded inconsistent results due to the inherent heterogeneity of autism, suggesting that investigating how clinical dimensions are related to cerebellar-rTPJ functional connectivity might be more relevant. Therefore, our objective was to study the functional connectivity between the cerebellum and rTPJ, focusing on its association with social abilities from a dimensional perspective in a transdiagnostic sample. We analyzed structural magnetic resonance imaging (MRI) and functional MRI (fMRI) scans obtained during naturalistic films watching from a large transdiagnostic dataset, the Healthy Brain Network (HBN), and examined the association between cerebellum-rTPJ functional connectivity and social abilities measured with the social responsiveness scale (SRS). We conducted univariate seed-to-voxel analysis, multivariate canonical correlation analysis (CCA), and predictive support vector regression (SVR). We included 1404 subjects in the structural analysis (age: 10.516 ± 3.034, range: 5.822-21.820, 506 females) and 414 subjects in the functional analysis (age: 11.260 ± 3.318 years, range: 6.020-21.820, 161 females). Our CCA model revealed a significant association between cerebellum-rTPJ functional connectivity, full-scale IQ (FSIQ) and SRS scores. However, this effect was primarily driven by FSIQ as suggested by SVR and univariate seed-to-voxel analysis. We also demonstrated the specificity of the rTPJ and the influence of structural anatomy in this association. Our results suggest that there is a complex relationship between cerebellum-rTPJ connectivity, social performance and IQ. This relationship is specific to the cerebellum-rTPJ connectivity, and is largely related to structural anatomy in these two regions. PRACTITIONER POINTS: We analyzed cerebellum-right temporoparietal junction (rTPJ) connectivity in a pediatric transdiagnostic sample. We found a complex relationship between cerebellum and rTPJ connectivity, social performance and IQ. Cerebellum and rTPJ functional connectivity is related to structural anatomy in these two regions.


Assuntos
Cerebelo , Imageamento por Ressonância Magnética , Humanos , Cerebelo/diagnóstico por imagem , Cerebelo/fisiopatologia , Cerebelo/patologia , Masculino , Feminino , Adulto Jovem , Adulto , Conectoma/métodos , Habilidades Sociais , Adolescente , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiopatologia , Lobo Parietal/diagnóstico por imagem , Lobo Parietal/fisiopatologia , Lobo Temporal/diagnóstico por imagem , Lobo Temporal/fisiopatologia , Vias Neurais/fisiopatologia , Vias Neurais/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA