Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 72(1): 162-177.e7, 2018 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-30244833

RESUMO

Histone post-translational modifications (PTMs) are important genomic regulators often studied by chromatin immunoprecipitation (ChIP), whereby their locations and relative abundance are inferred by antibody capture of nucleosomes and associated DNA. However, the specificity of antibodies within these experiments has not been systematically studied. Here, we use histone peptide arrays and internally calibrated ChIP (ICeChIP) to characterize 52 commercial antibodies purported to distinguish the H3K4 methylforms (me1, me2, and me3, with each ascribed distinct biological functions). We find that many widely used antibodies poorly distinguish the methylforms and that high- and low-specificity reagents can yield dramatically different biological interpretations, resulting in substantial divergence from the literature for numerous H3K4 methylform paradigms. Using ICeChIP, we also discern quantitative relationships between enhancer H3K4 methylation and promoter transcriptional output and can measure global PTM abundance changes. Our results illustrate how poor antibody specificity contributes to the "reproducibility crisis," demonstrating the need for rigorous, platform-appropriate validation.


Assuntos
Anticorpos/genética , Imunoprecipitação da Cromatina/métodos , Heterocromatina/genética , Histonas/genética , Anticorpos/química , Anticorpos/imunologia , Especificidade de Anticorpos , Heterocromatina/química , Heterocromatina/imunologia , Código das Histonas/genética , Histonas/química , Histonas/imunologia , Humanos , Metilação , Nucleossomos/genética , Regiões Promotoras Genéticas/genética , Processamento de Proteína Pós-Traducional/genética
2.
Mol Ther ; 32(6): 1934-1955, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38582961

RESUMO

Second mitochondrial-derived activator of caspase (SMAC), also known as direct inhibitor of apoptosis-binding proteins with low pI (Diablo), is known as a pro-apoptotic mitochondrial protein released into the cytosol in response to apoptotic signals. We recently reported SMAC overexpression in cancers as essential for cell proliferation and tumor growth due to non-apoptotic functions, including phospholipid synthesis regulation. These functions may be associated with its interactions with partner proteins. Using a peptide array with 768 peptides derived from 11 selected SMAC-interacting proteins, we identified SMAC-interacting sequences. These SMAC-binding sequences were produced as cell-penetrating peptides targeted to the cytosol, mitochondria, or nucleus, inhibiting cell proliferation and inducing apoptosis in several cell lines. For in vivo study, a survivin/baculoviral inhibitor of apoptosis repeat-containing 5 (BIRC5)-derived peptide was selected, due to its overexpression in many cancers and its involvement in mitosis, apoptosis, autophagy, cell proliferation, inflammation, and immune responses, as a target for cancer therapy. Specifically, a SMAC-targeting survivin/BIRC5-derived peptide, given intratumorally or intravenously, strongly inhibited lung tumor growth, cell proliferation, angiogenesis, and inflammation, induced apoptosis, and remodeled the tumor microenvironment. The peptide promoted tumor infiltration of CD-8+ cells and increased cell-intrinsic programmed cell death protein 1 (PD-1) and programmed cell death ligand 1 (PD-L1) expression, resulting in cancer cell self-destruction and increased tumor cell death, preserving immune cells. Thus, targeting the interaction between the multifunctional proteins SMAC and survivin represents an innovative therapeutic cancer paradigm.


Assuntos
Proteínas Reguladoras de Apoptose , Apoptose , Proliferação de Células , Proteínas Mitocondriais , Survivina , Humanos , Survivina/metabolismo , Survivina/genética , Animais , Camundongos , Proteínas Mitocondriais/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Reguladoras de Apoptose/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/tratamento farmacológico , Inflamação/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Ligação Proteica , Proteínas Inibidoras de Apoptose/metabolismo , Proteínas Inibidoras de Apoptose/genética , Peptídeos Penetradores de Células/farmacologia , Peptídeos Penetradores de Células/química , Peptídeos/farmacologia , Peptídeos/química , Terapia de Imunossupressão
3.
Biochem J ; 481(4): 313-327, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38305364

RESUMO

Leucine-rich repeat protein kinase 2 (LRRK2) is a multi-domain protein encompassing two of biology's most critical molecular switches, a kinase and a GTPase, and mutations in LRRK2 are key players in the pathogenesis of Parkinson's disease (PD). The availability of multiple structures (full-length and truncated) has opened doors to explore intra-domain cross-talk in LRRK2. A helix extending from the WD40 domain and stably docking onto the kinase domain is common in all available structures. This C-terminal (Ct) helix is a hub of phosphorylation and organelle-localization motifs and thus serves as a multi-functional protein : protein interaction module. To examine its intra-domain interactions, we have recombinantly expressed a stable Ct motif (residues 2480-2527) and used peptide arrays to identify specific binding sites. We have identified a potential interaction site between the Ct helix and a loop in the CORB domain (CORB loop) using a combination of Gaussian accelerated molecular dynamics simulations and peptide arrays. This Ct-Motif contains two auto-phosphorylation sites (T2483 and T2524), and T2524 is a 14-3-3 binding site. The Ct helix, CORB loop, and the CORB-kinase linker together form a part of a dynamic 'CAP' that regulates the N-lobe of the kinase domain. We hypothesize that in inactive, full-length LRRK2, the Ct-helix will also mediate interactions with the N-terminal armadillo, ankyrin, and LRR domains (NTDs) and that binding of Rab substrates, PD mutations, or kinase inhibitors will unleash the NTDs.


Assuntos
Proteínas de Repetições Ricas em Leucina , Proteínas Serina-Treonina Quinases , Proteínas Serina-Treonina Quinases/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Domínios Proteicos , Mutação , Peptídeos/metabolismo , Fosforilação
4.
J Biol Chem ; 298(12): 102688, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36370848

RESUMO

Parkinson's disease is a neurodegenerative movement disorder associated with the intracellular aggregation of α-synuclein (α-syn). Cytotoxicity is mainly associated with the oligomeric species (αSOs) formed at early stages in α-syn aggregation. Consequently, there is an intense focus on the discovery of novel inhibitors such as peptides to inhibit oligomer formation and toxicity. Here, using peptide arrays, we identified nine peptides with high specificity and affinity for αSOs. Of these, peptides p194, p235, and p249 diverted α-syn aggregation from fibrils to amorphous aggregates with reduced ß-structures and increased random coil content. However, they did not reduce αSO cytotoxicity and permeabilization of large anionic unilamellar vesicles. In parallel, we identified a non-self-aggregating peptide (p216), derived from the cell-penetrating peptide penetratin, which showed 12-fold higher binding affinity to αSOs than to α-syn monomers (Kdapp 2.7 and 31.2 µM, respectively). p216 reduced αSOs-induced large anionic unilamellar vesicle membrane permeability at 10-1 to 10-3 mg/ml by almost 100%, was not toxic to SH-SY5Y cells, and reduced αSOs cytotoxicity by about 20%. We conclude that p216 is a promising starting point from which to develop peptides targeting toxic αSOs in Parkinson's disease.


Assuntos
Peptídeos Penetradores de Células , Doença de Parkinson , alfa-Sinucleína , Humanos , alfa-Sinucleína/metabolismo , Peptídeos Penetradores de Células/isolamento & purificação , Peptídeos Penetradores de Células/farmacologia , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Linhagem Celular Tumoral
5.
Mol Cell Proteomics ; 19(7): 1070-1075, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32345597

RESUMO

Protein-protein interactions are often mediated by short linear motifs (SLiMs) that are located in intrinsically disordered regions (IDRs) of proteins. Interactions mediated by SLiMs are notoriously difficult to study, and many functionally relevant interactions likely remain to be uncovered. Recently, pull-downs with synthetic peptides in combination with quantitative mass spectrometry emerged as a powerful screening approach to study protein-protein interactions mediated by SLiMs. Specifically, arrays of synthetic peptides immobilized on cellulose membranes provide a scalable means to identify the interaction partners of many peptides in parallel. In this minireview we briefly highlight the relevance of SLiMs for protein-protein interactions, outline existing screening technologies, discuss unique advantages of peptide-based interaction screens and provide practical suggestions for setting up such peptide-based screens.


Assuntos
Peptídeos/metabolismo , Domínios e Motivos de Interação entre Proteínas , Proteômica/métodos , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Biologia Computacional/métodos , Humanos , Espectrometria de Massas , Camundongos , Peptídeos/química , Ligação Proteica , Processamento de Proteína Pós-Traducional , Proteínas/metabolismo
6.
J Biol Chem ; 295(24): 8120-8134, 2020 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-32350110

RESUMO

Protein kinase B (AKT1) is a central node in a signaling pathway that regulates cell survival. The diverse pathways regulated by AKT1 are communicated in the cell via the phosphorylation of perhaps more than 100 cellular substrates. AKT1 is itself activated by phosphorylation at Thr-308 and Ser-473. Despite the fact that these phosphorylation sites are biomarkers for cancers and tumor biology, their individual roles in shaping AKT1 substrate selectivity are unknown. We recently developed a method to produce AKT1 with programmed phosphorylation at either or both of its key regulatory sites. Here, we used both defined and randomized peptide libraries to map the substrate selectivity of site-specific, singly and doubly phosphorylated AKT1 variants. To globally quantitate AKT1 substrate preferences, we synthesized three AKT1 substrate peptide libraries: one based on 84 "known" substrates and two independent and larger oriented peptide array libraries (OPALs) of ∼1011 peptides each. We found that each phospho-form of AKT1 has common and distinct substrate requirements. Compared with pAKT1T308, the addition of Ser-473 phosphorylation increased AKT1 activities on some, but not all of its substrates. This is the first report that Ser-473 phosphorylation can positively or negatively regulate kinase activity in a substrate-dependent fashion. Bioinformatics analysis indicated that the OPAL-activity data effectively discriminate known AKT1 substrates from closely related kinase substrates. Our results also enabled predictions of novel AKT1 substrates that suggest new and expanded roles for AKT1 signaling in regulating cellular processes.


Assuntos
Proteínas Proto-Oncogênicas c-akt/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Humanos , Biblioteca de Peptídeos , Peptídeos/química , Peptídeos/metabolismo , Fosforilação , Fosfosserina/metabolismo , Proteínas Proto-Oncogênicas c-akt/química , Curva ROC , Especificidade por Substrato
7.
J Pept Sci ; 27(1): e3287, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32964600

RESUMO

Cyclic peptides are an attractive modality for the development of therapeutics and the identification of functional cyclic peptides that contribute to novel drug development. The peptide array is one of the optimization methods for peptide sequences and also useful to understand sequence-function relationship of peptides. Cell adherent cyclic NGR peptide which selectively binds to the aminopeptidase N (APN or CD13) is known as an attractive tumor marker. In this study, we designed and screened a library of different length and an amino acid substitution library to identify stronger cell adhesion peptides and to reveal that the factor of higher binding between CD13 and optimized cyclic peptides. Additionally, we designed and evaluated 192 peptide libraries using eight representative amino acids to reduce the size of the library. Through these optimization steps of cyclic peptides, we identified 23 peptides that showed significantly higher cell adhesion activity than cKCNGRC, which was previously reported as a cell adhesion cyclic peptide. Among them, cCRHNGRARC showed the highest activity, that is, 1.65 times higher activity than cKCNGRC. An analysis of sequence and functional data showed that the rules which show higher cell adhesion activity for the three basic cyclic peptides (cCX1 HNGRHX2 C, cCX1 HNGRAX2 C, and cCX1 ANGRHX2 C) are related with the position of His residues and cationic amino acids.


Assuntos
Oligopeptídeos/química , Peptídeos Cíclicos/química , Antígenos CD13/química
8.
Mol Cell Proteomics ; 18(4): 642-656, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30630936

RESUMO

High-density peptide arrays are an excellent means to profile anti-plasmodial antibody responses. Different protein intrinsic epitopes can be distinguished, and additional insights are gained, when compared with assays involving the full-length protein. Distinct reactivities to specific epitopes within one protein may explain differences in published results, regarding immunity or susceptibility to malaria. We pursued three approaches to find specific epitopes within important plasmodial proteins, (1) twelve leading vaccine candidates were mapped as overlapping 15-mer peptides, (2) a bioinformatical approach served to predict immunogenic malaria epitopes which were subsequently validated in the assay, and (3) randomly selected peptides from the malaria proteome were screened as a control. Several peptide array replicas were prepared, employing particle-based laser printing, and were used to screen 27 serum samples from a malaria-endemic area in Burkina Faso, West Africa. The immunological status of the individuals was classified as "protected" or "unprotected" based on clinical symptoms, parasite density, and age. The vaccine candidate screening approach resulted in significant hits in all twelve proteins and allowed us (1) to verify many known immunogenic structures, (2) to map B-cell epitopes across the entire sequence of each antigen and (3) to uncover novel immunogenic epitopes. Predicting immunogenic regions in the proteome of the human malaria parasite Plasmodium falciparum, via the bioinformatics approach and subsequent array screening, confirmed known immunogenic sequences, such as in the leading malaria vaccine candidate CSP and discovered immunogenic epitopes derived from hypothetical or unknown proteins.


Assuntos
Epitopos de Linfócito B/imunologia , Malária/imunologia , Peptídeos/metabolismo , Análise Serial de Proteínas , Adolescente , Adulto , Anticorpos Antiprotozoários/imunologia , Automação , Estudos de Casos e Controles , Criança , Análise por Conglomerados , Feminino , Humanos , Imunidade Humoral , Lactente , Malária/sangue , Vacinas Antimaláricas/imunologia , Masculino , Pessoa de Meia-Idade , Biblioteca de Peptídeos , Plasmodium falciparum/imunologia , Adulto Jovem
9.
J Biol Chem ; 294(4): 1300-1311, 2019 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-30504228

RESUMO

The human macrophage galactose-type lectin (MGL) is a C-type lectin characterized by a unique specificity for terminal GalNAc residues present in the tumor-associated Tn antigen (αGalNAc-Ser/Thr) and its sialylated form, the sialyl-Tn antigen. However, human MGL has multiple splice variants, and whether these variants have distinct ligand-binding properties is unknown. Here, using glycan microarrays, we compared the binding properties of the short MGL 6C (MGLshort) and the long MGL 6B (MGLlong) splice variants, as well as of a histidine-to-threonine mutant (MGLshort H259T). Although the MGLshort and MGLlong variants displayed similar binding properties on the glycan array, the MGLshort H259T mutant failed to interact with the sialyl-Tn epitope. As the MGLshort H259T variant could still bind a single GalNAc monosaccharide on this array, we next investigated its binding characteristics to Tn-containing glycopeptides derived from the MGL ligands mucin 1 (MUC1), MUC2, and CD45. Strikingly, in the glycopeptide microarray, the MGLshort H259T variant lost high-affinity binding toward Tn-containing glycopeptides, especially at low probing concentrations. Moreover, MGLshort H259T was unable to recognize cancer-associated Tn epitopes on tumor cell lines. Molecular dynamics simulations indicated that in WT MGLshort, His259 mediates H bonds directly or engages the Tn-glycopeptide backbone through water molecules. These bonds were lost in MGLshort H259T, thus explaining its lower binding affinity. Together, our results suggest that MGL not only connects to the Tn carbohydrate epitope, but also engages the underlying peptide via a secondary binding pocket within the MGL carbohydrate recognition domain containing the His259 residue.


Assuntos
Neoplasias do Colo/metabolismo , Glicopeptídeos/metabolismo , Lectinas Tipo C/química , Lectinas Tipo C/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Neoplasias do Colo/patologia , Epitopos , Humanos , Ligantes , Análise em Microsséries , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Homologia de Sequência , Células Tumorais Cultivadas
10.
Chembiochem ; 21(1-2): 256-264, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31612581

RESUMO

The SMYD2 protein lysine methyltransferase methylates various histone and non-histone proteins and is overexpressed in several cancers. Using peptide arrays, we investigated the substrate specificity of the enzyme, revealing a recognition of leucine (or weaker phenylalanine) at the -1 peptide site and disfavor of acidic residues at the +1 to +3 sites. Using this motif, novel SMYD2 peptide substrates were identified, leading to the discovery of 32 novel peptide substrates with a validated target site. Among them, 19 were previously reported to be methylated at the target lysine in human cells, strongly suggesting that SMYD2 is the protein lysine methyltransferase responsible for this activity. Methylation of some of the novel peptide substrates was tested at the protein level, leading to the identification of 14 novel protein substrates of SMYD2, six of which were more strongly methylated than p53, the best SMYD2 substrate described so far. The novel SMYD2 substrate proteins are involved in diverse biological processes such as chromatin regulation, transcription, and intracellular signaling. The results of our study provide a fundament for future investigations into the role of this important enzyme in normal development and cancer.


Assuntos
Histona-Lisina N-Metiltransferase/análise , Dicroísmo Circular , Células HEK293 , Histona-Lisina N-Metiltransferase/isolamento & purificação , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Metilação , Especificidade por Substrato
11.
IUBMB Life ; 72(9): 1976-1985, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32710808

RESUMO

Dermatophagoides farinae, as a common house dust mite species, is one of the main sources of allergens in the world. At present, Dermatophagoides farinae is found to contain more than 30 groups of allergens. These allergens are used for allergen-specific immunotherapy (AIT) of allergic diseases. During the AIT process, immunoglobulin G (IgG) antibodies can block immunoglobulin E (IgE) antibody-induced allergic reactions in the human body. One of the mechanisms may be that IgG and IgE competitively bind to the same allergic protein, so it is necessary to explore the binding sites (epitopes) of IgG antibodies to allergens. In this study, peptide arrays were constructed to react with the serums from patients with allergic asthma to find the IgG epitopes of several allergens including major allergens (Der f 1, 2) and mid-tier allergens (Der f 4, 5, and 7), and then verified by enzyme-linked immunosorbent assay (ELISA) test. Relevant epitopic sequences were located on the tertiary structure of individual allergens, as reconstructed by homology modeling. One IgG epitope of Der f 1 (90-106aa, NVPSELDLRSLRTVTPI), five IgG epitopes of Der f 4 (61-77aa, ERYQPVSYDIHTRSGDE; 193-209aa, FRSDASTHQWPDDLRSI; 226-242aa, HPFIYHETIYYGGNGIN; 271-287aa, LRWLRNFGTEWGLVPSG; 352-368aa, NDWVGPPTDQHGNILSV), and one IgG epitope of Der f 5 (84-101aa, RYNVEIALKSNEILERDL) were identified. IgG epitopes of Der f 2, 7 were not found. There are overlaps between the IgG and IgE epitopes of Der f 1, 4, and 5. These findings not only reflect the practicality of peptide array and ELISA test in the allergen IgG epitope identification, but also provide more information for further understanding of the human immunological changes during AIT and the molecular mechanisms of IgG blocking IgE activity.


Assuntos
Alérgenos/imunologia , Antígenos de Dermatophagoides/imunologia , Epitopos/imunologia , Imunoensaio/métodos , Imunoglobulina G/imunologia , Fragmentos de Peptídeos/imunologia , Pyroglyphidae/imunologia , Alérgenos/sangue , Animais , Antígenos de Dermatophagoides/sangue , Proteínas de Artrópodes/imunologia , Asma/sangue , Asma/imunologia , Criança , Pré-Escolar , Epitopos/sangue , Feminino , Humanos , Imunoglobulina E/metabolismo , Imunoglobulina G/sangue , Lactente , Masculino
12.
Anal Biochem ; 603: 113772, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32428443

RESUMO

Many protein-protein interactions are mediated by short linear peptide motifs binding to cognate proteins or protein domains. Such interactions often display affinities in the mid-micromolar range that are challenging to quantify accurately, especially when the motifs harbor single-point mutations. Here, we present a manual benchtop assay for determining affinities of weak interactions between a purified protein and a peptide array representing mutants of a target motif. The assay is based on the "holdup" principle, a chromatographic approach allowing sensitive detection of weak interactions at equilibrium and accurate estimation of their binding free energy. We tested two alternative setups using, as a readout, either capillary electrophoresis or fluorescence. Using this approach, we studied the amino acid sequence determinants of the interactions between HPV16 E6 viral oncoprotein and single-point mutants of its prototypical target LXXLL motif from the E3 ubiquitin ligase E6AP. Comparing SPOT peptide array and holdup approaches revealed a good agreement for most interactions except the weakest ones, which were only detected by holdup assay. In addition, the strongest interactions were validated by Surface-Plasmon Resonance. The manual holdup procedure proposed here can be readily adapted for accurate evaluation of a wide variety of protein-motif interactions displaying low to medium affinities.


Assuntos
Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas/métodos , Motivos de Aminoácidos , Cromatografia de Afinidade/métodos , Ligantes , Proteínas Oncogênicas Virais/química , Proteínas Oncogênicas Virais/genética , Proteínas Oncogênicas Virais/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Mutação Puntual , Ligação Proteica , Proteínas Repressoras/química , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo
13.
Mol Cell Proteomics ; 17(11): 2216-2228, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29217616

RESUMO

Cellular functions are frequently regulated by protein-protein interactions involving the binding of a modular domain in one protein to a specific peptide sequence in another. This mechanism may be explored to identify binding partners for proteins harboring a peptide-recognition domain. Here we report a proteomic strategy combining peptide and protein microarray screening with biochemical and cellular assays to identify modular domain-mediated protein-protein interactions in a systematic manner. We applied this strategy to Numb, a multi-functional protein containing a phosphotyrosine-binding (PTB) domain. Through the screening of a protein microarray, we identified >100 protein kinases, including both Tyr and Ser/Thr kinases, that could potentially interact with the Numb PTB domain, suggesting a general role for Numb in regulating kinase function. The putative interactions between Numb and several tyrosine kinases were subsequently validated by GST pull-down and/or co-immunoprecipitation assays. Furthermore, using the Oriented Peptide Array Library approach, we defined the specificity of the Numb PTB domain which, in turn, allowed us to predict binding partners for Numb at the genome level. The combination of the protein microarray screening with computer-aided prediction produced the most expansive interactome for Numb to date, implicating Numb in regulating phosphorylation signaling through protein kinases and phosphatases. Not only does the data generated from this study provide an important resource for hypothesis-driven research to further define the function of Numb, the proteomic strategy described herein may be employed to uncover the interactome for other peptide-recognition domains whose consensus motifs are known or can be determined.


Assuntos
Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Mapeamento de Interação de Proteínas , Proteínas Quinases/metabolismo , Motivos de Aminoácidos , Linhagem Celular Tumoral , Genoma Humano , Humanos , Proteínas de Membrana/química , Proteínas do Tecido Nervoso/química , Peptídeos/metabolismo , Fosforilação , Ligação Proteica , Domínios Proteicos , Reprodutibilidade dos Testes , Transdução de Sinais
14.
Int J Mol Sci ; 21(7)2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-32235567

RESUMO

The use of biomolecules in nanomaterial synthesis has received increasing attention, because they can function as a medium to produce inorganic materials in ambient conditions. Short peptides are putative ligands that interact with metallic surfaces, as they have the potential to control the synthesis of nanoscale materials. Silver nanoparticle (AgNP) mineralization using peptides has been investigated; however, further comprehensive analysis must be carried out, because the design of peptide mediated-AgNP properties is still highly challenging. Herein, we employed an array comprising 200 spot synthesis-based peptides, which were previously isolated as gold nanoparticle (AuNP)-binding and/or mineralization peptides, and the AgNP mineralization activity of each peptide was broadly evaluated. Among 10 peptides showing the highest AgNP-synthesis activity (TOP10), nine showed the presence of EE and E[X]E (E: glutamic acid, and X: any amino acid), whereas none of these motifs were found in the WORST25 (25 peptides showing the lowest AgNP synthesis activity) peptides. The size and morphology of the particles synthesized by TOP3 peptides were dependent on their sequences. These results suggested not only that array-based techniques are effective for the peptide screening of AgNP mineralization, but also that AgNP mineralization regulated by peptides has the potential for the synthesis of AgNPs, with controlled morphology in environmentally friendly conditions.


Assuntos
Nanopartículas Metálicas/química , Nanoestruturas/química , Peptídeos/química , Prata/química , Sequência de Aminoácidos , Sítios de Ligação , Química Verde , Nanotecnologia , Análise Serial de Proteínas
15.
Int J Mol Sci ; 21(22)2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33213062

RESUMO

Pancreatic cancer remains one of the most difficult malignancies to treat. Minimal improvements in patient outcomes and persistently abysmal patient survival rates underscore the great need for new treatment strategies. Currently, there is intense interest in therapeutic strategies that target tyrosine protein kinases. Here, we employed kinome arrays and bioinformatic pipelines capable of identifying differentially active protein tyrosine kinases in different patient-derived pancreatic ductal adenocarcinoma (PDAC) cell lines and wild-type pancreatic tissue to investigate the unique kinomic networks of PDAC samples and posit novel target kinases for pancreatic cancer therapy. Consistent with previously described reports, the resultant peptide-based kinome array profiles identified increased protein tyrosine kinase activity in pancreatic cancer for the following kinases: epidermal growth factor receptor (EGFR), fms related receptor tyrosine kinase 4/vascular endothelial growth factor receptor 3 (FLT4/VEGFR-3), insulin receptor (INSR), ephrin receptor A2 (EPHA2), platelet derived growth factor receptor alpha (PDGFRA), SRC proto-oncogene kinase (SRC), and tyrosine kinase non receptor 2 (TNK2). Furthermore, this study identified increased activity for protein tyrosine kinases with limited prior evidence of differential activity in pancreatic cancer. These protein tyrosine kinases include B lymphoid kinase (BLK), Fyn-related kinase (FRK), Lck/Yes-related novel kinase (LYN), FYN proto-oncogene kinase (FYN), lymphocyte cell-specific kinase (LCK), tec protein kinase (TEC), hemopoietic cell kinase (HCK), ABL proto-oncogene 2 kinase (ABL2), discoidin domain receptor 1 kinase (DDR1), and ephrin receptor A8 kinase (EPHA8). Together, these results support the utility of peptide array kinomic analyses in the generation of potential candidate kinases for future pancreatic cancer therapeutic development.


Assuntos
Carcinoma Ductal Pancreático/enzimologia , Perfilação da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Proteínas de Neoplasias/biossíntese , Neoplasias Pancreáticas/enzimologia , Proteínas Tirosina Quinases/biossíntese , Carcinoma Ductal Pancreático/genética , Humanos , Proteínas de Neoplasias/genética , Neoplasias Pancreáticas/genética , Proteínas Tirosina Quinases/genética , Proto-Oncogene Mas
16.
J Biol Chem ; 293(42): 16337-16347, 2018 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-30166345

RESUMO

Intrinsically disordered regions (IDRs) are protein regions that lack persistent secondary or tertiary structure under native conditions. IDRs represent >40% of the eukaryotic proteome and play a crucial role in protein-protein interactions. The classical approach for identification of these interaction interfaces is based on mutagenesis combined with biochemical techniques such as coimmunoprecipitation or yeast two-hybrid screening. This approach either provides information of low resolution (large deletions) or very laboriously tries to precisely define the binding epitope via single amino acid substitutions. Here, we report the use of a peptide microarray based on the human scaffold protein AXIN1 for high-throughput and -resolution mapping of binding sites for several AXIN1 interaction partners in vitro For each of the AXIN1-binding partners tested, i.e. casein kinase 1 ϵ (CK1ϵ); c-Myc; peptidyl-prolyl cis/trans isomerase, NIMA-interacting 1 (Pin1); and p53, we found at least three different epitopes, predominantly in the central IDR of AXIN1. We functionally validated the specific AXIN1-CK1ϵ interaction identified here with epitope-mimicking peptides and with AXIN1 variants having deletions of short binding epitopes. On the basis of these results, we propose a model in which AXIN1 competes with dishevelled (DVL) for CK1ϵ and regulates CK1ϵ-induced phosphorylation of DVL and activation of Wnt/ß-catenin signaling.


Assuntos
Proteína Axina/metabolismo , Caseína Quinase 1 épsilon/metabolismo , Peptídeos/metabolismo , Análise Serial de Proteínas/métodos , Domínios e Motivos de Interação entre Proteínas , Sítios de Ligação , Ligação Competitiva , Proteínas Desgrenhadas/metabolismo , Humanos , Fosforilação , Ligação Proteica , Proteínas Wnt/metabolismo , Via de Sinalização Wnt , beta Catenina/metabolismo
17.
Biochem Soc Trans ; 47(5): 1405-1414, 2019 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-31506329

RESUMO

Spatio-temporal regulation of localised cAMP nanodomains is highly dependent upon the compartmentalised activity of phosphodiesterase (PDE) cyclic nucleotide degrading enzymes. Strategically positioned PDE-protein complexes are pivotal to the homeostatic control of cAMP-effector protein activity that in turn orchestrate a wide range of cellular signalling cascades in a variety of cells and tissue types. Unsurprisingly, dysregulated PDE activity is central to the pathophysiology of many diseases warranting the need for effective therapies that target PDEs selectively. This short review focuses on the importance of activating compartmentalised cAMP signalling by displacing the PDE component of signalling complexes using cell-permeable peptide disrupters.


Assuntos
AMP Cíclico/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Transdução de Sinais , Animais , Sítios de Ligação , Diester Fosfórico Hidrolases/química , Domínios Proteicos , Relação Estrutura-Atividade
18.
Allergy ; 74(4): 780-787, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30394551

RESUMO

BACKGROUND: The preventive effect of allergen immunotherapy (AIT) on allergy and asthma development is currently assessed using primary and secondary AIT approaches. Knowledge of the immunological effects of these interventions is limited and the impact on epitope diversity remains to be defined. METHODS: We used high-density peptide arrays that included all known Dermatophagoides pteronyssinus (Der p) and Dermatophagoides farinae (Der f) allergens and the whole proteome of Der f to study changes in House Dust Mite (HDM) linear peptide recognition during a 2-year preventive double-blind placebo-controlled sublingual HDM AIT pilot study in 2-5-year-old children with sensitization to HDM but without symptoms. RESULTS: Preventive AIT-treated patients showed significantly higher IgG epitope diversity to HDM allergens compared to placebo-treated individuals at 24 months of treatment (P < 0.05), while no increase in IgE diversity was seen. At 24 months of treatment, IgG4 diversity for HDM allergens was significantly higher in the pAIT-treated patients compared to placebo group (P < 0.05). Potentially beneficial changes in epitope recognition throughout the treatment are also seen in peptides derived from Der f proteome. CONCLUSION: These data suggest a beneficial immunomodulation of preventive sublingual immunotherapy at a molecular level by favoring a broader blocking repertoire and inhibiting epitope spreading.


Assuntos
Epitopos/efeitos dos fármacos , Pyroglyphidae/imunologia , Imunoterapia Sublingual/métodos , Animais , Antígenos de Dermatophagoides/imunologia , Pré-Escolar , Dermatophagoides pteronyssinus/imunologia , Método Duplo-Cego , Feminino , Humanos , Masculino , Projetos Piloto
19.
Arch Biochem Biophys ; 661: 31-38, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30391375

RESUMO

Various post-translational modifications (PTMs) have been identified on histone proteins, which occur at hundreds of different sites. Histone PTMs influence the chromatin structure and serve as binding sites for reading domains, which further mediate downstream effects. Histone PTM antibodies or recombinant proteins derived from reading domains are unique research reagents essentially required to study histone modifications. To validate their specificity, histone PTM peptide arrays are used, because they allow to investigate the binding of proteins to a large number of different peptides in one experiment. Furthermore, histone PTM peptide arrays can be used to characterize reading domains and study the specificity of histone modifying enzymes. Here, we provide an overview of histone PTM peptide arrays, highlight some of their applications and compare different commercial histone PTM peptide arrays, viz. MODified Histone Peptide Array, AbSurance Pro Histone Peptide Microarrays, EpiTriton Histone Peptide Array and Histone Code Microarrays. These arrays contain histone peptides with several post-translational modifications in many different combinations, but they differ in peptide synthesis and immobilization methods, peptide and PTM coverage, and PTM combinatorial potential. In addition, some special applications of histone PTM peptide arrays like custom arrays or double peptide arrays are described.


Assuntos
Cromatina , Histonas , Biblioteca de Peptídeos , Análise Serial de Proteínas/métodos , Processamento de Proteína Pós-Traducional , Animais , Cromatina/química , Cromatina/metabolismo , Histonas/química , Histonas/metabolismo , Humanos
20.
J Biol Chem ; 292(12): 4942-4952, 2017 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-28159843

RESUMO

Reversible tyrosine phosphorylation is a widespread post-translational modification mechanism underlying cell physiology. Thus, understanding the mechanisms responsible for substrate selection by kinases and phosphatases is central to our ability to model signal transduction at a system level. Classical protein-tyrosine phosphatases can exhibit substrate specificity in vivo by combining intrinsic enzymatic specificity with the network of protein-protein interactions, which positions the enzymes in close proximity to their substrates. Here we use a high throughput approach, based on high density phosphopeptide chips, to determine the in vitro substrate preference of 16 members of the protein-tyrosine phosphatase family. This approach helped identify one residue in the substrate binding pocket of the phosphatase domain that confers specificity for phosphopeptides in a specific sequence context. We also present a Bayesian model that combines intrinsic enzymatic specificity and interaction information in the context of the human protein interaction network to infer new phosphatase substrates at the proteome level.


Assuntos
Fosfopeptídeos/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Sequência de Aminoácidos , Teorema de Bayes , Sítios de Ligação , Humanos , Modelos Biológicos , Simulação de Acoplamento Molecular , Fosfopeptídeos/química , Fosforilação , Conformação Proteica , Domínios Proteicos , Mapas de Interação de Proteínas , Proteínas Tirosina Fosfatases/química , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA