Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Circulation ; 148(11): 882-898, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37350296

RESUMO

BACKGROUND: Pericytes have been implicated in tissue repair, remodeling, and fibrosis. Although the mammalian heart contains abundant pericytes, their fate and involvement in myocardial disease remains unknown. METHODS: We used NG2Dsred;PDGFRαEGFP pericyte:fibroblast dual reporter mice and inducible NG2CreER mice to study the fate and phenotypic modulation of pericytes in myocardial infarction. The transcriptomic profile of pericyte-derived cells was studied using polymerase chain reaction arrays and single-cell RNA sequencing. The role of transforming growth factor-ß (TGF-ß) signaling in regulation of pericyte phenotype was investigated in vivo using pericyte-specific TGF-ß receptor 2 knockout mice and in vitro using cultured human placental pericytes. RESULTS: In normal hearts, neuron/glial antigen 2 (NG2) and platelet-derived growth factor receptor α (PDGFRα) identified distinct nonoverlapping populations of pericytes and fibroblasts, respectively. After infarction, a population of cells expressing both pericyte and fibroblast markers emerged. Lineage tracing demonstrated that in the infarcted region, a subpopulation of pericytes exhibited transient expression of fibroblast markers. Pericyte-derived cells accounted for ~4% of PDGFRα+ infarct fibroblasts during the proliferative phase of repair. Pericyte-derived fibroblasts were overactive, expressing higher levels of extracellular matrix genes, integrins, matricellular proteins, and growth factors, when compared with fibroblasts from other cellular sources. Another subset of pericytes contributed to infarct angiogenesis by forming a mural cell coat, stabilizing infarct neovessels. Single-cell RNA sequencing showed that NG2 lineage cells diversify after infarction and exhibit increased expression of matrix genes, and a cluster with high expression of fibroblast identity markers emerges. Trajectory analysis suggested that diversification of infarct pericytes may be driven by proliferating cells. In vitro and in vivo studies identified TGF-ß as a potentially causative mediator in fibrogenic activation of infarct pericytes. However, pericyte-specific TGF-ß receptor 2 disruption had no significant effects on infarct myofibroblast infiltration and collagen deposition. Pericyte-specific TGF-ß signaling was involved in vascular maturation, mediating formation of a mural cell coat investing infarct neovessels and protecting from dilative remodeling. CONCLUSIONS: In the healing infarct, cardiac pericytes upregulate expression of fibrosis-associated genes, exhibiting matrix-synthetic and matrix-remodeling profiles. A fraction of infarct pericytes exhibits expression of fibroblast identity markers. Pericyte-specific TGF-ß signaling plays a central role in maturation of the infarct vasculature and protects from adverse dilative remodeling, but it does not modulate fibrotic remodeling.


Assuntos
Infarto do Miocárdio , Pericitos , Gravidez , Camundongos , Feminino , Humanos , Animais , Pericitos/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Placenta/metabolismo , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Fibrose , Camundongos Knockout , Fenótipo , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Mamíferos
2.
Exp Dermatol ; 33(5): e15104, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38794817

RESUMO

Psoriasis is a chronic systemic inflammatory cutaneous disease. Where the immune system plays an important role in its pathogenesis, with key inflammatory intercellular signalling peptides and proteins including IL-17 and IL-23. The psychoneurological system also figures prominently in development of psoriasis. There is a high prevalence of comorbidity between psoriasis and mental health disorders such as depression, anxiety and mania. Patients with psoriasis often suffer from pathological pain in the lesions, and their neurological accidents could improve the lesions in innervated areas. The immune system and the psychoneurological system interact closely in the pathogenesis of psoriasis. Patients with psoriasis exhibit abnormal levels of neuropeptides both in circulating and localized lesion, acting as immunomodulators involved in the inflammatory response. Moreover, receptors for inflammatory factors are expressed in both peripheral and central nervous systems (CNSs), suggesting that nervous system can receive and be influenced by signals from immune system. Key inflammatory intercellular signalling peptides and proteins in psoriasis, such as IL-17 and IL-23, can be involved in sensory signalling and may affect synaptic plasticity and the blood-brain barrier of CNS through the circulation. This review provides an overview of the multiple effects on the peripheral and CNS under conditions of systemic inflammation in psoriasis, providing a framework and inspiration for in-depth studies of neuroimmunomodulation in psoriasis.


Assuntos
Sistema Nervoso Central , Interleucina-17 , Interleucina-23 , Psoríase , Psoríase/metabolismo , Psoríase/imunologia , Humanos , Sistema Nervoso Central/metabolismo , Interleucina-23/metabolismo , Interleucina-17/metabolismo , Neuroimunomodulação , Neuropeptídeos/metabolismo , Inflamação/metabolismo , Sistema Nervoso Periférico/metabolismo , Animais , Transdução de Sinais
3.
Chemistry ; 30(24): e202304367, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38377169

RESUMO

Carbonic Anhydrases (CAs) have been a target for de novo protein designers due to the simplicity of the active site and rapid rate of the reaction. The first reported mimic contained a Zn(II) bound to three histidine imidazole nitrogens and an exogenous water molecule, hence closely mimicking the native enzymes' first coordination sphere. Co(II) has served as an alternative metal to interrogate CAs due to its d7 electronic configuration for more detailed solution characterization. We present here the Co(II) substituted [Co(II)(H2O/OH-)]N(TRIL2WL23H)3 n+ that behaves similarly to native Co(II) substituted human-CAs. Like the Zn(II) analogue, the cobalt-derivative at slightly basic pH is incapable of hydrolyzing p-nitrophenylacetate (pNPA); however, as the pH is increased a significant activity develops, which at pH values above 10 eventually yields a catalytic efficiency that exceeds that of the [Zn(II)(OH-)]N(TRIL2WL23H)3 + peptide complex. X-ray absorption analysis is consistent with an octahedral species at pH 7.5 that converts to a 5-coordinate species by pH 11. UV-vis spectroscopy can monitor this transition, giving a pKa for the conversion of 10.3. We assign this conversion to the formation of a 5-coordinate Co(II)(Nimid)3(OH)(H2O) species. The pH dependent kinetic analysis indicates the maximal rate (kcat), and thus the catalytic efficiency (kcat/Km), follow the same pH profile as the spectroscopic conversion to the pentacoordinate species. This correlation suggests that the chemically irreversible ester hydrolysis corresponds to the rate determining process.


Assuntos
Anidrases Carbônicas , Cobalto , Esterases , Zinco , Zinco/química , Cobalto/química , Anidrases Carbônicas/química , Anidrases Carbônicas/metabolismo , Concentração de Íons de Hidrogênio , Humanos , Esterases/química , Esterases/metabolismo , Domínio Catalítico , Hidrólise , Complexos de Coordenação/química , Complexos de Coordenação/metabolismo , Cinética , Catálise , Nitrofenóis/química , Nitrofenóis/metabolismo
4.
Scand J Clin Lab Invest ; 84(4): 252-256, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38934461

RESUMO

Cerebrospinal fluid hypocretin-1 is proven to be a precise diagnostic marker of narcolepsy Type 1 (NT1). However other characteristics of cerebrospinal fluid and blood parameters have not yet been described. The objective of this study was to evaluate the differences in routine blood and cerebrospinal fluid analyses between NT1 patients and patients suspected of hypersomnia. We collected retrospectively all measures of cerebrospinal fluid hypocretin-1 between 2019 and 2022. This yielded 612 patients out of which 146 were diagnosed with NT1 and the rest (466 patients) were used as a control group. We selected the most relevant routine samples from both blood, plasma and cerebrospinal fluid and compared the two groups. The only significantly different analytes were plasma lactate dehydrogenase and cerebrospinal fluid hypocretin-1. No other differences were found between the groups including thyroid markers, markers of neuroendocrine function, inflammatory markers in blood or cerebrospinal fluid, markers of permeability of the blood brain barrier or metabolic markers in blood samples. We found no significant differences in routine blood or cerebrospinal fluid components, neuroendocrine function, neuroinflammation and metabolic markers. The results reflect that the hypocretin system does not seem to play a chronic major role in regulation of these markers. None of the parameters routinely measured in blood in these patients could differentiate between NT1 and non-NT1 disorders besides CSF-hcrt-1.


Assuntos
Biomarcadores , Narcolepsia , Orexinas , Humanos , Narcolepsia/líquido cefalorraquidiano , Narcolepsia/sangue , Narcolepsia/diagnóstico , Masculino , Feminino , Orexinas/líquido cefalorraquidiano , Orexinas/sangue , Adulto , Biomarcadores/sangue , Biomarcadores/líquido cefalorraquidiano , Pessoa de Meia-Idade , Estudos Retrospectivos , Adolescente , Adulto Jovem , L-Lactato Desidrogenase/sangue , L-Lactato Desidrogenase/líquido cefalorraquidiano , Estudos de Casos e Controles , Idoso
5.
Front Neuroendocrinol ; 66: 100993, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35283168

RESUMO

Physical exercise may improve cognitive function by modulating molecular and cellular mechanisms within the brain. We propose that the facilitation of long-term synaptic potentiation (LTP)-related pathways, by products induced by physical exercise (i.e., exerkines), is a crucial aspect of the exercise-effect on the brain. This review summarizes synaptic pathways that are activated by exerkines and may potentiate LTP. For a total of 16 exerkines, we indicated how blood and brain exerkine levels are altered depending on the type of physical exercise (i.e., cardiovascular or resistance exercise) and how they respond to a single bout (i.e., acute exercise) or multiple bouts of physical exercise (i.e., chronic exercise). This information may be used for designing individualized physical exercise programs. Finally, this review may serve to direct future research towards fundamental gaps in our current knowledge regarding the biophysical interactions between muscle activity and the brain at both cellular and system levels.


Assuntos
Potenciação de Longa Duração , Plasticidade Neuronal , Cognição , Exercício Físico/fisiologia , Hipocampo/fisiologia , Potenciação de Longa Duração/fisiologia , Plasticidade Neuronal/fisiologia
6.
Arterioscler Thromb Vasc Biol ; 42(2): 113-126, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34852642

RESUMO

OBJECTIVE: IGF-1 (insulin-like growth factor 1) exerts pleiotropic effects including promotion of cellular growth, differentiation, survival, and anabolism. We have shown that systemic IGF-1 administration reduced atherosclerosis in Apoe-/- (apolipoprotein E deficient) mice, and this effect was associated with a reduction in lesional macrophages and a decreased number of foam cells in the plaque. Almost all cell types secrete IGF-1, but the effect of macrophage-derived IGF-1 on the pathogenesis of atherosclerosis is poorly understood. We hypothesized that macrophage-derived IGF-1 will reduce atherosclerosis. Approach and Results: We created macrophage-specific IGF-1 overexpressing mice on an Apoe-/- background. Macrophage-specific IGF-1 overexpression reduced plaque macrophages, foam cells, and atherosclerotic burden and promoted features of stable atherosclerotic plaque. Macrophage-specific IGF1 mice had a reduction in monocyte infiltration into plaque, decreased expression of CXCL12 (CXC chemokine ligand 12), and upregulation of ABCA1 (ATP-binding cassette transporter 1), a cholesterol efflux regulator, in atherosclerotic plaque and in peritoneal macrophages. IGF-1 prevented oxidized lipid-induced CXCL12 upregulation and foam cell formation in cultured THP-1 macrophages and increased lipid efflux. We also found an increase in cholesterol efflux in macrophage-specific IGF1-derived peritoneal macrophages. CONCLUSIONS: Macrophage IGF-1 overexpression reduced atherosclerotic burden and increased features of plaque stability, likely via a reduction in CXCL12-mediated monocyte recruitment and an increase in ABCA1-dependent macrophage lipid efflux.


Assuntos
Apolipoproteínas E/genética , Aterosclerose/genética , Quimiocina CXCL12/sangue , Fator de Crescimento Insulin-Like I/genética , Macrófagos/metabolismo , Animais , Aterosclerose/sangue , Aterosclerose/patologia , Quimiocina CXCL12/análise , Feminino , Deleção de Genes , Humanos , Masculino , Camundongos , Camundongos Knockout , Ratos , Células THP-1 , Regulação para Cima
7.
Arterioscler Thromb Vasc Biol ; 42(6): 764-771, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35443795

RESUMO

BACKGROUND: To test the hypothesis that smooth muscle cell (SMC) TGF-ß (transforming growth factor beta) signaling contributes to maintenance of aortic structure and function beyond the early postnatal period. METHODS: We deleted the TBR2 (type 2 TGF-ß receptor) in SMC of 11-month-old mice (genotype Acta2-CreERT2+/0Tgfbr2f/f, termed TBR2SMΔ) and compared their ascending aorta structure and vasomotor function to controls (Acta2-CreERT20/0Tgfbr2f/f, termed TBR2f/f). RESULTS: We confirmed loss of aortic SMC TBR2 by immunoblotting. Four weeks after SMC TBR2 loss, TBR2SMΔ mice did not have aortic rupture, ulceration, dissection, dilation, or evidence of medial hemorrhage. However, aortic medial area of TBR2SMΔ mice was increased by 27% (0.14±0.01 versus 0.11±0.01 mm2; P=0.01) and medial thickness was increased by 23% (40±1.9 versus 33±1.3 µm; P=0.004) compared with littermate controls. Wire myography performed on ascending aortic rings showed hypercontractility of TBR2SMΔ aortas to phenylephrine (Emax, 15.9±1.2 versus 10.8±0.7 mN; P=0.0003) and reduced relaxation and sensitivity to acetylcholine (Emax, 64±14% versus 96±2%; P=0.001; -logEC50, 6.9±0.1 versus 7.7±0.1; P=0.0001). Neither maximal relaxation nor sensitivity to sodium nitroprusside differed (Emax, 102±0.3% versus 101±0.3%; -logEC50, 8.0±0.04 versus 7.9±0.08; P>0.4 for both). CONCLUSIONS: Loss of TGF-ß signaling in aortic SMC of 1-year-old mice does not cause early severe aortopathy or death; however, it causes mild structural and substantial physiological abnormalities. SMC TGF-ß signaling plays an important role in maintaining aortic homeostasis in older mice. This role should be considered in the design of clinical studies that aim to prevent aortopathy by blocking SMC TGF-ß signaling.


Assuntos
Músculo Liso Vascular , Fator de Crescimento Transformador beta , Animais , Aorta/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Proteínas Serina-Treonina Quinases , Receptores de Fatores de Crescimento Transformadores beta/genética , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
8.
Int J Mol Sci ; 24(23)2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38069380

RESUMO

Ongoing research is gradually broadening the idea of cancer treatment, with attention being focused on nanoparticles to improve the stability, therapeutic efficacy, targeting, and other important metrics of conventional drugs and traditional drug delivery methods. Studies have demonstrated that drug delivery carriers based on biomaterials (e.g., protein nanoparticles and lipids) and inorganic materials (e.g., metal nanoparticles) have potential anticancer effects. Among these carriers, self-assembled proteins and peptides, which are highly biocompatible and easy to standardize and produce, are strong candidates for the preparation of anticancer drugs. Breast cancer (BC) and cervical cancer (CC) are two of the most common and deadly cancers in women. These cancers not only threaten lives globally but also put a heavy burden on the healthcare system. Despite advances in medical care, the incidence of these two cancers, particularly CC, which is almost entirely preventable, continues to rise, and the mortality rate remains steady. Therefore, there is still a need for in-depth research on these two cancers to develop more targeted, efficacious, and safe therapies. This paper reviews the types of self-assembling proteins and peptides (e.g., ferritin, albumin, and virus-like particles) and natural products (e.g., soy and paclitaxel) commonly used in the treatment of BC and CC and describes the types of drugs that can be delivered using self-assembling proteins and peptides as carriers (e.g., siRNAs, DNA, plasmids, and mRNAs). The mechanisms (including self-assembly) by which the natural products act on CC and BC are discussed. The mechanism of action of natural products on CC and BC and the mechanism of action of self-assembled proteins and peptides have many similarities (e.g., NF-KB and Wnt). Thus, natural products using self-assembled proteins and peptides as carriers show potential for the treatment of BC and CC.


Assuntos
Produtos Biológicos , Neoplasias da Mama , Nanopartículas , Neoplasias do Colo do Útero , Feminino , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias do Colo do Útero/tratamento farmacológico , Peptídeos/uso terapêutico , Peptídeos/farmacologia , Proteínas/uso terapêutico , Sistemas de Liberação de Medicamentos/métodos , Portadores de Fármacos/uso terapêutico , Nanopartículas/uso terapêutico , Produtos Biológicos/uso terapêutico
9.
Int J Mol Sci ; 24(4)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36834843

RESUMO

The preparation of autologous platelet and extracellular vesicle-rich plasma (PVRP) has been explored in many medical fields with the aim to benefit from its healing potential. In parallel, efforts are being invested to understand the function and dynamics of PVRP that is complex in its composition and interactions. Some clinical evidence reveals beneficial effects of PVRP, while some report that there were no effects. To optimize the preparation methods, functions and mechanisms of PVRP, its constituents should be better understood. With the intention to promote further studies of autologous therapeutic PVRP, we performed a review on some topics regarding PVRP composition, harvesting, assessment and preservation, and also on clinical experience following PVRP application in humans and animals. Besides the acknowledged actions of platelets, leukocytes and different molecules, we focus on extracellular vesicles that were found abundant in PVRP.


Assuntos
Plasma Rico em Plaquetas , Humanos , Animais , Plaquetas , Cicatrização , Leucócitos
10.
HNO ; 71(5): 337-346, 2023 May.
Artigo em Alemão | MEDLINE | ID: mdl-37041304

RESUMO

Allergic rhinitis (AR) is a very common disease with a high prevalence worldwide. It is an IgE-mediated type 2 inflammatory disease following exposure to inhalant allergens. A multitude of different neuropeptides including substance P, vasoactive intestinal peptide (VIP), calcitonin gene-related peptide (CGRP), nerve growth factor (NGF), and neuromedin U (NMU) can be released via peripheral axon or central reflexes, interact with immune cells, and thus contribute to neurogenic inflammation which causes the nasal hyperreactivity (NHR) characteristic of AR. Independent production of neuroendocrine hormones and neuropeptides by immune cells has also been demonstrated. Neuro-immune cell units arise when immune and neuronal cells colocalize, for which typical anatomic regions are, e.g., the mast cell-nerve functional unit. The focus of this review is the elucidation of neuroimmune communication mechanisms in AR.


Assuntos
Neuropeptídeos , Rinite Alérgica , Humanos , Neuroimunomodulação , Neuropeptídeos/análise , Neuropeptídeos/fisiologia , Peptídeo Intestinal Vasoativo/análise , Peptídeo Intestinal Vasoativo/fisiologia , Peptídeo Relacionado com Gene de Calcitonina/análise , Peptídeo Relacionado com Gene de Calcitonina/fisiologia , Mucosa Nasal
11.
Circulation ; 144(15): 1227-1240, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34372689

RESUMO

BACKGROUND: Inflammation contributes to the pathogenesis of heart failure, but there is limited understanding of inflammation's potential benefits. Inflammatory cells secrete MYDGF (myeloid-derived growth factor) to promote tissue repair after acute myocardial infarction. We hypothesized that MYDGF has a role in cardiac adaptation to persistent pressure overload. METHODS: We defined the cellular sources and function of MYDGF in wild-type (WT), Mydgf-deficient (Mydgf-/-), and Mydgf bone marrow-chimeric or bone marrow-conditional transgenic mice with pressure overload-induced heart failure after transverse aortic constriction surgery. We measured MYDGF plasma concentrations by targeted liquid chromatography-mass spectrometry. We identified MYDGF signaling targets by phosphoproteomics and substrate-based kinase activity inference. We recorded Ca2+ transients and sarcomere contractions in isolated cardiomyocytes. Additionally, we explored the therapeutic potential of recombinant MYDGF. RESULTS: MYDGF protein abundance increased in the left ventricular myocardium and in blood plasma of pressure-overloaded mice. Patients with severe aortic stenosis also had elevated MYDGF plasma concentrations, which declined after transcatheter aortic valve implantation. Monocytes and macrophages emerged as the main MYDGF sources in the pressure-overloaded murine heart. While Mydgf-/- mice had no apparent phenotype at baseline, they developed more severe left ventricular hypertrophy and contractile dysfunction during pressure overload than WT mice. Conversely, conditional transgenic overexpression of MYDGF in bone marrow-derived inflammatory cells attenuated pressure overload-induced hypertrophy and dysfunction. Mechanistically, MYDGF inhibited G protein-coupled receptor agonist-induced hypertrophy and augmented SERCA2a (sarco/endoplasmic reticulum Ca2+-ATPase 2a) expression in cultured neonatal rat ventricular cardiomyocytes by enhancing PIM1 (Pim-1 proto-oncogene, serine/threonine kinase) expression and activity. Along this line, cardiomyocytes from pressure-overloaded Mydgf-/- mice displayed reduced PIM1 and SERCA2a expression, greater hypertrophy, and impaired Ca2+ cycling and sarcomere function compared with cardiomyocytes from pressure-overloaded WT mice. Transplanting Mydgf-/- mice with WT bone marrow cells augmented cardiac PIM1 and SERCA2a levels and ameliorated pressure overload-induced hypertrophy and dysfunction. Pressure-overloaded Mydgf-/- mice were similarly rescued by adenoviral Serca2a gene transfer. Treating pressure-overloaded WT mice subcutaneously with recombinant MYDGF enhanced SERCA2a expression, attenuated left ventricular hypertrophy and dysfunction, and improved survival. CONCLUSIONS: These findings establish a MYDGF-based adaptive crosstalk between inflammatory cells and cardiomyocytes that protects against pressure overload-induced heart failure.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Retículo Endoplasmático/fisiologia , Insuficiência Cardíaca/terapia , Interleucinas/uso terapêutico , Miócitos Cardíacos/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Interleucinas/farmacologia , Camundongos
12.
Ren Fail ; 44(1): 1649-1659, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36217673

RESUMO

BACKGROUND: Pigment epithelium-derived factor (PEDF) is a serin protease inhibitor and a potent inhibitor of angiogenesis. Its serum level has significant associations with metabolic parameters. However, little is known about the association between PEDF levels and lipid parameters in renal transplanted (TX) patients. Therefore, our aim was to investigate the relationship between PEDF level and lipid parameters in TX patients. METHODS: Seventy TX patients (47 males, 23 females, mean age 51.7 ± 12.4 years) and 34 healthy controls were enrolled. We examined the serum creatinine, C-reactive protein, fasting glucose and lipid parameters right before, then 1 and 6 months after TX. High-density lipoprotein (HDL)-associated paraoxonase-1 (PON1) activities were measured spectrophotometrically. Lipoprotein subfractions were determined by Lipoprint. PEDF and oxidized low-density liporotein (oxLDL) levels were measured by ELISA. RESULTS: Before transplantation, patients had had a significantly higher PEDF level compared to control subjects (p < 0.001). One month after transplantation, their PEDF level decreased significantly reaching the healthy controls' level, and this lower level was maintained during the 6 months follow-up period as well. The initial oxLDL level was significantly higher, while PON1 activities were significantly lower in the patient group compared to the control group. We found a significant positive correlation between PEDF and total cholesterol, low-density lipoprotein (LDL)-cholesterol, triglyceride, oxLDL and small HDL subfraction; while negative correlations were found between PEDF and mean LDL size and large HDL subfraction during the entire follow-up period. CONCLUSION: PEDF may play an important role in the increased oxidative stress and enhanced atherogenesis in renal transplant patients.


Assuntos
Falência Renal Crônica , Transplante de Rim , Serpinas , Adulto , Arildialquilfosfatase , Proteína C-Reativa , Colesterol , Creatinina , Proteínas do Olho , Feminino , Glucose , Humanos , Falência Renal Crônica/cirurgia , Lipoproteínas , Lipoproteínas HDL , Lipoproteínas LDL , Masculino , Pessoa de Meia-Idade , Fatores de Crescimento Neural , Triglicerídeos
13.
Molecules ; 27(19)2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36235175

RESUMO

Psoriasis is one of the most common inflammatory skin diseases affecting about 1-3% of the population. One of the characteristic abnormalities in psoriasis is the excessive production of antimicrobial peptides and proteins, which play an essential role in the pathogenesis of the disease. Antimicrobial peptides and proteins can be expressed differently in normal and diseased skin, reflecting their usefulness as diagnostic biomarkers. Moreover, due to their very important functions in innate immunity, members of host defense peptides and proteins are currently considered to be promising new therapeutic targets for many inflammatory diseases. Koebnerisin (S100A15) belongs to an S100 family of antimicrobial proteins, which constitute the multigenetic group of calcium-binding proteins involved in ion-dependent cellular functions and regulation of immune mechanisms. S100A15 was first discovered to be overexpressed in 'koebnerized' psoriatic skin, indicating its involvement in the disease phenotype and the same promising potential as a new therapeutic target. This review describes the involvement of antimicrobial peptides and proteins in inflammatory diseases' development and therapy. The discussion focuses on S100 proteins, especially koebnerisin, which may be involved in the underlying mechanism of the Köebner phenomenon in psoriasis, as well as other immune-mediated inflammatory diseases described in the last decade.


Assuntos
Doenças Autoimunes , Psoríase , Peptídeos Catiônicos Antimicrobianos/metabolismo , Doenças Autoimunes/tratamento farmacológico , Biomarcadores , Humanos , Psoríase/metabolismo , Proteína A7 Ligante de Cálcio S100 , Proteínas S100/genética , Proteínas S100/metabolismo
14.
Pharm Res ; 38(5): 915-930, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33881737

RESUMO

PURPOSE: To evaluate the effect of excipients, including sugars and amino acids, on photo-degradation reactions in pharmaceutical buffers induced by near UV and visible light. METHODS: Solutions of citrate or acetate buffers, containing 1 or 50 µM Fe3+, the model peptides methionine enkephalin (MEn), leucine enkephalin (LEn) or proctolin peptide (ProP), in the presence of commonly used amino acids or sugars, were photo-irradiated with near UV or visible light. The oxidation products were analyzed by reverse-phase HPLC and HPLC-MS/MS. RESULTS: The sugars mannitol, sucrose and trehalose, and the amino acids Arg, Lys, and His significantly promote the oxidation of peptide Met to peptide Met sulfoxide. These excipients do not increase the yields of hydrogen peroxide, suggesting that other oxidants such as peroxyl radicals are responsible for the oxidation of peptide Met. The addition of free Met reduces the oxidation of peptide Met, but, in citrate buffer, causes the addition of Met oxidation products to Tyr residues of the target peptides. CONCLUSIONS: Commonly used excipients enhance the light-induced oxidation of amino acids in model peptides.


Assuntos
Antioxidantes/química , Ácido Cítrico/química , Excipientes/química , Ferro/química , Peptídeos/química , Soluções Tampão , Armazenamento de Medicamentos , Concentração de Íons de Hidrogênio , Luz/efeitos adversos , Metionina/química , Oxirredução/efeitos da radiação , Peptídeos/efeitos da radiação , Peptídeos/uso terapêutico , Espectrometria de Massas em Tandem , Tirosina/química , Tirosina/efeitos da radiação , Raios Ultravioleta/efeitos adversos
15.
Genomics ; 112(6): 3991-3999, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32650091

RESUMO

The gastropod mollusk Limax flavus, one of the most widespread pests in China, is used to treat infectious diseases in traditional Chinese medicine. However, little genomic information is available for this non-model species. In this study, the whole-body transcriptome of L. flavus was sequenced using next generation sequencing technology. A total of 6.81 Gb clean reads were obtained, which were assembled into 150,766 transcripts with 132,206 annotated unigenes. Functionally classification assigned 30,542 unigenes to 56 Gene Ontology terms, 16,745 unigenes were divided into 26 euKaryotic Ortholog Groups of proteins categories, and 13,854 unigenes were assigned to 230 Kyoto Encyclopedia of Genes and Genomes pathways. Furthermore, we identified 17,251 simple sequence repeats and several kinds of antimicrobial peptide and protein (AMPs) genes. The transcriptome data of L. flavus will provide a valuable genomic resource for further studies on this species, and the AMPs identified in L. flavus will support its medical potential.


Assuntos
Moluscos/genética , Proteínas Citotóxicas Formadoras de Poros/farmacologia , Transcriptoma , Animais , Moluscos/metabolismo
16.
Circulation ; 139(2): 226-242, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30586702

RESUMO

BACKGROUND: Atherosclerotic occlusions decrease blood flow to the lower limbs, causing ischemia and tissue loss in patients with peripheral artery disease (PAD). No effective medical therapies are currently available to induce angiogenesis and promote perfusion recovery in patients with severe PAD. Clinical trials aimed at inducing vascular endothelial growth factor (VEGF)-A levels, a potent proangiogenic growth factor to induce angiogenesis, and perfusion recovery were not successful. Alternate splicing in the exon-8 of VEGF-A results in the formation of VEGFxxxa (VEGF165a) and VEGFxxxb (VEGF165b) isoforms with existing literature focusing on VEGF165b's role in inhibiting vascular endothelial growth factor receptor 2-dependent angiogenesis. However, we have recently shown that VEGF165b blocks VEGF-A-induced endothelial vascular endothelial growth factor receptor 1 (VEGFR1) activation in ischemic muscle to impair perfusion recovery. Because macrophage-secreted VEGF165b has been shown to decrease angiogenesis in peripheral artery disease, and macrophages were well known to play important roles in regulating ischemic muscle vascular remodeling, we examined the role of VEGF165b in regulating macrophage function in PAD. METHODS: Femoral artery ligation and resection were used as an in vivo preclinical PAD model, and hypoxia serum starvation was used as an in vitro model for PAD. Experiments including laser-Doppler perfusion imaging, adoptive cell transfer to ischemic muscle, immunoblot analysis, ELISAs, immunostainings, flow cytometry, quantitative polymerase chain reaction analysis, and RNA sequencing were performed to determine a role of VEGF165b in regulating macrophage phenotype and function in PAD. RESULTS: First, we found increased VEGF165b expression with increased M1-like macrophages in PAD versus non-PAD (controls) muscle biopsies. Next, using in vitro hypoxia serum starvation, in vivo pre clinical PAD models, and adoptive transfer of VEGF165b-expressing bone marrow-derived macrophages or VEGFR1+/- bone marrow-derived macrophages (M1-like phenotype), we demonstrate that VEGF165b inhibits VEGFR1 activation to induce an M1-like phenotype that impairs ischemic muscle neovascularization. Subsequently, we found S100A8/S100A9 as VEGFR1 downstream regulators of macrophage polarization by RNA-Seq analysis of hypoxia serum starvation-VEGFR1+/+ versus hypoxia serum starvation-VEGFR1+/- bone marrow-derived macrophages. CONCLUSIONS: In our current study, we demonstrate that increased VEGF165b expression in macrophages induces an antiangiogenic M1-like phenotype that directly impairs angiogenesis. VEGFR1 inhibition by VEGF165b results in S100A8/S100A9-mediated calcium influx to induce an M1-like phenotype that impairs ischemic muscle revascularization and perfusion recovery.


Assuntos
Calgranulina A/metabolismo , Calgranulina B/metabolismo , Células Endoteliais/metabolismo , Isquemia/metabolismo , Macrófagos/metabolismo , Músculo Esquelético/irrigação sanguínea , Neovascularização Fisiológica , Doença Arterial Periférica/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Sinalização do Cálcio , Células Cultivadas , Modelos Animais de Doenças , Células Endoteliais/patologia , Humanos , Isquemia/patologia , Isquemia/fisiopatologia , Macrófagos/patologia , Camundongos da Linhagem 129 , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Comunicação Parácrina , Doença Arterial Periférica/patologia , Doença Arterial Periférica/fisiopatologia , Fenótipo , Fator A de Crescimento do Endotélio Vascular/genética , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo
17.
Mol Pharm ; 17(11): 4163-4179, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-32986444

RESUMO

Near UV (λ = 320-400 nm) and visible light (λ = 400-800 nm) can lead to the oxidation of pharmaceutical proteins, which can affect efficiency and promote immunogenicity. However, no concise mechanism has been established for the photo-oxidation of pharmaceutical proteins under near UV and visible light. Here, we show that carboxylic acid buffer-Fe3+ complexes can function as photosensitizers, causing peptide degradation via the formation of various radicals and oxidants. Three pharmaceutical relevant carboxylic acid buffers (citrate, acetate, and succinate) were tested under near UV and visible light. Oxidation reactions were monitored for model peptides containing readily oxidizable amino acids, such as methionine- or leucine-enkephalin and proctolin peptide. Oxidation products were evaluated by RP-HPLC coupled to UV or fluorescent detection and RP-HPLC-MS/MS. Specifically for citrate buffer, the light-induced formation of H2O2, •OH, •CO2-, and formaldehyde was demonstrated. The peptides displayed oxidation of Met, hydroxylation of Tyr and Phe, as well as the formation of novel products from Tyr. Experiments with 18O2 resulted in the incorporation of 18O into various reaction products, consistent with a metal-catalyzed activation of O2 into reactive oxygen species. The addition of EDTA and DTPA did not prevent the oxidation of the peptides and, in some cases, enhanced the oxidation. Our results demonstrate that pharmaceutical buffer-Fe3+ complexes, exposed to UV and visible light, can promote various pathways of oxidation reactions in pharmaceutical formulations.


Assuntos
Encefalina Leucina/química , Encefalina Metionina/química , Compostos Férricos/química , Luz/efeitos adversos , Preparações Farmacêuticas/química , Fotólise/efeitos da radiação , Raios Ultravioleta/efeitos adversos , Acetatos/química , Soluções Tampão , Ácidos Carboxílicos/química , Cromatografia Líquida de Alta Pressão/métodos , Ácido Cítrico/química , Peróxido de Hidrogênio/química , Concentração de Íons de Hidrogênio , Oxirredução/efeitos da radiação , Fármacos Fotossensibilizantes/química , Ácido Succínico/química , Espectrometria de Massas em Tandem/métodos
18.
J Pathol ; 247(4): 471-480, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30471110

RESUMO

The costimulatory CD40L-CD40 dyad plays a major role in multiple sclerosis (MS). CD40 is highly expressed on MHCII+ B cells, dendritic cells and macrophages in human MS lesions. Here we investigated the role of the CD40 downstream signaling intermediates TNF receptor-associated factor 2 (TRAF2) and TRAF6 in MHCII+ cells in experimental autoimmune encephalomyelitis (EAE). Both MHCII-CD40-Traf2-/- and MHCII-CD40-Traf6-/- mice showed a reduction in clinical signs of EAE and prevented demyelination. However, only MHCII-CD40-Traf6-/- mice displayed a decrease in myeloid and lymphoid cell infiltration into the CNS that was accompanied by reduced levels of TNF-α, IL-6 and IFN-γ. As CD40-TRAF6 interactions predominantly occur in macrophages, we subjected CD40flfl LysMcre mice to EAE. This myeloid-specific deletion of CD40 resulted in a significant reduction in EAE severity, reduced CNS inflammation and demyelination. In conclusion, the CD40-TRAF6 signaling pathway in MHCII+ cells plays a key role in neuroinflammation and demyelination during EAE. Concomitant with the fact that CD40-TRAF6 interactions are predominant in macrophages, depletion of myeloid CD40 also reduces neuroinflammation. CD40-TRAF6 interactions thus represent a promising therapeutic target for MS. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Assuntos
Antígenos CD40/fisiologia , Encefalomielite Autoimune Experimental/imunologia , Macrófagos/imunologia , Transdução de Sinais/imunologia , Fator 6 Associado a Receptor de TNF/fisiologia , Animais , Autoanticorpos/metabolismo , Antígenos CD40/deficiência , Ligante de CD40/fisiologia , Citocinas/metabolismo , Feminino , Imunoglobulina G/imunologia , Camundongos Endogâmicos C57BL , Esclerose Múltipla/imunologia , Glicoproteína Mielina-Oligodendrócito/imunologia , Neurite (Inflamação)/imunologia
19.
Electrophoresis ; 40(18-19): 2618-2624, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31116449

RESUMO

This study reports a reinvestigation of background electrolyte selection strategy for performance improvement in CE-LIF of peptides and proteins. This strategy is based on the employment of high concentrations of organic species in BGE possessing high buffer capacity and low specific conductivity in order to ensure excellent stacking preconcentration and separation resolution of fluorescently tagged peptides and proteins. Unlike universal UV detection, the use of such BGEs at high concentrations does not lead to degradation of LIF detection signals at the working excitation and emission wavelengths. At the same buffer ionic strength, pH and electric field, an "inorganic-species-free" BGE (or ISF BGE) for CE-LIF of fluorescently labeled beta amyloid peptide Aß 1-42 (a model analyte) offered a signal intensity and peak efficiency at least three-times higher than those obtained with a conventional BGE normally used for CE-LIF, while producing an electric current twice lower. Good peak performance (in terms of height and shape) was maintained when using ISF BGEs even with samples prepared in high-conductivity phosphate buffer saline matrix. The advantageous features of such BGEs used at high concentrations over conventional ones in terms of high separation resolution, improved signal intensities, tuning of EOF magnitudes and minimization of protein adsorption on an uncoated fused silica capillary are demonstrated using Alexa-488-labelled trypsin inhibitor. Such BGE selection approach was applied for investigation of separation performance for CE-LIF of ovalbumin labelled with different fluorophores.


Assuntos
Eletroforese Capilar/métodos , Peptídeos/análise , Proteínas/análise , Eletrólitos , Peptídeos/química , Peptídeos/isolamento & purificação , Proteínas/química , Proteínas/isolamento & purificação , Reprodutibilidade dos Testes , Espectrometria de Fluorescência/métodos
20.
Anal Bioanal Chem ; 411(12): 2475-2479, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30888467

RESUMO

One-half of the 2018 Nobel Prize in Chemistry was awarded jointly to George P. Smith and Sir Gregory P. Winter "for the phage display of peptides and antibodies". This feature article summarizes significant achievements leading to the development of phage display of peptides and antibodies, where a bacteriophage is genetically modified to display peptides and proteins, with the primary aim of producing new biopharmaceuticals. These significant achievements are proven to be useful for the development of phage-based bioassays and biosensors.


Assuntos
Anticorpos/metabolismo , Técnicas de Visualização da Superfície Celular/métodos , Química , Prêmio Nobel , Peptídeos/metabolismo , Anticorpos/uso terapêutico , Biofarmácia , História do Século XXI
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA