Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(27): 15473-15481, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32571948

RESUMO

The development of sustainable methods for the degradation of pollutants in water is an ongoing critical challenge. Anthropogenic organic micropollutants such as pharmaceuticals, present in our water supplies in trace quantities, are currently not remediated by conventional treatment processes. Here, we report an initial demonstration of the oxidative degradation of organic micropollutants using specially designed nanoparticles and visible-wavelength sunlight. Gold "Janus" nanorods (Au JNRs), partially coated with silica to enhance their colloidal stability in aqueous solutions while also maintaining a partially uncoated Au surface to facilitate photocatalysis, were synthesized. Au JNRs were dispersed in an aqueous solution containing peroxydisulfate (PDS), where oxidative degradation of both simulant and actual organic micropollutants was observed. Photothermal heating, light-induced hot electron-driven charge transfer, and direct electron shuttling under dark conditions all contribute to the observed oxidation chemistry. This work not only provides an ideal platform for studying plasmonic photochemistry in aqueous medium but also opens the door for nanoengineered, solar-based methods to remediate recalcitrant micropollutants in water supplies.


Assuntos
Nanopartículas Metálicas/efeitos da radiação , Fotólise/efeitos da radiação , Luz Solar , Poluentes Químicos da Água/química , Poluição Química da Água/prevenção & controle , Ouro/química , Ouro/efeitos da radiação , Nanopartículas Metálicas/química , Nanotecnologia/métodos , Nanotubos/química , Nanotubos/efeitos da radiação , Compostos Orgânicos/química , Compostos Orgânicos/toxicidade , Oxirredução/efeitos da radiação , Dióxido de Silício/química , Dióxido de Silício/efeitos da radiação , Água/química , Poluentes Químicos da Água/toxicidade
2.
Toxics ; 12(3)2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38535940

RESUMO

Persulfate-based advanced oxidation process has been proven to be a promising method for the toxic pesticide chlorpyrifos (CPY) degradation in wastewater treatment. However, due to the limitation for the short-lived intermediates detection, a comprehensive understanding for the degradation pathway remains unclear. To address this issue, density functional theory was used to analyze the degradation mechanism of CPY at the M06-2X/6-311++G(3df,3pd)//M06-2X/6-31+G(d,p) level, and computational toxicology methods were employed to explore the toxicity of CPY and its degradation products. Results show that hydroxyl radicals (·OH) and sulfate radicals (SO4•-) initiate the degradation reactions by adding to the P=S bond and abstracting the H atom on the ethyl group, rather than undergoing α-elimination of the pyridine ring in the persulfate oxidation process. Moreover, the addition products were attracted and degraded by breaking the P-O bond, while the abstraction products were degraded through dealkylation reactions. The transformation products, including 3,5,6-trichloro-2-pyridynol, O,O-diethyl phosphorothioate, chlorpyrifos oxon, and acetaldehyde, obtained through theoretical calculations have been detected in previous experimental studies. The reaction rate constants of CPY with ·OH and SO4•- were 6.32 × 108 and 9.14 × 108 M-1·s-1 at room temperature, respectively, which was consistent with the experimental values of 4.42 × 109 and 4.5 × 109 M-1 s-1. Toxicity evaluation results indicated that the acute and chronic toxicity to aquatic organisms gradually decreased during the degradation process. However, some products still possess toxic or highly toxic levels, which may pose risks to human health. These research findings contribute to understanding the transformation behavior and risk assessment of CPY in practical wastewater treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA