Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Macromol Rapid Commun ; 45(19): e2400259, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39122477

RESUMO

The thermodynamic incompatibility between the soft and hard segments of thermoplastic polyurethane (TPU) results in a microphase-separated behavior and excellent mechanical properties. However, the effect of the chain extender on the degree of microphase separation (DMS) and the resultant mechanical properties of TPU have not been well studied because of the complex interactions between the soft and hard segments. Herein, hydroxyl-terminated polybutadiene-based TPUs(HTPB-TPUs) without hydrogen bonding between the soft and hard segments are synthesized using hydroxyl-terminated polybutadiene, toluene diisocyanate, and four different chain extenders, and the effect of the chain extender structure on DMS is analyzed experimentally using a combination of analytical techniques. Furthermore, the solubility parameters of the soft and hard segments, glass transition temperatures, and hydrogen-bond density of the HTPB-TPUs, are computed using all-atom molecular dynamics simulations. The results clearly reveal that the chain extender significantly affects the DMS and thus the mechanical properties of HTPB-TPUs. This study paves the way for studying the relationship between the structure and properties of TPU.


Assuntos
Butadienos , Elastômeros , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Poliuretanos , Poliuretanos/química , Butadienos/química , Elastômeros/química , Termodinâmica , Estrutura Molecular , Separação de Fases
2.
Macromol Rapid Commun ; 44(1): e2200404, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35750641

RESUMO

The current work presents the study of a semicrystalline, shape memory polymer synthesized by simultaneous free radical polymerization and crosslinking in a blend of polybutadiene (PB) and octadecyl acrylate. Blending elastomers and phase change materials provide a modular method for new smart materials, such as shape memory polymers. In this system, grafted, side-chain crystalline poly(octadecyl acrylate) (PODA) fixes a programmed shape in the shape memory cycle, while crosslinked polybutadiene drives shape recovery. This work focuses on improving material parameters important for shape memory (crystallinity, gel fraction, melting temperature) by tuning the processing and formulation parameters (amount of crosslinker and PB weight fraction). The result is a shape memory PB-PODA copolymer that can be fabricated by melt processing and programmed without cooling below ambient temperature. It is found that good shape memory (i.e., high shape fixity and recovery) is obtained at a low PB weight fraction where a percolating PODA crystal network is formed at room temperature. The optimized sample shows excellent shape memory properties (fixity > 99%, recovery = 96%). It is shown that it is possible to mold this material into complex 3D shapes or topography with potential use in anticounterfeiting and antitampering applications.


Assuntos
Elastômeros , Polímeros , Polímeros/química , Polimerização , Acrilatos/química
3.
Molecules ; 28(15)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37570756

RESUMO

The aim of this article is to compare rocket propellants containing a traditional binder (hydroxyl-terminated polybutadiene) and an energetic binder (glycidyl azide polymer), as well as a perchlorate oxidising agent and a "green" one, i.e., ammonium perchlorate and phase-stabilised ammonium nitrate. We have outlined the effects of individual substances on the sensitivity parameters and decomposition temperature of the produced solid propellants. The linear combustion velocity was determined using electrical methods. Heats of combustion for the propellant samples and the thermal decomposition features of the utilised binders were investigated via differential scanning calorimetry (DSC). Activation energy values for the energetic decomposition of the propellants were determined via the Kissinger method, based on DSC measurements at varied heating rates.

4.
Macromol Rapid Commun ; 42(11): e2100072, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33759273

RESUMO

A semi-crystalline, shape memory polymer (SMP) is fabricated by free radical cross-linking, polymerization, and grafting in a blend of n-octadecyl acrylate and polybutadiene (PB). Poly(n-octadecyl acrylate) (PODA) is a side-chain crystalline polymer, which serves as the structure-fixing network counterbalancing the elastically deformed, cross-linked polymer network. At a constant 50/50 ratio of monomer and polymer the amount of free radical initiator, dicumyl peroxide (DCP) is varied from 1% to 5% w/w PB. From swelling measurements and calculation of the cross-link density it is determined that DCP produces greater than one cross-link per DCP molecule. It is found that lower cross-linking efficiency is favorable for higher shape fixity. This lower efficiency is found to produce a higher degree of crystallinity of the PODA in the 2-5% DCP samples, which is determined to be the main driver of higher shape fixity of the polymer. A SMP with >90% fixity and 100% recovery at uniaxial strains from 34-79% is achieved. This material should be useful for mold processing of shape memory articles. This approach provides a method to decouple the elastomeric and thermoplastic portions of a SMP to convert commodity elastomers into SMPs and tailor the shape memory response.


Assuntos
Materiais Inteligentes , Acrilatos , Butadienos , Elastômeros , Radicais Livres , Polimerização
5.
Chemistry ; 26(68): 15835-15838, 2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-32734592

RESUMO

Chemical communication between macromolecules was studied by observing the controlled single chain collapse that ensues the exchange of a metal cross-linker between two polymer chains. The rhodium (I) organometallic cross-linker transfer from a low molecular weight collapsed polybutadiene to a larger polymer was followed using size exclusion chromatography. The increased effective molarity in the larger polymer seems to be the driving force for the metal migration. Thus, we demonstrate here a strategy for transferring a molecular signal that induces chain collapse of a polymer chain based on non-covalent interactions, mimicking biological behaviors reminiscent of signal transductions in proteins.


Assuntos
Nanopartículas , Polímeros , Substâncias Macromoleculares/química , Peso Molecular , Nanopartículas/química , Polímeros/química
6.
Molecules ; 24(12)2019 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-31234454

RESUMO

Two novel cobalt diphenylphosphine complexes were synthesized by reacting cobalt(II) chloride with tert-butyl(diphenyl)phosphine (PtBuPh2) and (S)-(+)neomenthyldiphenylphosphine [(S)-NMDPP]. The crystal structure of the former was determined by single-crystal X-ray diffraction studies. The two complexes were then used in combination with methylaluminoxane (MAO) for the polymerization of 1,3-butadiene: crystalline highly syndiotactic 1,2 poly(1,3-butadiene)s were obtained, with a 1,2 content and a syndiotactic index (percentage of syndiotactic triads [rr]) up to 95% and 85%, respectively. The results obtained further support and confirm what was already observed in the polymerization of 1,3-butadiene with CoCl2(PRPh2)2-MAO (R = methyl, ethyl, normal-propyl, iso-propyl, and cyclohexyl): the nature of the phosphine ligand strongly affects the polymerization stereoselectivity, the polymer syndiotacticity increasing with increasing phosphine ligand steric hindrance.


Assuntos
Butadienos/química , Cobalto/química , Complexos de Coordenação/síntese química , Fosfinas/química , Catálise , Complexos de Coordenação/química , Ligantes , Modelos Moleculares , Estrutura Molecular , Polimerização
7.
Angew Chem Int Ed Engl ; 58(49): 17777-17781, 2019 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-31571376

RESUMO

Functionalized aluminum alkyls enable effective coordinative chain transfer polymerization with selective chain initiation by the functionalized alkyl. (ω-Aminoalkyl)diisobutylaluminum reagents (12 examples studied) obtained by hydroalumination of α-amino-ω-enes with diisobutylaluminum hydride promote the stereoselective catalytic chain growth of butadiene on aluminum in the presence of Nd(versatate)3 , Cp*2 Nd(allyl), or Cp*2 Gd(allyl) precatalysts and [PhNMe2 H+ ]/[B(C6 F5 )4 - ]. Carbazolyl- and indolylaluminum reagents result in efficient molecular weight control and chain initiation by the aminoalkyl rather than the isobutyl substituent bound to aluminum. As confirmed for (3-(9H-carbazol-9-yl)propyl)-initiated polybutadiene (PBD), for example, by deuterium quenching studies, polymer chain transfer by ß-hydride transfer is negligible in comparison to back-transfer to aluminum.

8.
Macromol Rapid Commun ; 38(22)2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29024134

RESUMO

(Bis)furan-telechelic, low-molar-mass polybutadienes and polyisoprenes are synthesized by controlled degradation of high molar mass polymers and chain-end modifications yielding difunctional, trifunctional, or tetrafunctional polymers. Addition of a bismaleimide to the liquid-modified polymer leads to the formation of a thermoreversible elastomeric network based on the Diels-Alder chemistry for the trifunctional or tetrafunctional polymers, whereas only chain extension occurs for the bifunctional one. Dynamic mechanical analyses or tensile tests are performed on the networks and reveal a similar behavior for polyisoprene and polybutadiene with nevertheless quite different Young modulus or strain at break. The retro Diels-Alder reaction occurs upon heating, allowing the remolding of the used elastomer. The remolded network exhibits the same mechanical properties as the initial network, showing an efficient material recyclability.


Assuntos
Butadienos/química , Elastômeros/química , Reação de Cicloadição , Módulo de Elasticidade , Elastômeros/síntese química , Furanos/química , Maleimidas/química , Resistência à Tração
9.
Sensors (Basel) ; 16(3)2016 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-26999148

RESUMO

Poly(dimethylsiloxane-ethylene oxide) (PDMS-PEO) and poly(butadiene-b-ethylene oxide) (PBd-PEO) are two block copolymers which separately form vesicles with disparate membrane permeabilities and fluidities. Thus, hybrid vesicles formed from both PDMS-PEO and PBd-PEO may ultimately allow for systematic, application-specific tuning of vesicle membrane fluidity and permeability. However, given the relatively low strength previously noted for comb-type PDMS-PEO vesicles, the mechanical robustness of the resulting hybrid vesicles must first be confirmed. Toward this end, we have characterized the mechanical behavior of vesicles formed from mixtures of linear PDMS-PEO and linear PBd-PEO using micropipette aspiration. Tension versus strain plots of pure PDMS12-PEO46 vesicles revealed a non-linear response in the high tension regime, in contrast to the approximately linear response of pure PBd33-PEO20 vesicles. Remarkably, the area expansion modulus, critical tension, and cohesive energy density of PDMS12-PEO46 vesicles were each significantly greater than for PBd33-PEO20 vesicles, although critical strain was not significantly different between these vesicle types. PDMS12-PEO46/PBd33-PEO20 hybrid vesicles generally displayed graded responses in between that of the pure component vesicles. Thus, the PDMS12-PEO46/PBd33-PEO20 hybrid vesicles retained or exceeded the strength and toughness characteristic of pure PBd-PEO vesicles, indicating that future assessment of the membrane permeability and fluidity of these hybrid vesicles may be warranted.

10.
Macromol Rapid Commun ; 36(24): 2137-42, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26461063

RESUMO

For the first time, polybutadiene is separated according to microstructure using solvent gradient interaction chromatography (SGIC). Superior separation of polybutadienes having different microstructures is obtained on a silica-based reversed stationary phase and a mobile phase of acetone-hexane. This SGIC system enables the baseline separation of 1,2-polybutadienes and 1,4-polybutadienes even in cases where the samples have similar molar masses. 2D liquid chromatography is performed with the SGIC method separating according to microstructure in the first dimension coupled to size exclusion chromatography separating according to molar mass in the second dimension, thus providing comprehensive information on both microstructure and molar mass.


Assuntos
Butadienos/química , Elastômeros/química , Cromatografia Líquida
11.
Macromol Rapid Commun ; 35(21): 1846-51, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25220541

RESUMO

For the first time, it is demonstrated that thermal field-flow fractionation (ThFFF) is an efficient tool for the fractionation of polyisoprene (PI) and polybutadiene (PB) with regard to molecular microstructure. ThFFF analysis of 1,4- and 3,4-PI as well as 1,4- and 1,2-PB samples in tetrahydrofuran (THF), THF/cyclohexane, and cyclohexane reveals that isomers of the same polymer family having similar molar masses exhibit different Soret coefficients depending on microstructure for each solvent. The separation according to microstructure is found to be based on the cooperative influence of the normal and the thermal diffusion coefficient. Of the three solvents, cyclohexane has the greatest influence on the fractionation of the isomers. In order to determine the distribution of isomeric structures in the PI and PB samples, the samples are fractionated by ThFFF in cyclohexane and subsequently analyzed by (1) H NMR. The isomeric distributions determined from NMR data correlate well with ThFFF retention data of the samples and thus further highlight the unique fractionating capabilities of ThFFF. The interplay of the normal and thermal diffusion coefficients that are influenced by temperature and the mobile phase opens the way to highly selective fractionations without the drawbacks of column-based separation methods.


Assuntos
Butadienos/química , Elastômeros/química , Fracionamento por Campo e Fluxo/métodos , Hemiterpenos/química , Pentanos/química , Polímeros/química , Butadienos/isolamento & purificação , Cicloexanos/química , Elastômeros/isolamento & purificação , Fracionamento por Campo e Fluxo/instrumentação , Furanos/química , Hemiterpenos/isolamento & purificação , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Pentanos/isolamento & purificação , Polímeros/isolamento & purificação , Reprodutibilidade dos Testes , Solventes/química , Temperatura
12.
Polymers (Basel) ; 16(5)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38475260

RESUMO

This study delves into the rheological and mechanical properties of a 3D-printable composite solid propellant with 80% wt solids loading. Polybutadiene is used as a binder with ammonium sulfate, which is added as an inert replacement for the ammonium perchlorate oxidizer. Further additives are introduced to allow for UV curing. An in-house illumination system made of four UV-A LEDs (385 nm) is employed to cure the resulting slurry. Rheological and mechanical tests are conducted to evaluate the viscosity, ultimate tensile strength and strain, and compression behavior. Viscosity tests are performed for both pure resin and complete propellant composition. A viscosity reduction factor is obtained for the tested formulations when pre-heating slurry. Uniaxial tensile and compression tests reveal that the mechanical properties are consistent with previous research. Results emphasize the critical role of temperature and solid loading percentage. Pre-heating resin composites may grant a proper viscosity reduction while keeping mechanical properties in the applicability range. Overall, these findings pave the way for the development of a 3D printer prototype for composite solid propellants.

13.
Ultrason Sonochem ; 104: 106827, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38412678

RESUMO

It is of great significance to prepare liners with excellent inhibition of energetic plasticizer migration and gas barrier properties. Here, we have successfully prepared magnetic iron oxide decorated reduced-graphene-oxide nanosheets (MRGO) by using ultrasound-assisted method. The obtained MRGO nanosheet-fillers were filled into hydroxyl-terminated polybutadiene (HTPB) which was exposed to a magnetic field (200 mT) to achieve ordered orientation of MRGO in the HTPB matrix (Ordered MRGO/HTPB). The laser confocal microscopy demonstrates that MRGO exhibit ordered orientation structure in HTPB matrix with good dispersion, which renders the HTPB composite liners exhibiting high gas and plasticizer barrier capability, with a reduction of 18.9 % in water vapor permeability and a decrease of 14.1 % in dibutyl phthalate (DBP) migration equilibrium concentration as compared with those of random MRGO embedded HTPB composite liners (Random MRGO/HTPB). Moreover, a theoretical model accounting for such enhanced gas/plasticizer barrier performance of HTPB due to the implantation of order aligned MRGO was established, which shows that the effective diffusion pathways of plasticizer/gas for liner penetration would be significantly enhanced when the MRGO nanosheets are oriented within the HTPB matrix. This work provides an effective and facile strategy toward the design and development of composite liners with high plasticizer/gas barrier performance for industrial applications.

14.
ACS Appl Mater Interfaces ; 16(8): 10427-10438, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38375854

RESUMO

Capture and real-time recording of precise body movements using strain sensors provide personal information for healthcare monitoring and management. To acquire this information, a sensor that conforms to curved irregular surfaces, including biological tissue, is desired to record complex body movements while acting like a second skin to avoid interference with the movements. In this study, we developed a thin-film-type capacitive strain sensor that is flexible and stretchable on the surface of a living body. We fabricated conductive polymeric ultrathin films ("nanosheets") comprising polystyrene-block-polybutadiene (SB) elastomers and single-walled carbon nanotubes (SWCNTs) (i.e., SWCNT-SB nanosheets) via gravure coating; the SWCNT-SB-coated nanosheets were used as the flexible electrode in a capacitive strain sensor. The dielectric (DE) layer was then prepared using the silicone elastomer Ecoflex 00-30 because its Young's modulus is comparable to that of the epidermis. The normalized capacitance changes (ΔC/C0) in the sensor increased with increasing tensile strain over a range from 0-100%, indicating that the proposed sensor can measure the strain of biological movements, including those of skin and blood vessels. To improve sensor conformability further, the effect of sensor thickness on the gauge factor (GF) was investigated using thinner DE layers by focusing on their flexural rigidity. As a result, the GF increased from 0.64 to 1.13 as the DE layer thickness decreased from 260 to 40 µm. Finally, we evaluated the fabricated sensor's signal stability and mechanical durability, including during wireless sensing when applied to human skin and a vascular model. The ΔC/C0 values varied in response to the bending motion of a finger, dilation of a blood vessel, and the swallowing movement of the throat. These results indicate that our capacitive strain sensor is conformable and functional on biological tissue to enable monitoring of dynamic biological movements (e.g., pulse rate and arterial dilation) without wearer discomfort.


Assuntos
Nanotubos de Carbono , Dispositivos Eletrônicos Vestíveis , Humanos , Nanotubos de Carbono/química , Módulo de Elasticidade , Movimento , Movimento (Física)
15.
Polymers (Basel) ; 16(8)2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38675091

RESUMO

A series of well-defined diblock copolymers, namely, 3,4-polyisoprene-block-syndiotactic-1,2-polybutadiene (3,4-PI-b-s-1,2-PBD), with a soft-hard block sequence were synthesized via an in situ sequential polymerization process using a robust iron-based catalytic system Fe(acac)3/(isocyanoimino) triptenylphosphorane (IITP)/AliBu3. This catalyst exhibits vigorous activity and temperature tolerance, achieving a polymerization activity of 5.41 × 106 g mol(Fe)-1 h-1 at 70 °C with a [IP]/[Fe] ratio of 15,000. Moreover, the quasi-living polymerization characteristics of the catalyst were verified through kinetic experiments. The first-stage polymerization of isoprene (IP) is performed at 30 °C to give a soft 3,4-PI block, and then a quantitative amount of 1,3-butadiene was added in situ to the quasi-living polymerization system to produce a second hard s-1,2-PBD. The s-1,2-PBD segments in block copolymers display a rodlike morphology contrasting with the spherulitic morphology characteristic of s-1,2-PBD homopolymers. The precise tunability of the length of the soft and hard chain segments of these novel elastic materials with the feed ratio of IP and BD, endowing them with outstanding mechanical properties and excellent dynamic mechanical properties, which are expected to be promising high-performance rubber materials.

16.
Polymers (Basel) ; 16(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38732717

RESUMO

In recent years, a great deal of work has been devoted to the development of thermoresponsive polymers that can be made into new types of smart materials. In this paper, a branched polymer, HTPB-g-(PNIPAM/PEG), with polyolefin chain segments as the backbone and having polyethylene glycol (PEG) and poly(N-isopropylacrylamide) (PNIPAM) as side chains was synthesized by ATRP and click reactions using N3-HTPB-Br as the macroinitiator. This initiator was designed and synthesized using hydroxyl-terminated polybutadiene (HTPB) as the substrate. The temperature-responsive behavior of the branched polymer was investigated. The lower critical solution temperature (LCST) of the branched polymer was determined by ultraviolet and visible spectrophotometry (UV-vis) and was found to be 35.2 °C. The relationship between the diameter size of micelles and temperature was determined by dynamic light scattering (DLS). It was found that the diameter size changed at 36 °C, which was nearly consistent with the result obtained by UV-vis. The results of the study indicate that HTPB-g-(PNIPAM/PEG) is a temperature-responsive polymer. At room temperature, the polymer can self-assemble into composite micelles, with the main chain as the core and the branched chain as the shell. When the temperature was increased beyond LCST, the polyolefin main chain along with the PNIPAM branched chain assembled to form the nucleus, and the PEG branched chain constituted the shell.

17.
Polymers (Basel) ; 16(3)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38337272

RESUMO

The thermal conductivities and glass transition temperatures of polybutadiene crosslinked with randomly distributed sulfur chains having different lengths from mono-sulfur (S1) to octa-sulfur (S8) were investigated. The thermal conductivities of the related models as a function of the heat flux autocorrelation function, applying an equilibrium molecular dynamic (EMD) simulation and the Green-Kubo method, were studied for a wide range of temperatures. The influence of the length of sulfur chains, degree of crosslinking, and molar mass of the crosslinker on the glass transition temperature and final values of thermal conductivities were studied. First, the degree of crosslinking is considered constant for the eight simulation models, from mono-sulfur (S1) to octa-sulfur (S8), while the molar mass of the sulfur is increases. The results show that the thermal conductivities of the crosslinked structure decrease with increasing temperature for each model. Moreover, by increasing the lengths of the sulfur chains and the molar weight of the crosslinker, thermal conductivity increases at a constant temperature. The MD simulation demonstrates that the glass transition temperature and density of the crosslinked structure enhance as the length of the sulfur chains and molar mass of the sulfur increase. Second, the molar weight of sulfur is considered constant in these eight models; therefore, the degree of crosslinking decreases with the increase in the lengths of the sulfur chains. The results show that the thermal conductivities of the crosslinked structure decrease with the increase in the temperature for each model. Moreover, by increasing the lengths of sulfur chains and thus decreasing the degree of crosslinking, the trend in changes in thermal conductivities are almost the same for all of these models, so thermal conductivity is constant for a specific temperature. In addition, the glass transition temperature and density of the crosslinked structure decrease.

18.
J Mol Model ; 29(8): 249, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37452231

RESUMO

CONTEXT: As a result of the diversity of microstructures encountered in cis-1,4-polybutadiene and the variety of measurement methods used, experimental values of variation of glass transition temperature (Tg) with pressure are relatively dispersed. However, atomistic simulations enable access to valuable information for very well-controlled chemistry and structures with a well-defined and systematic acquisition protocol. By varying the temperature and pressure, the specific volume of the melt was computed, yielding results that deviated by only 2% from experimental data. A linear relationship between Tg and pressure was observed, with Tg predicted to be 162 K at zero pressure and a rate of change of Tg with respect to pressure (dTg/dP) of 0.24 K/MPa. METHOD: The atomistic dilatometry experiments were conducted on a model of amorphous cis-1,4 polybutadiene with an approximate molecular weight of 5400 g/mol using the LAMMPS code and the all-atom forcefield pcff + . The dilatometry process involved cooling and heating at a rate of 9 × 1012 K/min. The specific volume was calculated by averaging over seven independent configurations for each temperature. The Tait equation was employed to fit the specific volume evolution within the temperature range of 10 to 700 K under different pressures of 0, 60, and 100 MPa.


Assuntos
Elastômeros , Temperatura de Transição , Temperatura , Transição de Fase
19.
Polymers (Basel) ; 15(16)2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37631543

RESUMO

In this paper, the effects of HTPBs with different main-chain microstructures on their triblock copolymers and polyurethane properties were investigated. Three polyether-modified HTPB triblock copolymers were successfully synthesized via a cationic ring-opening copolymerization reaction using three HTPBs with different microstructures prepared via three different polymerization methods as the macromolecular chain transfer agents and tetrahydrofuran (THF) and propylene oxide (PO) as the copolymerization monomers. Finally, the corresponding polyurethane elastomers were prepared using the three triblock copolymers as soft segments and toluene diisocyanate (TDI) as hard segments. The results of an analysis of the triblock copolymers showed that the triblock copolymers had lower viscosity and glass transition temperature (Tg) values as the HTPB 1,2 structure content decreased, although the effect on the thermal decomposition temperature was not significant. An analysis of the polyurethane elastomers revealed that as the content of the 1,2 structure in HTPB increased, its corresponding polyurethane elastomers showed a gradual increase in breaking strength and a gradual decrease in elongation at break. In addition, PU-1 had stronger crystallization properties compared to PU-2 and PU-3. However, the differences in the microstructures of the HTPBs did not seem to have much effect on the surface properties of the polyurethane elastomers.

20.
Polymers (Basel) ; 15(6)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36987221

RESUMO

This work develops a probability-based numerical method for quantifying mechanical properties of non-Gaussian chains subject to uniaxial deformation, with the intention of being able to incorporate polymer-polymer and polymer-filler interactions. The numerical method arises from a probabilistic approach for evaluating the elastic free energy change of chain end-to-end vectors under deformation. The elastic free energy change, force, and stress computed by applying the numerical method to uniaxial deformation of an ensemble of Gaussian chains were in excellent agreement with analytical solutions that were obtained with a Gaussian chain model. Next, the method was applied to configurations of cis- and trans-1,4-polybutadiene chains of various molecular weights that were generated under unperturbed conditions over a range of temperatures with a Rotational Isomeric State (RIS) approach in previous work (Polymer2015, 62, 129-138). Forces and stresses increased with deformation, and further dependences on chain molecular weight and temperature were confirmed. Compression forces normal to the imposed deformation were much larger than tension forces on chains. Smaller molecular weight chains represent the equivalent of a much more tightly cross-linked network, resulting in greater moduli than larger chains. Young's moduli computed from the coarse-grained numerical model were in good agreement with experimental results.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA