Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mikrochim Acta ; 190(10): 403, 2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37728643

RESUMO

An unsophisticated fluorescence-enabled strategy is brought forward to process the highly sensitive fluorescence detection of Salmonella typhimurium (S. typhimurium) which based on polyethyleneimine (PEI)-templated silver/copper nanoclusters (Ag/CuNCs) (λ excitation = 334 nm and λ emission = 466 nm) with cryonase-assisted target recycling amplification. The Ag/CuNCs nanoclusters are synthesized as fluorescent materials due to their strong and stable fluorescence characteristics and are modified with S. typhimurium aptamers to form aptamer-Ag/CuNCs probes. The probes can be adsorbed on the surface of quenching agents-polydopamine nanospheres (PDANSs), thereby inducing fluorescence quenching of the probes. Once the aptamers are bound to the target, the aptamers/targets complexes are separated from the PDANSs surface, and the Ag/CuNCs recover the fluorescence signal. The released complexes will immediately be transformed into a substrate digested by cryonase (an enzyme that can digest all types of nucleic acids), and the released targets are bound to another aptamers to initiate the next round of cleavage. This reaction will be repeated continuously until all relevant aptamers are consumed and all Ag/CuNCs are released, resulting in a significant amplification of the fluorescence signal and improved sensitivity. Using Ag/CuNCs as fluorescent probes combined with cryonase-assisted amplification strategy, the fluorescence aptasensor is constructed with detection limits as low as 3.8 CFU mL-1, which is tenfold better than without the cryonase assistance. The method developed has been applied to milk, orange juice, chicken, and egg white samples with excellent selectivity and accuracy providing an approach for the early and rapid detection of S. typhimurium in food.


Assuntos
Cobre , Salmonella typhimurium , Animais , Prata , Galinhas , Corantes Fluorescentes , Oligonucleotídeos
2.
ACS Sens ; 5(4): 1119-1125, 2020 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-32192327

RESUMO

Matrix metalloproteinase-9 (MMP-9) and matrix metalloproteinase-2 (MMP-2) play important roles in the progression of renal interstitial fibrosis (RIF). There is an increasing demand to construct a novel method for the simultaneous detection of MMP-9 and MMP-2 to monitor the progression of RIF. Herein, a strategy based on the nanoplatform composed of the polydopamine nanosphere and fluorescence-labeled aptamers is developed to simultaneously detect MMP-9 and MMP-2 with DNase-I-assisted recycling signal amplification. In the light of tracing the recovered fluorescence intensity at 520 and 610 nm upon adding MMP-9 and MMP-2, the increased fluorescence intensity is linear to the different concentrations of MMP-9 and MMP-2 with the detection limits of 9.6 and 25.6 pg/mL for MMP-9 and MMP-2, respectively. More intriguingly, the results of unilateral ureteral obstruction mice show that the concentration of MMP-9 in urine is increased with the extension of ligation time while the concentration of MMP-2 is reversed, indicating that the ratio of MMP-9 to MMP-2 could be considered as the potential urinary biomarker to evaluate the progress of RIF and the therapeutic effect of Huangkui capsule on RIF. Therefore, this study provides a paradigmatic strategy for the simultaneous detection of the dual markers of RIF, which is promising for the auxiliary clinical diagnosis and assessment of the prognosis of chronic kidney disease.


Assuntos
Desoxirribonuclease I/genética , Indóis/química , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Nanosferas/química , Polímeros/química , Insuficiência Renal Crônica/genética , Animais , Humanos , Masculino , Camundongos
3.
Talanta ; 180: 271-276, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29332810

RESUMO

5'-Polynucleotide kinase (PNK) is a crucial enzyme that catalyzes the phosphorylation of nucleic acid with 5'-OH termini and this phosphorylation reaction has been involved in many important cellular activities. The evaluation of PNK activity has received an increasing attention due to the significance of PNK. Here, the polydopamine nanospheres (PDANS) could adsorb single-stranded DNA (ssDNA) through π-π stacking or hydrogen bonding between nucleobases and aromatic groups of PDANS, while the interaction between double-stranded DNA (dsDNA) with PDANS was weakened due to the changed conformation. Hence, a novel DNA/PDANS platform was constructed for the sensitive and selective determination of T4 PNK activity based on the preferential binding properties of PDANS for ssDNA over dsDNA and the excellent fluorescence quenching property of PDANS. The dye-labeled dsDNA was phosphorylated by T4 PNK and then digested by λ exonuclease, yielding dye-labeled ssDNA, which would be adsorbed on the surface of the PDANS and the fluorescence was greatly quenched by PDANS. Because of the preferential binding properties of PDANS for ssDNA over dsDNA and the high quenching property of PDANS, the developed DNA/PDANS platform exhibited good analytical performance for T4 PNK sensing in complex biological matrix and applied to screening inhibitors. The proposed DNA/PDANS based platform is promising in developing high-throughput assays for drug screening and clinical diagnostics.


Assuntos
Bacteriófago T4/enzimologia , DNA/química , Indóis/química , Nanosferas/química , Polímeros/química , Polinucleotídeo 5'-Hidroxiquinase/antagonistas & inibidores , Polinucleotídeo 5'-Hidroxiquinase/metabolismo , Espectrometria de Fluorescência/métodos , Bacteriófago T4/efeitos dos fármacos , Técnicas Biossensoriais/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Ensaios Enzimáticos/métodos , Inibidores Enzimáticos/farmacologia , Nanosferas/ultraestrutura , Polinucleotídeo 5'-Hidroxiquinase/análise
4.
ACS Appl Mater Interfaces ; 9(2): 1322-1330, 2017 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-27990820

RESUMO

Molecular logic devices with various functions play an indispensable role in molecular data transmission/processing. However, during any kinds of data transmission, a constant and unavoidable circumstance is the appearance of bit errors, which have serious effects on the regular logic computation. Fortunately, these errors can be detected via plugging a parity generator (pG) at the transmitting terminal and a parity checker (pC) at the receiving terminal. Herein, taking advantage of the efficient adsorption/quenching ability of polydopamine nanospheres toward fluorophore-labeled single-stranded DNA, we explored this biocompatible nanomaterial to DNA logic computation and constructed the first simple, enzyme-free, and G-quadruplex-free DNA pG/pC for error detection through data transmission. Besides, graphene oxide (GO) was innovatively introduced as the "corrective element" to perform the output-correction function of pC. All the erroneous outputs were corrected to normal conditions completely, ensuring the regular operation of later logic computing. The total operation of this non-G4 pG/pC system (error checking/output-correction) could be completed within 1 h (about 1/3 of previous G4 platform) in a simpler and more efficient way. Notably, the odd pG/pC with analogous functions was also achieved through negative logic conversion to the fabricated even one. Furthermore, the same system could also perform three-input concatenated logic computation (XOR-INHIBIT), enriching the complexity of PDs-based logic computation.


Assuntos
Nanosferas , DNA , Quadruplex G , Indóis , Polímeros
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA