Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 17(9)2016 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-27589724

RESUMO

The introduction of multigene constructs into single cells is important for improving the performance of domestic animals, as well as understanding basic biological processes. In particular, multigene constructs allow the engineering and integration of multiple genes related to xenotransplantation into the porcine genome. The piggyBac (PB) transposon system allows multiple genes to be stably integrated into target genomes through a single transfection event. However, to our knowledge, no attempt to introduce multiple genes into a porcine genome has been made using this system. In this study, we simultaneously introduced seven transposons into a single porcine embryonic fibroblast (PEF). PEFs were transfected with seven transposons containing genes for five drug resistance proteins and two (red and green) fluorescent proteins, together with a PB transposase expression vector, pTrans (experimental group). The above seven transposons (without pTrans) were transfected concomitantly (control group). Selection of these transfected cells in the presence of multiple selection drugs resulted in the survival of several clones derived from the experimental group, but not from the control. PCR analysis demonstrated that approximately 90% (12/13 tested) of the surviving clones possessed all of the introduced transposons. Splinkerette PCR demonstrated that the transposons were inserted through the TTAA target sites of PB. Somatic cell nuclear transfer (SCNT) using a PEF clone with multigene constructs demonstrated successful production of cloned blastocysts expressing both red and green fluorescence. These results indicate the feasibility of this PB-mediated method for simultaneous transfer of multigene constructs into the porcine cell genome, which is useful for production of cloned transgenic pigs expressing multiple transgenes.


Assuntos
Elementos de DNA Transponíveis/genética , Técnicas de Transferência de Genes , Técnicas de Transferência Nuclear , Porco Miniatura/genética , Transgenes , Animais , Blastocisto/metabolismo , Resistência a Medicamentos/genética , Feminino , Vetores Genéticos/genética , Proteínas de Fluorescência Verde/genética , Gravidez , Suínos
2.
Xenotransplantation ; 21(3): 291-300, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24919525

RESUMO

BACKGROUND: The recent development of the type II clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system has enabled genome editing of mammalian genomes including those of mice and human; however, its applicability and efficiency in the pig have not been studied in depth. Here, using the CRISPR/Cas9 system, we aimed to destroy the function of the porcine α-1,3-galactosyltransferase (α-GalT) gene (GGTA1) whose product is responsible for the synthesis of the α-Gal epitope, a causative agent for hyperacute rejection upon pig-to-human xenotransplantation. METHODS: Porcine embryonic fibroblasts were transfected with a Cas9 expression vector and guide RNA specifically designed to target GGTA1. At 4 days after transfection, the cells were incubated with IB4 conjugated with saporin (IB4SAP), which eliminates α-Gal epitope-expressing cells. Therefore, the cells surviving after IB4SAP treatment would be those negative for α-Gal epitope expression, which in turn indicates the generation of GGTA1 biallelic knockout (KO) cells. RESULTS: Of the 1.0 × 10(6) cells transfected, 10-33 colonies survived after IB4SAP treatment, and almost all colonies (approximately 90%) were negative for staining with red fluorescence-labeled IB4. Sequencing of the mutated portion of GGTA1 revealed a frameshift of the α-GalT protein. Porcine blastocysts derived from the somatic cell nuclear transfer of these α-Gal epitope-negative cells also lacked the α-Gal epitope on their surface. CONCLUSIONS: These results demonstrated that the CRISPR/Cas9 system can efficiently induce the biallelic conversion of GGTA1 in the resulting somatic cells and is thus a promising tool for the creation of KO cloned piglets.


Assuntos
Animais Geneticamente Modificados , Sistemas CRISPR-Cas/genética , Fibroblastos , Galactosiltransferases/genética , Técnicas de Inativação de Genes , Suínos/genética , Animais , Linhagem Celular , Marcadores Genéticos , Masculino
3.
Sci China Life Sci ; 66(12): 2851-2861, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37505431

RESUMO

Prime editing (PE) is a recent gene editing technology that can mediate insertions or deletions and all twelve types of base-to-base conversions. However, its low efficiency hampers the application in creating novel breeds and biomedical models, especially in pigs and other important farm animals. Here, we demonstrate that the pig genome is editable using the PE system, but the editing efficiency was quite low as expected. Therefore, we aimed to enhance PE efficiency by modulating both exogenous PE tools and endogenous pathways in porcine embryonic fibroblasts (PEFs). First, we modified the pegRNA by extending the duplex length and mutating the fourth thymine in a continuous sequence of thymine bases to cytosine, which significantly enhanced PE efficiency by improving the expression of pegRNA and targeted cleavage. Then, we targeted SAMHD1, a deoxynucleoside triphosphate triphosphohydrolase (dNTPase) that impedes the reverse transcription process in retroviruses, and found that treatment with its inhibitor, cephalosporin C zinc salt (CPC), increased PE efficiency up to 29-fold (4-fold on average), presumably by improving the reverse transcription process of Moloney murine leukemia virus reverse transcriptase (M-MLV RT) in the PE system. Moreover, PE efficiency was obviously improved by treatment with a panel of histone deacetylase inhibitors (HDACis). Among the four HDACis tested, panobinostat was the most efficient, with an efficiency up to 122-fold (7-fold on average), partly due to the considerable HDACi-mediated increase in transgene expression. In addition, the synergistic use of the three strategies further enhanced PE efficiency in PEFs. Our study provides novel approaches for optimization of the PE system and broadens the application scope of PE in agriculture and biomedicine.


Assuntos
Animais Domésticos , Timina , Camundongos , Animais , Suínos , Transgenes , Agricultura , Citosina , Edição de Genes , Inibidores de Histona Desacetilases , Sistemas CRISPR-Cas
4.
Biotechnol J ; 10(1): 143-53, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25345906

RESUMO

Isolation of cells harboring exogenous DNA is typically achieved by the introduction of plasmids, but its efficiency remains still low. In this study, we developed a novel strategy to obtain stable transfectants efficiently. Porcine embryonic fibroblasts were transfected with two plasmids: (i) pTransIEnd, which comprises the ubiquitous promoter, the piggyBac (PB) transposase gene, an internal ribosomal entry site, the Clostridium perfringens-derived endo-ß-galactosidase C (EndoGalC) gene, and a poly(A) tail and (ii) a PB-based plasmid, termed pT-EGFP, which contains enhanced green fluorescent protein (EGFP) expression unit flanked by PB acceptor sites. The PB transposase can accelerate the chromosomal integration of transposon vectors. EndoGalC expression results in removal of a cell surface α-Gal epitope, which is specifically recognized by Bandeiraea simplicifolia isolectin-B4 (IB4). Four days after transfection, cells were treated with IB4SAP (IB4 conjugated to saporin, which eliminates any α-Gal epitope-expressing cells) for a short period, followed by standard culture for approximately 10 days. Several colonies emerged, most of which were positive for EGFP expression and lacked TransIEnd. These results indicated that the proposed approach is useful and efficient for obtaining stable transfectants without the use of drug-resistance genes, and offers a novel route for gene manipulation in cultured nonhuman mammalian cells.


Assuntos
Glicosídeo Hidrolases/genética , Plasmídeos/genética , Transfecção/métodos , Transposases/genética , Animais , Células Cultivadas , Feminino , Fibroblastos , Glicosídeo Hidrolases/metabolismo , Reação em Cadeia da Polimerase , Suínos , Transposases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA