Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.388
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(6): e2219024120, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36716360

RESUMO

Postoperative adhesions occur widely in various tissues, bringing the risk of secondary surgery and increased medical burden. Hydrogel barriers with Janus-adhesive ability can achieve physical isolation of adjacent tissues and are therefore considered an ideal solution. However, integrating endoscopic delivery convenience and viscoelastic Janus hydrogel formation remains a great challenge. Here, we present a report of the in situ formation of Janus-adhesive hydrogel barrier using a sprayable fast-Janus-gelation (FJG) powder. We first methacrylate the polysaccharide macromolecules to break the intermolecular hydrogen bonds and impart the ability of rapid hydration. FJG powder can rapidly absorb interfacial water and crosslink through borate ester bonds, forming a toughly adhesive viscoelastic hydrogel. The Janus barrier can be simply formed by further hydrating the upper powder with cationic solution. We construct rat models to demonstrate the antiadhesions efficiency of viscoelastic FJG hydrogels in organs with different motion modalities (e.g., intestine, heart, liver). We also developed a low-cost delivery device with a standardized surgical procedure and further validated the feasibility and effectiveness of FJG powder in minimally invasive surgery using a preclinical translational porcine model. Considering the advantages in terms of therapeutic efficacy, clinical convenience, and commercialization, our results reveal the great potential of Janus-gelation powder materials as a next-generation antiadhesions barrier.


Assuntos
Adesivos , Hidrogéis , Ratos , Animais , Suínos , Hidrogéis/química , Pós , Aderências Teciduais/prevenção & controle , Água
2.
Proc Natl Acad Sci U S A ; 120(28): e2302234120, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37399391

RESUMO

The deformation-coordination ability between ductile metal and brittle dispersive ceramic particles is poor, which means that an improvement in strength will inevitably sacrifice ductility in dispersion-strengthened metallic materials. Here, we present an inspired strategy for developing dual-structure-based titanium matrix composites (TMCs) that achieve 12.0% elongation comparable to the matrix Ti6Al4V alloys and enhanced strength compared to homostructure composites. The proposed dual-structure comprises a primary structure, namely, a TiB whisker-rich region engendered fine grain Ti6Al4V matrix with a three-dimensional micropellet architecture (3D-MPA), and an overall structure consisting of evenly distributed 3D-MPA "reinforcements" and a TiBw-lean titanium matrix. The dual structure presents a spatially heterogeneous grain distribution with 5.8 µm fine grains and 42.3 µm coarse grains, which exhibits excellent hetero-deformation-induced (HDI) hardening and achieves a 5.8% ductility. Interestingly, the 3D-MPA "reinforcements" show 11.1% isotropic deformability and 66% dislocation storage, which endows the TMCs with good strength and loss-free ductility. Our enlightening method uses an interdiffusion and self-organization strategy based on powder metallurgy to enable metal matrix composites with the heterostructure of the matrix and the configuration of reinforcement to address the strength-ductility trade-off dilemma.

3.
Proc Natl Acad Sci U S A ; 120(8): e2218997120, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36787357

RESUMO

Electronic structure calculations indicate that the Sr2FeSbO6 double perovskite has a flat-band set just above the Fermi level that includes contributions from ordinary subbands with weak kinetic electron hopping plus a flat subband that can be attributed to the lattice geometry and orbital interference. To place the Fermi energy in that flat band, electron-doped samples with formulas Sr2-xLaxFeSbO6 (0 ≤ x ≤ 0.3) were synthesized, and their magnetism and ambient temperature crystal structures were determined by high-resolution synchrotron X-ray powder diffraction. All materials appear to display an antiferromagnetic-like maximum in the magnetic susceptibility, but the dominant spin coupling evolves from antiferromagnetic to ferromagnetic on electron doping. Which of the three subbands or combinations is responsible for the behavior has not been determined.

4.
Nano Lett ; 24(14): 4055-4063, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38554070

RESUMO

Aqueous rechargeable zinc-based batteries hold great promise for energy storage applications, with most research utilizing zinc foils as the anode. Conversely, the high tunability of zinc powder (Zn-P) makes it an ideal choice for zinc-based batteries, seamlessly integrating with current battery production technologies. However, challenges such as contact loss, dendrite formation, and a high tendency for corrosion significantly hamper the performance enhancement of Zn-P anodes. This review provides an overview of strategies adopted from various perspectives, including zinc powder optimization, electrode engineering, and electrolyte modification, to address these issues. Additionally, it explores the limitations of existing research and offers valuable insights into potential future directions for further advancements in Zn-P anodes.

5.
Gastroenterology ; 165(3): 762-772.e2, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37277078

RESUMO

BACKGROUND & AIMS: Current guidelines vary as to their recommendations addressing the role of hemostatic powders when managing patients with malignant gastrointestinal (GI) bleeding because these are based on very-low- to low-quality evidence, in large part due to a paucity of randomized trial data. METHODS: This was a patient- and outcome assessor-blinded, multicenter, randomized controlled trial. Patients presenting with active bleeding from an upper or lower GI lesion suspected to be malignant at index endoscopy between June 2019 and January 2022 were randomly allocated to receive either TC-325 alone or standard endoscopic treatment (SET). The primary outcome was 30-day rebleeding, and secondary objectives included immediate hemostasis and other clinically relevant endpoints. RESULTS: Overall, 106 patients made up the study population (55 TC-325 and 51 SET, after 1 exclusion in the TC-325 group and 5 in the SET group). Baseline characteristics and endoscopic findings did not differ between the groups. Thirty-day rebleeding was significantly lower in the TC-325 (2.1% TC-325 vs 21.3% SET; odds ratio, 0.09; 95% confidence interval [CI], 0.01-0.80; P = .003). Immediate hemostasis rates were 100% in the TC-325 group vs 68.6% in the SET group (odds ratio, 1.45; 95% CI, 0.93-2.29; P < .001). Other secondary outcomes did not differ between the 2 groups. Independent predictors of 6-month survival included the Charlson comorbidity index (hazard ratio, 1.17; 95% CI, 1.05-1.32; P = .007) and receiving an additional nonendoscopic hemostatic or oncologic treatment during 30 days after the index endoscopy (hazard ratio, 0.16; 95% CI, 0.06-0.43; P < .001) after adjustment for functional status, Glasgow-Blatchford score, and an upper GI source of bleeding. CONCLUSION: The TC-325 hemostatic powder results in greater immediate hemostasis rates followed by lower 30-day rebleeding rates when compared to contemporary SET. (ClinicalTrials.gov, Number: NCT03855904).


Assuntos
Neoplasias Gastrointestinais , Hemostase Endoscópica , Hemostáticos , Humanos , Pós , Hemostase Endoscópica/efeitos adversos , Hemostase Endoscópica/métodos , Recidiva Local de Neoplasia/terapia , Hemorragia Gastrointestinal/etiologia , Hemorragia Gastrointestinal/cirurgia , Neoplasias Gastrointestinais/complicações , Neoplasias Gastrointestinais/cirurgia , Endoscopia Gastrointestinal/efeitos adversos , Hemostáticos/uso terapêutico , Recidiva
6.
Small ; : e2404623, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39004866

RESUMO

The high-energy (H2dabco)[NH4(ClO4)3] (DAP-4) with excellent energetic performance attracts wide attention from researchers. The investigation of its interaction with the Aluminum (Al) is of great importance. However, the higher ignition threshold of DAP-4 and the dense oxide layer (Al2O3) of Al severely limit the energy release efficiency of Al/DAP-4. In this study, a new idea to is first proposed to improve and adjust the thermal decomposition and combustion performance of Al/DAP-4 by constructing a highly dispersed iron (Fe) nanoparticle interfacial layer. It acts as a gradient catalyst to promote the thermal decomposition and combustion of DAP-4 and Al, and it also act as an oxygen transport channel to promote the contact and reaction of oxidizing gases with the internal reactive Al powder. It reduces the thermal decomposition temperature of Al@Fe-3/DAP-4 from 386.30 °C (Al/DAP-4) to 349.48 °C and leads to the vigorous combustion. Theoretical calculations show that Fe nanoparticle interfacial layer can facilitate the transport of oxygen through the established oxygen transport channels, and it can also significantly improve the energetic properties of Al@Fe-3/DAP-4 composites. In conclusion, the new approach is proposed to improve the performance of metal fuel/oxidizer composites by constructing interfacial layers, which is expected to promote their practical applications.

7.
Small ; : e2405568, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39308439

RESUMO

Rechargeable magnesium batteries (RMBs) face with the challenge of interphase passivation between electrolytes and Mg anodes. Compared with ether electrolytes, carbonate solvents possess the superior electrochemical stability at cathode side, but their incompatibility with Mg metal, high viscosity, and desolvation energy barrier restrict their practical utilization in RMBs. Herein, the "unwanted-impurity" water with high concentration is revisited and employed as multifunctional additive in carbonate electrolyte to improve the reversibility of RMBs. Water additive enables the localized deep eutectic effect, reduces the viscosity of carbonate electrolyte, and improves the Mg ion conductivity. The water molecules also participate the solvation sheath of Mg ions, resulting in the reduction of Mg deposition overpotential and inhibition of parasitic reaction. Furthermore, the co-intercalated water molecules in V2O5 cathode layers enable the stabilization of intercalation structure and supply of additional magnesiophilic sites. Cooperated with the binder-decorated Mg powder anode, the propylene carbonate electrolyte with water additive endows Mg||Mg symmetric cells and Mg||V2O5 full cells with satisfactory cycling performance and high-voltage stability. This work revisits the impact of impurity water and provides a practical strategy for the utilization of conventional low-cost carbonate electrolyte family, broadening the design and formulation of electrolytes for chlorine-free and high-voltage RMBs.

8.
Small ; 20(33): e2311859, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38643382

RESUMO

The quest for efficient hemostatic agents in emergency medicine is critical, particularly for managing massive hemorrhages in dynamic and high-pressure wound environments. Traditional self-gelling powders, while beneficial due to their ease of application and rapid action, fall short in such challenging conditions. To bridge this gap, the research introduces a novel self-gelling powder that combines ultrafast covalent gelation and robust wet adhesion, presenting a significant advancement in acute hemorrhage control. This ternary system comprises ε-polylysine (ε-PLL) and 4-arm polyethylene glycol succinyl succinate (4-arm-PEG-NHS) forming the hydrogel framework. Na2HPO4 functions as the "H+ sucker" to expedite the amidation reaction, slashing gelation time to under 10 s, crucial for immediate blood loss restriction. Moreover, PEG chains' hydrophilicity facilitates efficient absorption of interfacial blood, increasing the generated hydrogel's cross-linking density and strengthens its tissue bonding, thereby resulting in excellent mechanical and wet adhesion properties. In vitro experiments reveal the optimized formulation's exceptional tissue compliance, procoagulant activity, biocompatibility and antibacterial efficacy. In porcine models of heart injuries and arterial punctures, it outperforms commercial hemostatic agent Celox, confirming its rapid and effective hemostasis. Conclusively, this study presents a transformative approach to hemostasis, offering a reliable and potent solution for the emergency management of massive hemorrhage.


Assuntos
Hemorragia , Pós , Hemorragia/tratamento farmacológico , Animais , Suínos , Adesivos/química , Adesivos/farmacologia , Polietilenoglicóis/química , Hemostáticos/química , Hemostáticos/farmacologia , Pressão , Hidrogéis/química
9.
Small ; : e2402055, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38805743

RESUMO

Zn ion batteries (ZIBs) are a promising candidate in safe and low-cost large-scale energy storage applications. However, significantly deteriorated cycling stability of Zn anode in high depth of charge or after long-term quiescence impedes the practical application of ZIBs. Aiming at the above issue, a spontaneous solid electrolyte interphase (SEI) formation of Zn4(OH)6SO4·xH2O (ZHS) on Zn powder is achieved in pure ZnSO4 electrolyte by facile and rational interface design. The stable and ultrathin ZHS SEI plays a crucial part in insulating water molecules and conducting Zn2+ ions, intrinsically suppressing the severe hydrogen evolution and dendrite formation on the Zn powder anode. The ZHS-Zn anode delivers a stable cycling at a high DOD of 50% for over 500 h, as well as a lifespan of over 200 h after 40-days of resting at a DOD of 25%. Benefiting from the high utilization of Zn anode, the energy density of the Zn-MnxV2O5 full cell is up to 118 Wh Kg-1. This facile method can fabricate the ZHS-Zn anode as long as 1 m, revealing its feasibility in large-scale production and commercialization.

10.
Small ; 20(24): e2309486, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38174606

RESUMO

Inorganic thick-film dielectric capacitors with ultrahigh absolute recovered energy at low electric fields are extremely desired for their wide application in pulsed power systems. However, a long-standing technological bottleneck exists between high absolute energy and large recovered energy density. A new strategy is offered to fabricate selected all-inorganic 0-3 composite thick films up to 10 µm by a modified sol-slurry method. Here, the ceramic powder is dispersed into the sol-gel matrix to form a uniform suspension, assisted by powder, therefore, the 2 µm-thickness after single layer spin coating. To enhance the energy-storage performances, the composites process is thoroughly optimized by ultrafine powder (<50 nm) technique based on a low-cost coprecipitation method instead of the solid-state and sol-gel methods. 0D coprecipitation powder has a similar dielectric constant to the corresponding 3D films, thus uneven electrical field distributions is overcome. Moreover, the increase of interfacial polarization is realized due to the larger specific surface area. A maximum recoverable energy density of 14.62 J cm-3 is obtained in coprecipitation thick films ≈2.2 times that of the solid-state powder and ≈1.3 times for sol-gel powder. This study provides a new paradigm for further guiding the design of composite materials.

11.
J Synchrotron Radiat ; 31(Pt 4): 955-967, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38900456

RESUMO

The demand for powder X-ray diffraction analysis continues to increase in a variety of scientific fields, as the excellent beam quality of high-brightness synchrotron light sources enables the acquisition of high-quality measurement data with high intensity and angular resolution. Synchrotron powder diffraction has enabled the rapid measurement of many samples and various in situ/operando experiments in nonambient sample environments. To meet the demands for even higher throughput measurements using high-energy X-rays at SPring-8, a high-throughput and high-resolution powder diffraction system has been developed. This system is combined with six sets of two-dimensional (2D) CdTe detectors for high-energy X-rays, and various automation systems, including a system for automatic switching among large sample environmental equipment, have been developed in the third experimental hutch of the insertion device beamline BL13XU at SPring-8. In this diffractometer system, high-brilliance and high-energy X-rays ranging from 16 to 72 keV are available. The powder diffraction data measured under ambient and various nonambient conditions can be analysed using Rietveld refinement and the pair distribution function. Using the 2D CdTe detectors with variable sample-to-detector distance, three types of scan modes have been established: standard, single-step and high-resolution. A major feature is the ability to measure a whole powder pattern with millisecond resolution. Equally important, this system can measure powder diffraction data with high Q exceeding 30 Å-1 within several tens of seconds. This capability is expected to contribute significantly to new research avenues using machine learning and artificial intelligence by utilizing the large amount of data obtained from high-throughput measurements.

12.
Appl Environ Microbiol ; 90(3): e0171323, 2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-38319097

RESUMO

This study reports on the influence of a powder diet in a mouse model of oropharyngeal candidiasis (OPC), a significant health concern caused primarily by Candida albicans. Despite identical nutritional composition, we found that a powdered diet significantly increased Candida burdens and oral lesions, and aggravated weight loss compared to a standard pelleted diet. High fungal burdens and severe oral lesions were accomplished within 48 hours after infection with only one dose of cortisone. Moreover, mice on a powder diet recovered a week after infection. Using a powder diet, we thus modified the cortisone OPC murine model in a way that simplifies the infection process, enhances reproducibility, and facilitates studies investigating both pathogenesis and recovery processes. Our findings also underscore the pivotal role of the physical form of the diet in the progression and severity of oral Candida infection in this model. Future research should investigate this relationship further to broaden our understanding of the underlying mechanisms, potentially leading to novel prevention strategies and improved disease management.IMPORTANCEOropharyngeal candidiasis (OPC) is a multifactorial disease and a significant health concern. We found that the physical form of the diet plays a critical role in the severity and progression of OPC. We developed a modified cortisone OPC murine model that facilitates studies investigating pathogenesis and recovery processes.


Assuntos
Candidíase Bucal , Cortisona , Animais , Camundongos , Pós , Modelos Animais de Doenças , Cortisona/uso terapêutico , Reprodutibilidade dos Testes , Candidíase Bucal/tratamento farmacológico , Candidíase Bucal/microbiologia , Candidíase Bucal/patologia , Candida albicans , Dieta
13.
Metabolomics ; 20(5): 93, 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39096405

RESUMO

INTRODUCTION: Bovine milk contains a rich matrix of nutrients such as carbohydrates, fat, protein and various vitamins and minerals, the composition of which is altered by factors including dietary regime. OBJECTIVES: The objective of this research was to investigate the impact of dietary regime on the metabolite composition of bovine whole milk powder and buttermilk. METHODS: Bovine whole milk powder and buttermilk samples were obtained from spring-calving cows, consuming one of three diets. Group 1 grazed outdoors on perennial ryegrass which was supplemented with 5% concentrates; group 2 were maintained indoors and consumed a total mixed ration diet; and group 3 consumed a partial mixed ration diet consisting of perennial ryegrass during the day and total mixed ration maintained indoors at night. RESULTS: Metabolomic analysis of the whole milk powder (N = 27) and buttermilk (N = 29) samples was preformed using liquid chromatography-tandem mass spectrometry, with 504 and 134 metabolites identified in the samples respectively. In whole milk powder samples, a total of 174 metabolites from various compound classes were significantly different across dietary regimes (FDR adjusted p-value ≤ 0.05), including triglycerides, of which 66% had their highest levels in pasture-fed samples. Triglycerides with highest levels in pasture-fed samples were predominantly polyunsaturated with high total carbon number. Regarding buttermilk samples, metabolites significantly different across dietary regimes included phospholipids, sphingomyelins and an acylcarnitine. CONCLUSION: In conclusion the results reveal a significant impact of a pasture-fed dietary regime on the metabolite composition of bovine dairy products, with a particular impact on lipid compound classes.


Assuntos
Ração Animal , Leitelho , Metabolômica , Leite , Animais , Bovinos/metabolismo , Leite/química , Leite/metabolismo , Metabolômica/métodos , Leitelho/análise , Ração Animal/análise , Dieta/veterinária , Pós , Metaboloma , Espectrometria de Massas em Tandem , Feminino , Cromatografia Líquida/métodos
14.
Microb Pathog ; 194: 106844, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39128644

RESUMO

This study investigated the effect of pumpkin powder (2 %, 4 %, and 6 %) and Enterococcus faecium and Enterococcus faecalis probiotics on the physicochemical, microbiological, and sensory properties of yogurt samples during 28 days of storage at 4 °C. The prebiotic effect of pumpkin powder (Cucurbita pepo) and the probiotic effect of Enterococcus faecium and E. faecalis were determined. Adding pumpkin powder to yogurt did not significantly alter the pH, acidity, fat, protein, and ash content (p > 0.05). Water holding was not changed during the storage time in the samples of probiotic yogurts, but as the pumpkin powder content increased, the water holding capacity also increased (p < 0.05). This situation did lead to a reduction in syneresis (p < 0.05). The lowest gumminess value at the end of storage was found in the D2 sample (p < 0.05), and the highest adhesiveness value was found in the D4 sample (p < 0.05). Furthermore, throughout the 28-day storage period, E. faecium and E. faecalis maintained a live cell count of ≥6 log CFU g-1 in the probiotic product. As a result of the statistical evaluation, there was a decrease in E. faecium in the D4, S2, and S4 samples, and then it increased again (p > 0.05) during the storage time. As a result of the statistical evaluation, it was determined that the smell, consistency in the spoon, consistency in the mouth, flavor, and acidity changes during the storage were not substantial (p > 0.05). In conclusion, it was found that pumpkin, a byproduct of the pumpkin seed industry, has the potential to act as a prebiotic and improve the properties of dairy products. Additionally, the study suggests that E. faecium and E. faecalis strains could be suitable for probiotic yogurts.


Assuntos
Cucurbita , Enterococcus faecalis , Enterococcus faecium , Prebióticos , Probióticos , Iogurte , Enterococcus faecium/crescimento & desenvolvimento , Cucurbita/microbiologia , Enterococcus faecalis/crescimento & desenvolvimento , Enterococcus faecalis/efeitos dos fármacos , Iogurte/microbiologia , Concentração de Íons de Hidrogênio , Microbiologia de Alimentos , Armazenamento de Alimentos , Contagem de Colônia Microbiana , Paladar
15.
Microb Pathog ; 190: 106639, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38616002

RESUMO

BACKGROUND INFORMATION: The advancement of biological-mediated nanoscience towards higher levels and novel benchmarks is readily apparent, owing to the use of non-toxic synthesis processes and the incorporation of various additional benefits. This study aimed to synthesize stable tin oxide nanoparticles (SnO2-NPs) using S. rhizophila as a mediator. METHODS: The nanoparticles that were created by biosynthesis was examined using several analytical techniques, including Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM), X-ray diffraction (XRD), UV-visible (UV-vis) spectroscopy, and energy dispersive X-ray spectroscopy (EDS). RESULTS: The results obtained from the characterization techniques suggest that S. rhizophila effectively catalyzed the reduction of SnCl2 to SnO2-NPs duration of 90 min at ambient temperature with the ƛmax of 328 nm. The size of the nano crystallite formations was measured to be 23 nm. The present study investigates nanoscale applications' antibacterial efficacy against four bacterial strains, including Klebsiella Sp, Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli. The observed zone of inhibition for the nanoparticles (NPs) varied from 10 to 25 mm. The research findings demonstrate that the nanoparticles (NPs) are effective as antibacterial, phytotoxic, and cytotoxic agents.


Assuntos
Antibacterianos , Biofilmes , Testes de Sensibilidade Microbiana , Compostos de Estanho , Difração de Raios X , Compostos de Estanho/química , Compostos de Estanho/farmacologia , Biofilmes/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Animais , Staphylococcus aureus/efeitos dos fármacos , Nanopartículas/química , Bactérias/efeitos dos fármacos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Escherichia coli/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Microscopia Eletrônica de Transmissão , Microscopia Eletrônica de Varredura , Tamanho da Partícula
16.
Chemistry ; 30(11): e202302138, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-37957130

RESUMO

Three different devices: ball mill, hot stage melting, and magic angle spinning (MAS) NMR rotor were used for the preparation of ethenzamide (ET) cocrystals with glutaric acid (GLU), ethylmalonic acid (EMA) and maleic acid (MAL) as coformers. In each case, well-defined binary systems (ET:EMA, ET:GLU, ET:MAL) were obtained. The common features of the two solvent free methods of cocrystal formation (grinding, melting) are presented on the basis of arguments obtained by solid state NMR spectroscopy. Thermal analysis (Differential Scanning Calorimetry) proved that the eutectic phase arises over a wide range of molar ratios of components for each of the binary systems. NMR techniques, supported by theoretical calculations, allowed to provide details about the pathway of the reaction mechanism with atomic accuracy. It was found that the formation of ET cocrystals is a complex process that requires five steps. Each step has been recognized and described. Variable temperature 1D and 2D MAS NMR experiments allowed to track physicochemical processes taking place in a molten state. Moreover, it was found that in a multicomponent mixture consisting of all four components, ET, EMA, GLU, and MAL, ET in the molten phase behaves as a specific selector choosing only one partner to form binary cocrystals according to energy preferences. The process of exchange of coformers in binary systems during grinding, melting, and NMR measurements is described. The stabilization energies (Estab ) and molecular electrostatic potential (MEP) maps computed for the cocrystals under discussion and their individual components rationalize the selection rules and explain the relationships between individual species.

17.
Gastrointest Endosc ; 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39265743

RESUMO

BACKGROUND AND AIMS: Hemostatic powder (HP) is a novel hemostasis modality for nonvariceal gastrointestinal (GI) bleeding. The meta-analysis was performed to evaluate the efficacy of HP monotherapy versus conventional endoscopic treatment (CET) for nonvariceal GI bleeding. METHODS: PubMed, Embase, and Cochrane Library databases were systematically searched from inception to October 16, 2023. The primary outcomes were the initial hemostatic rate and the 30-day rebleeding rate. After the meta-analysis, the trial sequential analysis (TSA) was also conducted to decrease the risk of random errors and validate the result. RESULTS: The meta-analysis included eight studies, incorporating 653 patients in total. Given significant heterogeneity, all analyses were segregated into malignancy-related and non-malignancy-related GI bleeding lesions. For the former, HP monotherapy significantly improved the initial hemostasis rate and 30-day rebleeding rate compared to CET (Relative risk [RR] 1.50, 95% confidence interval [CI] 1.28 - 1.75, P < .001; RR .32, 95% CI .12 - .86, P = .02), and TSA supported the above results. For non-malignancy-related GI bleeding, HP monotherapy and CET have similar initial hemostasis and 30-day rebleeding rates (RR 1.08, 95% CI .98 - 1.19, P = .11; RR 1.15, 95% CI .46 - 2.90, P = .76), but the TSA failed to confirm the above results. CONCLUSIONS: In conclusion, HP monotherapy surpassed CET in terms of the initial hemostasis rate and 30-day rebleeding rate for patients with malignancy-related GI bleeding. However, their relative efficacy for non-malignancy-related GI bleeding remains unresolved.

18.
Mol Pharm ; 21(2): 564-580, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38215042

RESUMO

Asthma is a common chronic disease affecting the airways in the lungs. The receptors of allergic cytokines, including interleukin (IL)-4, IL-5, and IL-13, trigger the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway, which involves the pathogenesis of asthma. GDC-0214 is a JAK inhibitor that was developed as a potent and selective target for the treatment of asthma, specifically targeting the lungs. While inhaled GDC-0214 is a promising novel treatment option against asthma, improvement is still needed to achieve increased potency of the powder formulation and a reduced number of capsules containing powder to be inhaled. In this study, high-potency amorphous powder formulations containing GDC-0214 nanoaggregates for dry powder inhalation were developed using particle engineering technology, thin film freezing (TFF). A high dose per capsule was successfully achieved by enhancing the solubility of GDC-0214 and powder conditioning. Lactose and/or leucine as excipients exhibited optimum stability and aerosolization of GDC-0214 nanoaggregates, and aerosolization of the dose was independent of air flow through the device between 2 and 6 kPa pressure drops. In the rat PK study, formulation F20, which contains 80% GDC-0214 and 20% lactose, resulted in the highest AUC0-24h in the lungs with the lowest AUC0-24h in the plasma that corresponds to a 4.8-fold higher ratio of the lung-to-plasma exposures compared to micronized crystalline GDC-0214 powder administered by dry powder inhalation. Therefore, GDC-0214 nanoaggregates produced by TFF provided an improved dry powder for inhalation that can lead to enhanced therapeutic efficacy with a lower risk of systemic toxicity.


Assuntos
Asma , Inibidores de Janus Quinases , Ratos , Animais , Pós/química , Congelamento , Lactose , Administração por Inalação , Asma/tratamento farmacológico , Inaladores de Pó Seco , Tamanho da Partícula , Aerossóis e Gotículas Respiratórios
19.
Mol Pharm ; 21(9): 4524-4540, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39109552

RESUMO

Molecular interactions between active pharmaceutical ingredients (APIs) and xanthine (XAT) derivatives were analyzed using singular value decomposition (SVD). XAT derivatives were mixed with equimolar amounts of ibuprofen (IBP) and diclofenac (DCF), and their dissolution behaviors were measured using high-performance liquid chromatography. The solubility of IBP decreased in mixtures with caffeine (CFN) and theophylline (TPH), whereas that of DCF increased in mixtures with CFN and TPH. No significant differences were observed between the mixtures of theobromine (TBR) or XAT with IBP and DCF. Mixtures with various molar ratios were analyzed using differential scanning calorimetry, X-ray powder diffraction, and Fourier-transform infrared spectroscopy to further explore these interactions. The results were subjected to SVD. This analysis provides valuable insights into the differences in interaction strength and predicted interaction sites between XAT derivatives and APIs based on the combinations that form mixtures. The results also showed the impact of the XAT derivatives on the dissolution behavior of IBP and DCF. Although IBP and DCF were found to form intermolecular interactions with CFN and TPH, these effects resulted in a reduction of the solubility of IBP and an increase in the solubility of DCF. The current approach has the potential to predict various interactions that may occur in different combinations, thereby contributing to a better understanding of the impact of health supplements on pharmaceuticals.


Assuntos
Cafeína , Varredura Diferencial de Calorimetria , Ibuprofeno , Pós , Solubilidade , Difração de Raios X , Cafeína/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Ibuprofeno/química , Varredura Diferencial de Calorimetria/métodos , Pós/química , Difração de Raios X/métodos , Teofilina/química , Cromatografia Líquida de Alta Pressão/métodos , Teobromina/química , Diclofenaco/química , Xantina/química
20.
Arch Microbiol ; 206(3): 120, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38396230

RESUMO

Apple (Malus domestica Borkh) is one of the most consumed and nutritious fruits. Iran is one of the main producers of the apple in the world. Diplodia bulgarica is the major causal agent of apple tree decline in Iran. Biological control is a nature-friendly approach to plant disease management. Trichoderma zelobreve was isolated from apple trees infected with Diplodia bulgarica in West Azarbaijan province of Iran. The results showed that T. zelobreve strongly inhibited the colony growth of D. bulgarica. In vivo assay on detached branches of apple tree cv. Golden Delicious using T. zelobreve mycelial plug showed that canker length/stem length (CL/SL) and canker perimeter/stem perimeter (CP/SP) indices decreased by 76 and 69%, respectively, 21 days after inoculation. Additionally, wettable powder formulation (WPF) containing the antagonistic fungus "T. zelobreve" decreased CL and CP/SP by 75 and 67%, respectively, 6 months after inoculation. Moreover, canker progress curves and the area under the disease progress curve (AUDPC) supported these findings. The growth temperatures of the antagonist and pathogen were similar, indicating the adaptation of T. zelobreve for biocontrol of apple canker caused by D. bulgarica. The results also showed that T. zelobreve-based WPF stored at 25 °C assure excellent shelf life at least 4 months, allowing the bioproduct to be stored at room temperature, which is a great advantage and cost-effective option.


Assuntos
Ascomicetos , Malus , Trichoderma , Malus/microbiologia , Frutas/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA