Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Neurosci ; 42: 315-335, 2019 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-30939102

RESUMO

Hand dexterity has uniquely developed in higher primates and is thought to rely on the direct corticomotoneuronal (CM) pathway. Recent studies have shown that rodents and carnivores lack the direct CM pathway but can control certain levels of dexterous hand movements through various indirect CM pathways. Some homologous pathways also exist in higher primates, and among them, propriospinal (PrS) neurons in the mid-cervical segments (C3-C4) are significantly involved in hand dexterity. When the direct CM pathway was lesioned caudal to the PrS and transmission of cortical commands to hand motoneurons via the PrS neurons remained intact, dexterous hand movements could be significantly recovered. This recovery model was intensively studied, and it was found that, in addition to the compensation by the PrS neurons, a large-scale reorganization in the bilateral cortical motor-related areas and mesolimbic structures contributed to recovery. Future therapeutic strategies should target these multihierarchical areas.


Assuntos
Mãos/fisiologia , Neurônios Motores/fisiologia , Movimento/fisiologia , Recuperação de Função Fisiológica/fisiologia , Traumatismos do Sistema Nervoso/fisiopatologia , Animais , Sistema Nervoso Central/fisiologia , Sistema Nervoso Central/fisiopatologia , Mãos/inervação , Humanos
2.
Proc Natl Acad Sci U S A ; 119(12): e2122903119, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35294291

RESUMO

Stable precision grips using the fingertips are a cornerstone of human hand dexterity. However, our fingers become unstable sometimes and snap into a hyperextended posture. This is because multilink mechanisms like our fingers can buckle under tip forces. Suppressing this instability is crucial for hand dexterity, but how the neuromuscular system does so is unknown. Here we show that people rely on the stiffness from muscle contraction for finger stability. We measured buckling time constants of 50 ms or less during maximal force application with the index finger­quicker than feedback latencies­which suggests that muscle-induced stiffness may underlie stability. However, a biomechanical model of the finger predicts that muscle-induced stiffness cannot stabilize at maximal force unless we add springs to stiffen the joints or people reduce their force to enable cocontraction. We tested this prediction in 38 volunteers. Upon adding stiffness, maximal force increased by 34 ± 3%, and muscle electromyography readings were 21 ± 3% higher for the finger flexors (mean ± SE). Muscle recordings and mathematical modeling show that adding stiffness offloads the demand for muscle cocontraction, thus freeing up muscle capacity for fingertip force. Hence, people refrain from applying truly maximal force unless an external stabilizing stiffness allows their muscles to apply higher force without losing stability. But more stiffness is not always better. Stiff fingers would affect the ability to adapt passively to complex object geometries and precisely regulate force. Thus, our results show how hand function arises from neurally tuned muscle stiffness that balances finger stability with compliance.


Assuntos
Dedos , Força da Mão , Fenômenos Biomecânicos , Eletromiografia , Dedos/fisiologia , Força da Mão/fisiologia , Humanos , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , Postura
3.
Cereb Cortex ; 33(14): 8990-9002, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37246152

RESUMO

Sensorimotor issues are present in the majority of individuals with autism spectrum disorder (ASD) and are associated with core symptoms. The neural systems associated with these impairments remain unclear. Using a visually guided precision gripping task during functional magnetic resonance imaging, we characterized task-based connectivity and activation of cortical, subcortical, and cerebellar visuomotor networks. Participants with ASD (n = 19; ages 10-33) and age- and sex-matched neurotypical controls (n = 18) completed a visuomotor task at low and high force levels. Relative to controls, individuals with ASD showed reduced functional connectivity of right primary motor-anterior cingulate cortex and left anterior intraparietal lobule (aIPL)-right Crus I at high force only. At low force, increased caudate, and cerebellar activation each were associated with sensorimotor behavior in controls, but not in ASD. Reduced left aIPL-right Crus I connectivity was associated with more severe clinically rated ASD symptoms. These findings suggest that sensorimotor problems in ASD, particularly at high force levels, involve deficits in the integration of multimodal sensory feedback and reduced reliance on error-monitoring processes. Adding to literature positing that cerebellar dysfunction contributes to multiple developmental issues in ASD, our data implicate parietal-cerebellar connectivity as a key neural marker underlying both core and comorbid features of ASD.


Assuntos
Transtorno do Espectro Autista , Córtex Motor , Humanos , Mapeamento Encefálico/métodos , Cerebelo , Imageamento por Ressonância Magnética/métodos , Vias Neurais
4.
J Physiol ; 601(17): 3945-3960, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37526070

RESUMO

The ventral premotor cortex (PMv) and primary motor cortex (M1) represent critical nodes of a parietofrontal network involved in grasping actions, such as power and precision grip. Here, we investigated how the functional PMv-M1 connectivity drives the dissociation between these two actions. We applied a PMv-M1 cortico-cortical paired associative stimulation (cc-PAS) protocol, stimulating M1 in both postero-anterior (PA) and antero-posterior (AP) directions, in order to induce long-term changes in the activity of different neuronal populations within M1. We evaluated the motor-evoked potential (MEP) amplitude, MEP latency and cortical silent period, in both PA and AP, during the isometric execution of precision and power grip, before and after the PMv-M1 cc-PAS. The repeated activation of the PMv-M1 cortico-cortical network with PA orientation over M1 did not change MEP amplitude or cortical silent period duration during both actions. In contrast, the PMv-M1 cc-PAS stimulation of M1 with an AP direction led to a specific modulation of precision grip motor drive. In particular, MEPs tested with AP stimulation showed a selective increase of corticospinal excitability during precision grip. These findings suggest that the more superficial M1 neuronal populations recruited by the PMv input are involved preferentially in the execution of precision grip actions. KEY POINTS: Ventral premotor cortex (PMv)-primary motor cortex (M1) cortico-cortical paired associative stimulation (cc-PAS) with different coil orientation targets dissociable neural populations. PMv-M1 cc-PAS with M1 antero-posterior coil orientation specifically modulates corticospinal excitability during precision grip. Superficial M1 populations are involved preferentially in the execution of precision grip. A plasticity induction protocol targeting the specific PMv-M1 subpopulation might have important translational value for the rehabilitation of hand function.


Assuntos
Córtex Motor , Córtex Motor/fisiologia , Estimulação Magnética Transcraniana/métodos , Força da Mão/fisiologia , Potencial Evocado Motor/fisiologia , Neurônios , Eletromiografia
5.
J Neurophysiol ; 130(3): 596-607, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37529845

RESUMO

Most of the power for generating forces in the fingers arises from muscles located in the forearm. This configuration maximizes finger joint range of motion while minimizing finger mass and inertia. The resulting multiarticular arrangement of the tendons, however, complicates independent control of the wrist and the digits. Actuating the wrist impacts sensorimotor control of the fingers and vice versa. The goal of this study was to systematically investigate interactions between isometric wrist and digit control. Specifically, we examined how the need to maintain a specified wrist posture influences precision grip. Fifteen healthy adults produced maximum precision grip force at 11 different wrist flexion/extension angles, with the arm supported, under two conditions: 1) the participant maintained the desired wrist angle while performing the precision grip and 2) a robot maintained the specified wrist angle. Wrist flexion/extension posture significantly impacted maximum precision grip force (P < 0.001), with the greatest grip force achieved when the wrist was extended 30° from neutral. External wrist stabilization by the robot led to a 20% increase in precision grip force across wrist postures. Increased force was accompanied by increased muscle activation but with an activation pattern similar to the one used when the participant had to stabilize their wrist. Thus, simultaneous wrist and finger requirements impacted performance of an isometric finger task. External wrist stabilization can promote increased precision grip force resulting from increased muscle activation. These findings have potential clinical significance for individuals with neurologically driven finger weakness, such as stroke survivors.NEW & NOTEWORTHY We explored the interdependence between wrist and fingers by assessing the influence of wrist posture and external stabilization on precision grip force generation. We found that maximum precision grip force occurred at an extended wrist posture and was 20% greater when the wrist was Externally Stabilized. The latter resulted from amplification of muscle activation patterns from the Self-Stabilized condition rather than adoption of new patterns exploiting external wrist stabilization.


Assuntos
Articulação do Punho , Punho , Adulto , Humanos , Punho/fisiologia , Articulação do Punho/fisiologia , Músculos/fisiologia , Postura , Força da Mão/fisiologia , Dedos/fisiologia
6.
Exp Brain Res ; 241(11-12): 2605-2616, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37730970

RESUMO

This study investigated the impact of type 2 diabetes and diabetic peripheral neuropathy on grip force control during object manipulation. The study included three age-matched groups: type 2 diabetes alone (n = 11), type 2 diabetes with neuropathy (n = 13), and healthy controls (n = 12). Grip force control variables derived from lifting and holding an experimental cup were the ratio between grip force and load forces during lifting (GFR), latency 1 and latency 2, which represented the time between the object's grip and its lift-off from the table, and the period between object's lift-off and the grip force peak, respectively; time lag, which denoted the time difference between the grip and load force peaks during the lifting phase, and finally static force, which was the grip force average during the holding phase. Grip force control variables were compared between groups using one-way ANOVA and Kruskal-Wallis test. Post-hoc analysis was used to compare differences between groups. GFR and latency 1 showed significant differences between groups; the type 2 diabetes with neuropathy group showed larger GFR than the type 2 diabetes alone and healthy control groups. The latency 1was longer for the group with neuropathy in comparison with the health control group. There were no significant differences between groups for latency 2, time lag, and static force. Our results showed impaired GFR and latency 1 in participants with type 2 diabetes with neuropathy while the time lag was preserved. People with type 2 diabetes alone might not have any deficits in grip force control. Higher grip forces might expose people with type 2 diabetes and diabetic peripheral neuropathy to the risk of fatigue and injuring their hands. Future studies should investigate strategies to help people with type 2 diabetes with neuropathy adjust grip forces during object manipulation.


Assuntos
Diabetes Mellitus Tipo 2 , Neuropatias Diabéticas , Humanos , Diabetes Mellitus Tipo 2/complicações , Força da Mão , Dedos , Extremidade Superior
7.
J Neurophysiol ; 125(4): 1330-1338, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33596725

RESUMO

How humans visually select where to grasp an object depends on many factors, including grasp stability and preferred grasp configuration. We examined how endpoints are selected when these two factors are brought into conflict: Do people favor stable grasps or do they prefer their natural grasp configurations? Participants reached to grasp one of three cuboids oriented so that its two corners were either aligned with, or rotated away from, each individual's natural grasp axis (NGA). All objects were made of brass (mass: 420 g), but the surfaces of their sides were manipulated to alter friction: 1) all-brass, 2) two opposing sides covered with wood, and the other two remained of brass, or 3) two opposing sides covered with sandpaper, and the two remaining brass sides smeared with Vaseline. Grasps were evaluated as either clockwise (thumb to the left of finger in frontal plane) or counterclockwise of the NGA. Grasp endpoints depended on both object orientation and surface material. For the all-brass object, grasps were bimodally distributed in the NGA-aligned condition but predominantly clockwise in the NGA-unaligned condition. These data reflected participants' natural grasp configuration independently of surface material. When grasping objects with different surface materials, endpoint selection changed: Participants sacrificed their usual grasp configuration to choose the more stable object sides. A model in which surface material shifts participants' preferred grip angle proportionally to the perceived friction of the surfaces accounts for our results. Our findings demonstrate that a stable grasp is more important than a biomechanically comfortable grasp configuration.NEW & NOTEWORTHY When grasping an object, humans can place their fingers at several positions on its surface. The selection of these endpoints depends on many factors, with two of the most important being grasp stability and grasp configuration. We put these two factors in conflict and examine which is considered more important. Our results highlight that humans are not reluctant to adopt unusual grasp configurations to satisfy grasp stability.


Assuntos
Dedos/fisiologia , Atividade Motora/fisiologia , Desempenho Psicomotor/fisiologia , Percepção Espacial/fisiologia , Adulto , Feminino , Fricção , Humanos , Masculino , Adulto Jovem
8.
Eur J Neurosci ; 54(12): 8249-8255, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-32682343

RESUMO

The dexterity of hands and fingers is related to the strength of control by cortico-motoneuronal connections which exclusively exist in primates. The cortical command is associated with a task-specific, rapid proprioceptive adaptation of forces applied by hands and fingers to an object. This neural control differs between "power grip" movements (e.g., reach and grasp of a cup) where hand and fingers act as a unity and "precision grip" movements (e.g., picking up a raspberry) where fingers move independently from the hand. In motor tasks requiring hands and fingers of both sides a "neural coupling" (reflected in bilateral reflex responses to unilateral stimulations) coordinates power grip movements (e.g., opening a bottle). In contrast, during bilateral precision movements, such as playing piano, the fingers of both hands move independently, due to a direct cortico-motoneuronal control, while the hands are coupled (e.g., to maintain the rhythm between the two sides). While most studies on prehension concern unilateral hand movements, many activities of daily life are tackled by bilateral power grips where a neural coupling serves for an automatic movement performance. In primates this mode of motor control is supplemented by a system that enables the uni- or bilateral performance of skilled individual finger movements.


Assuntos
Dedos , Movimento , Animais , Dedos/fisiologia , Mãos/fisiologia , Força da Mão/fisiologia , Reflexo
9.
Sensors (Basel) ; 21(24)2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34960489

RESUMO

The purpose of this study was to examine aging and bimanual effects on finger spatial stability during precision grip. Twenty-one older and 21 younger adults performed precision grip tasks consisting of a single task (grip and lift an object with the thumb and index finger) and a dual task (the grip-lifting task with one hand and a peg board task with the other hand). The center of pressure (COP) trajectory and the grip force were evaluated using a pressure sensor with a high spatial resolution. In the COP trajectory, the main effects of age for the thumb (F1,140 = 46.17, p < 0.01) and index finger (F1,140 = 22.14, p < 0.01) and task difficulty for the thumb (F1,140 = 6.47, p = 0.01) were significant based on ANCOVA. The COP trajectory was statistically decreased in the older adults. The COP trajectory was also decreased in the dual task, regardless of age. The results suggest the existence of a safety strategy to prioritize the spatial stability in the elderly group and in the dual task. This study provides new insights into the interpretation of the COP trajectory.


Assuntos
Dedos , Força da Mão , Idoso , Envelhecimento , Mãos , Humanos , Polegar
10.
Am J Primatol ; 82(6): e23133, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32337763

RESUMO

An experimental study with captive individuals and study of video recordings of wild monkeys explored whether and how tufted capuchin monkeys use onehand to hold one or more objects with multiple grips (compound grips). A task designed to elicit compound grip was presented to five captive tufted capuchin monkeys (Sapajus spp). The monkeys held one to four balls in onehand and dropped the balls individually into a vertical tube. Multiple simple grips and independent digit movements enabled separate control of multiple objects in one hand. Monkeys always supported the wrist on the horizontal edge of the tube before releasing the ball. Increasing the number of balls decreased the likelihood that the monkeys managed the task. Wild bearded capuchins (Sapajus libidinosus) used compound grips spontaneously to store multiple food items. Compound grips have been described in macaques, gorillas, chimpanzees, and humans, and now in a New World primate. We predict that any primate species that exhibits precision grips and independent digit movement can perform compound grips. Our findings suggest many aspects of compound grip that await investigation.


Assuntos
Força da Mão , Sapajus/fisiologia , Animais , Animais de Zoológico/fisiologia , Cebinae/fisiologia , Florida
11.
Proc Natl Acad Sci U S A ; 114(32): 8643-8648, 2017 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-28739958

RESUMO

Grasping is a highly complex movement that requires the coordination of multiple hand joints and muscles. Muscle synergies have been proposed to be the functional building blocks that coordinate such complex motor behaviors, but little is known about how they are implemented in the central nervous system. Here we demonstrate that premotor interneurons (PreM-INs) in the primate cervical spinal cord underlie the spatiotemporal patterns of hand muscle synergies during a voluntary grasping task. Using spike-triggered averaging of hand muscle activity, we found that the muscle fields of PreM-INs were not uniformly distributed across hand muscles but rather distributed as clusters corresponding to muscle synergies. Moreover, although individual PreM-INs have divergent activation patterns, the population activity of PreM-INs reflects the temporal activation of muscle synergies. These findings demonstrate that spinal PreM-INs underlie the muscle coordination required for voluntary hand movements in primates. Given the evolution of neural control of primate hand functions, we suggest that spinal premotor circuits provide the fundamental coordination of multiple joints and muscles upon which more fractionated control is achieved by superimposed, phylogenetically newer, pathways.


Assuntos
Força da Mão/fisiologia , Mãos/fisiologia , Músculo Esquelético/fisiologia , Rede Nervosa/fisiologia , Medula Espinal/fisiologia , Animais , Feminino , Macaca mulatta , Masculino , Músculo Esquelético/inervação
12.
J Neurophysiol ; 122(4): 1330-1341, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31314644

RESUMO

In addition to core deficits in social-communication abilities and repetitive behaviors and interests, many patients with autism spectrum disorder (ASD) experience developmental comorbidities, including sensorimotor issues. Sensorimotor issues are common in ASD and associated with more severe clinical symptoms. Importantly, sensorimotor behaviors are precisely quantifiable and highly translational, offering promising targets for neurophysiological studies of ASD. We used functional MRI to identify brain regions associated with sensorimotor behavior using a visually guided precision gripping task in individuals with ASD (n = 20) and age-, IQ-, and handedness-matched controls (n = 18). During visuomotor behavior, individuals with ASD showed greater force variability than controls. The blood oxygen level-dependent signal for multiple cortical and subcortical regions was associated with force variability, including motor and premotor cortex, posterior parietal cortex, extrastriate cortex, putamen, and cerebellum. Activation in the right premotor cortex scaled with sensorimotor variability in controls but not in ASD. Individuals with ASD showed greater activation than controls in left putamen and left cerebellar lobule VIIb, and activation in these regions was associated with more severe clinically rated symptoms of ASD. Together, these results suggest that greater sensorimotor variability in ASD is associated with altered cortical-striatal processes supporting action selection and cortical-cerebellar circuits involved in feedback-guided reactive adjustments of motor output. Our findings also indicate that atypical organization of visuomotor cortical circuits may result in heightened reliance on subcortical circuits typically dedicated to motor skill acquisition. Overall, these results provide new evidence that sensorimotor alterations in ASD involve aberrant cortical and subcortical organization that may contribute to key clinical issues in patients.NEW & NOTEWORTHY This is the first known study to examine functional brain activation during precision visuomotor behavior in autism spectrum disorder (ASD). We replicate previous findings of elevated force variability in ASD and find these deficits are associated with atypical function of ventral premotor cortex, putamen, and posterolateral cerebellum, indicating cortical-striatal processes supporting action selection and cortical-cerebellar circuits involved in feedback-guided reactive adjustments of motor output may be key targets for understanding the neurobiology of ASD.


Assuntos
Transtorno do Espectro Autista/fisiopatologia , Transtorno do Espectro Autista/psicologia , Encéfalo/fisiopatologia , Desempenho Psicomotor/fisiologia , Adolescente , Adulto , Mapeamento Encefálico , Cerebelo/fisiopatologia , Feminino , Força da Mão , Humanos , Imageamento por Ressonância Magnética , Masculino , Córtex Motor/fisiopatologia , Putamen/fisiopatologia , Adulto Jovem
13.
J Aging Phys Act ; 27(5): 725-738, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30747569

RESUMO

It remains controversial whether aging influences motor learning and whether physiological factors, such as local strength or fitness, are associated with fine motor performance and learning in older adults (OA). OA (n = 51) and young adults (YA, n = 31) performed a short-term motor learning session using a precision grip force modulation task. The rate of improvement of OA compared with YA was steeper with respect to performance variability and temporal precision. Both age groups showed positive transfer during an unpracticed variant of the force modulation task. Local muscle strength (pinch and grip strength) and high cardiovascular fitness positively predicted fine motor performance, whereas initial performance, muscle strength, and motor fitness (heterogeneous motor test battery) negatively predicted rate of improvement. Analyses indicated potentials, but also limits of plasticity for OA.


Assuntos
Aprendizagem/fisiologia , Destreza Motora/fisiologia , Força Muscular/fisiologia , Aptidão Física/fisiologia , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Teste de Esforço , Feminino , Força da Mão/fisiologia , Humanos , Individualidade , Inquéritos e Questionários , Adulto Jovem
14.
J Neurosci ; 35(5): 2015-25, 2015 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-25653359

RESUMO

Sensorimotor abnormalities are common in autism spectrum disorder (ASD) and among the earliest manifestations of the disorder. They have been studied far less than the social-communication and cognitive deficits that define ASD, but a mechanistic understanding of sensorimotor abnormalities in ASD may provide key insights into the neural underpinnings of the disorder. In this human study, we examined rapid, precision grip force contractions to determine whether feedforward mechanisms supporting initial motor output before sensory feedback can be processed are disrupted in ASD. Sustained force contractions also were examined to determine whether reactive adjustments to ongoing motor behavior based on visual feedback are altered. Sustained force was studied across multiple force levels and visual gains to assess motor and visuomotor mechanisms, respectively. Primary force contractions of individuals with ASD showed greater peak rate of force increases and large transient overshoots. Individuals with ASD also showed increased sustained force variability that scaled with force level and was more severe when visual gain was highly amplified or highly degraded. When sustaining a constant force level, their reactive adjustments were more periodic than controls, and they showed increased reliance on slower feedback mechanisms. Feedforward and feedback mechanism alterations each were associated with more severe social-communication impairments in ASD. These findings implicate anterior cerebellar circuits involved in feedforward motor control and posterior cerebellar circuits involved in transforming visual feedback into precise motor adjustments in ASD.


Assuntos
Cerebelo/fisiopatologia , Transtornos Globais do Desenvolvimento Infantil/fisiopatologia , Retroalimentação Fisiológica , Força da Mão , Desempenho Psicomotor , Adolescente , Adulto , Estudos de Casos e Controles , Criança , Feminino , Humanos , Masculino
15.
J Neurosci ; 35(1): 84-95, 2015 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-25568105

RESUMO

The question of how intensive motor training restores motor function after brain damage or stroke remains unresolved. Here we show that the ipsilesional ventral premotor cortex (PMv) and perilesional primary motor cortex (M1) of rhesus macaque monkeys are involved in the recovery of manual dexterity after a lesion of M1. A focal lesion of the hand digit area in M1 was made by means of ibotenic acid injection. This lesion initially caused flaccid paralysis in the contralateral hand but was followed by functional recovery of hand movements, including precision grip, during the course of daily postlesion motor training. Brain imaging of regional cerebral blood flow by means of H2 (15)O-positron emission tomography revealed enhanced activity of the PMv during the early postrecovery period and increased functional connectivity within M1 during the late postrecovery period. The causal role of these areas in motor recovery was confirmed by means of pharmacological inactivation by muscimol during the different recovery periods. These findings indicate that, in both the remaining primary motor and premotor cortical areas, time-dependent plastic changes in neural activity and connectivity are involved in functional recovery from the motor deficit caused by the M1 lesion. Therefore, it is likely that the PMv, an area distant from the core of the lesion, plays an important role during the early postrecovery period, whereas the perilesional M1 contributes to functional recovery especially during the late postrecovery period.


Assuntos
Força da Mão/fisiologia , Córtex Motor/diagnóstico por imagem , Córtex Motor/fisiologia , Destreza Motora/fisiologia , Plasticidade Neuronal/fisiologia , Recuperação de Função Fisiológica/fisiologia , Animais , Macaca mulatta , Masculino , Tomografia por Emissão de Pósitrons/métodos , Fatores de Tempo
16.
J Neurosci ; 35(12): 4882-9, 2015 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-25810519

RESUMO

We recently showed that subcortical circuits contribute to control the gain of motor cortical inputs to spinal motoneurons during precision grip of a small object. Here, we examine whether the involvement of the motor cortex could be revealed by grasping with different hand postures. Using noninvasive cortical, cervicomedullary, and peripheral nerve stimulation we examined in humans motor-evoked potentials (MEPs) and the activity in intracortical circuits (suppression of voluntary electromyography) and spinal motoneurons (F-waves) in intrinsic hand muscles when grasping a 6 mm cylinder with the index finger and thumb while the hand was held in the neutral position or during full pronation and supination. We demonstrate that the size of cortically evoked MEPs in the first dorsal interosseous, but not in the abductor pollicis brevis and abductor digit minimi muscles, was reduced to a similar extent during grasping with the hand pronated or supinated compared with the neutral position. Notably, the suppression of MEPs was present from the MEP onset, suggesting that indirect corticospinal pathways were less likely to be involved than direct connections. There was less intracortical inhibition targeting the first dorsal interosseous during hand pronation and supination compared with neutral and this negatively correlated with changes in MEP size. In contrast, cervicomedullary MEPs and F-waves remained unchanged across conditions, as did MEPs evoked during unopposed weak flexion of the index finger. Our findings reveal a distinct influence of the posture of the hand on the activity of cortical pathways controlling different hand muscles during grasping.


Assuntos
Força da Mão/fisiologia , Mãos/fisiologia , Córtex Motor/fisiologia , Inibição Neural/fisiologia , Postura/fisiologia , Tratos Piramidais/fisiologia , Adulto , Potencial Evocado Motor/fisiologia , Feminino , Dedos/fisiologia , Humanos , Masculino , Músculo Esquelético/fisiologia , Vias Neurais/fisiologia , Estimulação Magnética Transcraniana , Adulto Jovem
17.
J Neurophysiol ; 115(6): 3156-61, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27052582

RESUMO

Sensory feedback from cutaneous mechanoreceptors in the fingertips is important in effective object manipulation, allowing appropriate scaling of grip and load forces during precision grip. However, the role of mechanoreceptor subtypes in these tasks remains incompletely understood. To address this issue, psychophysical tasks that may specifically assess function of type I fast-adapting (FAI) and slowly adapting (SAI) mechanoreceptors were used with object manipulation experiments to examine the regulation of grip force control in an experimental model of graded reduction in tactile sensitivity (healthy volunteers wearing 2 layers of latex gloves). With gloves, tactile sensitivity decreased significantly from 1.9 ± 0.4 to 12.3 ± 2.2 µm in the Bumps task assessing function of FAI afferents but not in a grating orientation task assessing SAI afferents (1.6 ± 0.1 to 1.8 ± 0.2 mm). Six axis force/torque sensors measured peak grip (PGF) and load (PLF) forces generated by the fingertips during a grip-lift task. With gloves there was a significant increase of PGF (14 ± 6%), PLF (17 ± 5%), and grip and load force rates (26 ± 8%, 20 ± 8%). A variable-weight series task was used to examine sensorimotor memory. There was a 20% increase in PGF when the lift of a light object was preceded by a heavy relative to a light object. This relationship was not significantly altered when lifting with gloves, suggesting that the addition of gloves did not change sensorimotor memory effects. We conclude that FAI fibers may be important for the online force scaling but not for the buildup of a sensorimotor memory.


Assuntos
Adaptação Fisiológica/fisiologia , Força da Mão/fisiologia , Mecanorreceptores/fisiologia , Desempenho Psicomotor/fisiologia , Percepção do Tato/fisiologia , Adulto , Retroalimentação Sensorial , Feminino , Dedos/inervação , Humanos , Masculino , Psicofísica , Fatores de Tempo
18.
Exp Brain Res ; 234(8): 2253-65, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27016090

RESUMO

Successfully picking up and handling objects requires taking into account their physical properties (e.g., material) and position relative to the body. Such features are often inferred by sight, but it remains unclear to what extent observers vary their actions depending on the perceived properties. To investigate this, we asked participants to grasp, lift and carry cylinders to a goal location with a precision grip. The cylinders were made of four different materials (Styrofoam, wood, brass and an additional brass cylinder covered with Vaseline) and were presented at six different orientations with respect to the participant (0°, 30°, 60°, 90°, 120°, 150°). Analysis of their grasping kinematics revealed differences in timing and spatial modulation at all stages of the movement that depended on both material and orientation. Object orientation affected the spatial configuration of index finger and thumb during the grasp, but also the timing of handling and transport duration. Material affected the choice of local grasp points and the duration of the movement from the first visual input until release of the object. We find that conditions that make grasping more difficult (orientation with the base pointing toward the participant, high weight and low surface friction) lead to longer durations of individual movement segments and a more careful placement of the fingers on the object.


Assuntos
Dedos/fisiologia , Atividade Motora/fisiologia , Desempenho Psicomotor/fisiologia , Percepção Visual/fisiologia , Adulto , Fenômenos Biomecânicos , Feminino , Humanos , Masculino , Adulto Jovem
19.
J Neurophysiol ; 113(7): 1989-2001, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25552638

RESUMO

Sensorimotor impairments are common in autism spectrum disorder (ASD), but they are not well understood. Here we examined force control during initial pulses and the subsequent rise, sustained, and relaxation phases of precision gripping in 34 individuals with ASD and 25 healthy control subjects. Participants pressed on opposing load cells with their thumb and index finger while receiving visual feedback regarding their performance. They completed 2- and 8-s trials during which they pressed at 15%, 45%, or 85% of their maximum force. Initial pulses guided by feedforward control mechanisms, sustained force output controlled by visual feedback processes, and force relaxation rates all were examined. Control subjects favored an initial pulse strategy characterized by a rapid increase in and then relaxation of force when the target force was low (Type 1). When the target force level or duration of trials was increased, control subjects transitioned to a strategy in which they more gradually increased their force, paused, and then increased their force again. Individuals with ASD showed a more persistent bias toward the Type 1 strategy at higher force levels and during longer trials, and their initial force output was less accurate than that of control subjects. Patients showed increased force variability compared with control subjects when attempting to sustain a constant force level. During the relaxation phase, they showed reduced rates of force decrease. These findings suggest that both feedforward and feedback motor control mechanisms are compromised in ASD and these deficits may contribute to the dyspraxia and sensorimotor abnormalities often seen in this disorder.


Assuntos
Transtorno do Espectro Autista/diagnóstico , Transtorno do Espectro Autista/fisiopatologia , Força da Mão , Desempenho Psicomotor , Adolescente , Criança , Pré-Escolar , Feminino , Força da Mão/fisiologia , Humanos , Masculino , Estimulação Luminosa/métodos , Desempenho Psicomotor/fisiologia , Fatores de Tempo
20.
Exp Brain Res ; 233(11): 3201-20, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26223578

RESUMO

Three experiments investigated the grip force exerted by the fingers on an object displaced actively in the near-body space. In one condition (unimanual) the object was held by one hand with the tripod grip and was moved briskly back and forth along one of the three coordinate directions (up-down, left-right, near-far). In the second condition (bimanual) the same point-to-point movements were performed while holding the object with the index and middle fingers of both hands. In the third condition (bimanual) the object was held as in the second condition and moved along a circular path lying in one of the three coordinate planes (horizontal, frontal, sagittal). In all conditions participants were asked to exert a baseline level of grip force largely exceeding the safety margin against slippage. Both grip forces and hand displacements were measured with high accuracy. As reported in previous studies, in the two point-to-point conditions we observed an upsurge of the grip force at the onset and at the end the movements. However, the timing of the transient increases of the grip force relative to hand kinematics did not confirm the hypothesis set forth by several previous studies that grip modulation is a pre-planned action based on an internal model of the expected effects of the movement. In the third condition, the systematic modulation of the grip force also for circular movements was again at variance with the internal model hypothesis because it cannot be construed as a pre-planned action aiming at countering large changes in dynamic load. We argue that a parsimonious account of the covariations of load and grip forces can be offered by taking into account the visco-elastic properties of the neuromuscular system.


Assuntos
Força da Mão/fisiologia , Mãos/fisiologia , Movimento/fisiologia , Adulto , Análise de Variância , Fenômenos Biomecânicos , Feminino , Humanos , Masculino , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA