Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cells ; 12(5)2023 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-36899943

RESUMO

Precision-cut tumor slices (PCTS) maintain tissue heterogeneity concerning different cell types and preserve the tumor microenvironment (TME). Typically, PCTS are cultured statically on a filter support at an air-liquid interface, which gives rise to intra-slice gradients during culture. To overcome this problem, we developed a perfusion air culture (PAC) system that can provide a continuous and controlled oxygen medium, and drug supply. This makes it an adaptable ex vivo system for evaluating drug responses in a tissue-specific microenvironment. PCTS from mouse xenografts (MCF-7, H1437) and primary human ovarian tumors (primary OV) cultured in the PAC system maintained the morphology, proliferation, and TME for more than 7 days, and no intra-slice gradients were observed. Cultured PCTS were analyzed for DNA damage, apoptosis, and transcriptional biomarkers for the cellular stress response. For the primary OV slices, cisplatin treatment induced a diverse increase in the cleavage of caspase-3 and PD-L1 expression, indicating a heterogeneous response to drug treatment between patients. Immune cells were preserved throughout the culturing period, indicating that immune therapy can be analyzed. The novel PAC system is suitable for assessing individual drug responses and can thus be used as a preclinical model to predict in vivo therapy responses.


Assuntos
Fenômenos Biológicos , Neoplasias Ovarianas , Feminino , Humanos , Camundongos , Animais , Perfusão , Microambiente Tumoral
2.
Antibodies (Basel) ; 11(2)2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35466279

RESUMO

Precision-cut tumor slices (PCTS) have recently emerged as important ex vivo human tumor models, offering the opportunity to study individual patient responses to targeted immunotherapies, including CAR-T cell therapies. In this review, an outline of different human tumor models available in laboratory settings is provided, with a focus on the unique characteristics of PCTS. Standard PCTS generation and maintenance procedures are outlined, followed by an in-depth overview of PCTS utilization in preclinical research aiming to better understand the unique functional characteristics of cytotoxic T cells within human tumors. Furthermore, recent studies using PCTS as an ex vivo model for predicting patient responses to immunotherapies and other targeted therapies against solid tumors are thoroughly presented. Finally, the advantages and limitations of the PCTS models are discussed. PCTS are expected to gain momentum and be fully utilized as a significant tool towards better patient stratification and personalized medicine.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA