Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Physiol ; 595(3): 677-693, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27647415

RESUMO

KEY POINTS: Long-chain acyl-CoA synthetase 6 (ACSL6) mRNA is present in human and rat skeletal muscle, and is modulated by nutritional status: exercise and fasting decrease ACSL6 mRNA, whereas acute lipid ingestion increase its expression. ACSL6 genic inhibition in rat primary myotubes decreased lipid accumulation, as well as activated the higher mitochondrial oxidative capacity programme and fatty acid oxidation through the AMPK/PGC1-α pathway. ACSL6 overexpression in human primary myotubes increased phospholipid species and decreased oxidative metabolism. ABSTRACT: Long-chain acyl-CoA synthetases (ACSL 1 to 6) are key enzymes regulating the partitioning of acyl-CoA species toward different metabolic fates such as lipid synthesis or ß-oxidation. Despite our understanding of ecotopic lipid accumulation in skeletal muscle being associated with metabolic diseases such as obesity and type II diabetes, the role of specific ACSL isoforms in lipid synthesis remains unclear. In the present study, we describe for the first time the presence of ACSL6 mRNA in human skeletal muscle and the role that ACSL6 plays in lipid synthesis in both rodent and human skeletal muscle. ACSL6 mRNA was observed to be up-regulated by acute high-fat meal ingestion in both rodents and humans. In rats, we also demonstrated that fasting and chronic aerobic training negatively modulated the ACSL6 mRNA and other genes of lipid synthesis. Similar results were obtained following ACSL6 knockdown in rat myotubes, which was associated with a decreased accumulation of TAGs and lipid droplets. Under the same knockdown condition, we further demonstrate an increase in fatty acid content, p-AMPK, mitochondrial content, mitochondrial respiratory rates and palmitate oxidation. These results were associated with increased PGC-1α, UCP2 and UCP3 mRNA and decreased reactive oxygen species production. In human myotubes, ACSL6 overexpression reduced palmitate oxidation and PGC-1α mRNA. In conclusion, ACSL6 drives acyl-CoA toward lipid synthesis and its downregulation improves mitochondrial biogenesis, respiratory capacity and lipid oxidation. These outcomes are associated with the activation of the AMPK/PGC1-α pathway.


Assuntos
Coenzima A Ligases/metabolismo , Metabolismo dos Lipídeos/fisiologia , Mitocôndrias Musculares/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Animais , Células Cultivadas , Citrato (si)-Sintase/metabolismo , Coenzima A Ligases/genética , Dieta Hiperlipídica , Ácidos Graxos/metabolismo , Feminino , Humanos , Masculino , Obesidade/metabolismo , Oxirredução , Consumo de Oxigênio , RNA Mensageiro/metabolismo , Ratos Wistar
2.
Differentiation ; 86(1-2): 13-22, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23933398

RESUMO

Primary muscle cell model systems from farm animals are widely used to acquire knowledge about muscle development, muscle pathologies, overweight issues and tissue regeneration. The morphological properties of a bovine primary muscle cell model system, in addition to cell proliferation and differentiation features, were characterized using immunocytochemistry, western blotting and real-time PCR. We observed a reorganization of the Golgi complex in differentiated cells. The Golgi complex transformed to a highly fragmented network of small stacks of cisternae positioned throughout the myotubes as well as around the nucleus. Different extracellular matrix (ECM) components were used as surface coatings in order to improve cell culture conditions. Our experiments demonstrated improved proliferation and early differentiation for cells grown on surface coatings containing a mixture of both glycosaminoglycans (GAGs) and fibrous proteins. We suggest that GAGs and fibrous proteins mixed together into a composite biomaterial can mimic a natural ECM, and this could improve myogenesis for in vitro cell cultures.


Assuntos
Proliferação de Células , Desmina/metabolismo , Glicosaminoglicanos/metabolismo , Desenvolvimento Muscular , Proteína MyoD/metabolismo , Mioblastos Esqueléticos/metabolismo , Animais , Bovinos , Desmina/genética , Matriz Extracelular/metabolismo , Complexo de Golgi/metabolismo , Proteína MyoD/genética , Mioblastos Esqueléticos/citologia , Mioblastos Esqueléticos/fisiologia , Miogenina/genética , Miogenina/metabolismo
3.
Epigenetics ; 19(1): 2341578, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38615330

RESUMO

Long non-coding RNAs (lncRNAs) have been shown to be involved in the regulation of skeletal muscle development through multiple mechanisms. The present study revealed that the lncRNA SOX6 AU (SRY-box transcription factor 6 antisense upstream) is reverse transcribed from upstream of the bovine sex-determining region Y (SRY)-related high-mobility-group box 6 (SOX6) gene. SOX6 AU was significantly differentially expressed in muscle tissue among different developmental stages in Xianan cattle. Subsequently, knockdown and overexpression experiments discovered that SOX6 AU promoted primary skeletal muscle cells proliferation, apoptosis, and differentiation in bovine. The overexpression of SOX6 AU in bovine primary skeletal muscle cells resulted in 483 differentially expressed genes (DEGs), including 224 upregulated DEGs and 259 downregulated DEGs. GO functional annotation analysis showed that muscle development-related biological processes such as muscle structure development and muscle cell proliferation were significantly enriched. KEGG pathway analysis revealed that the PI3K/AKT and MAPK signaling pathways were important pathways for DEG enrichment. Notably, we found that SOX6 AU inhibited the mRNA and protein expression levels of the SOX6 gene. Moreover, knockdown of the SOX6 gene promoted the proliferation and apoptosis of bovine primary skeletal muscle cells. Finally, we showed that SOX6 AU promoted the proliferation and apoptosis of bovine primary skeletal muscle cells by cis-modulation of SOX6 in cattle. This work illustrates our discovery of the molecular mechanisms underlying the regulation of SOX6 AU in the development of beef.


Assuntos
Fosfatidilinositol 3-Quinases , RNA Longo não Codificante , Bovinos , Animais , Fosfatidilinositol 3-Quinases/genética , Metilação de DNA , Desenvolvimento Muscular/genética , Apoptose , Diferenciação Celular
4.
Biology (Basel) ; 10(12)2021 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-34943232

RESUMO

Age-related loss of skeletal muscle is associated with obesity and inflammation. In animal models, intramuscular fat deposits compromise muscle integrity; however, the relevant fat components that mediate muscular inflammation are not known. Previously, we hypothesized that free fatty acids (FFAs) may directly induce inflammatory gene expression in skeletal muscle cells of obese rats. Here, we examined this hypothesis in primary human skeletal myoblasts (SkMs) using multiplex expression analysis of 39 inflammatory proteins in response to different FFA species. Multiplex mRNA quantification confirmed that the IL6, IL1RA, IL4, LIF, CXCL8, CXCL1, CXCL12 and CCL2 genes were differentially regulated by saturated and unsaturated C16 or C18 FFAs. Fluorescence staining revealed that only saturated C16 and C18 strongly interfere with myoblast replication independent of desmin expression, mitochondrial abundance and oxidative activity. Furthermore, we addressed the possible implications of 71 human receptor tyrosine kinases (RTKs) in FFA-mediated effects. Phosphorylated EphB6 and TNK2 were associated with impaired myoblast replication by saturated C16 and C18 FFAs. Our data suggest that abundant FFA species in human skeletal muscle tissue may play a decisive role in the progression of sarcopenic obesity by affecting inflammatory signals or myoblast replication.

5.
Intern Med ; 60(20): 3309-3315, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33967141

RESUMO

Primary skeletal muscle lymphoma is extremely uncommon, and there have only been eight previous case reports on primary skeletal muscle peripheral T-cell lymphoma, not otherwise specified (PSM-PTCL, NOS). We herein report an autopsy case of a 71-year-old woman with PSM-PTCL, NOS, who had a 24-year history of systemic sclerosis treated with immunosuppressive drugs. A post-mortem examination revealed infiltration of lymphoma cells positive for T-cell markers, cytotoxic markers, and p53. This case was considered to be one of other iatrogenic immunodeficiency-associated lymphoproliferative disorder (OIIA-LPD). This is the first case categorized under both PSM-PTCL, NOS, and OIIA-LPD.


Assuntos
Linfoma de Células T Periférico , Transtornos Linfoproliferativos , Idoso , Autopsia , Feminino , Humanos , Imunossupressores , Linfoma de Células T Periférico/diagnóstico , Músculo Esquelético
6.
J Mol Endocrinol ; 64(3): 125-132, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31990657

RESUMO

Hyperinsulinaemia potentially contributes to insulin resistance in metabolic tissues, such as skeletal muscle. The purpose of these experiments was to characterise glucose uptake, insulin signalling and relevant gene expression in primary human skeletal muscle-derived cells (HMDCs), in response to prolonged insulin exposure (PIE) as a model of hyperinsulinaemia-induced insulin resistance. Differentiated HMDCs from healthy human donors were cultured with or without insulin (100 nM) for 3 days followed by an acute insulin stimulation. HMDCs exposed to PIE were characterised by impaired insulin-stimulated glucose uptake, blunted IRS-1 phosphorylation (Tyr612) and Akt (Ser473) phosphorylation in response to an acute insulin stimulation. Glucose transporter 1 (GLUT1), but not GLUT4, mRNA and protein increased following PIE. The mRNA expression of metabolic (PDK4) and inflammatory markers (TNF-α) was reduced by PIE but did not change lipid (SREBP1 and CD36) or mitochondrial (UCP3) markers. These experiments provide further characterisation of the effects of PIE as a model of hyperinsulinaemia-induced insulin resistance in HMDCs.


Assuntos
Hiperinsulinismo/metabolismo , Resistência à Insulina , Insulina/farmacologia , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Adulto , Células Cultivadas , Glucose/metabolismo , Humanos , Hiperinsulinismo/patologia , Insulina/metabolismo , Masculino , Fibras Musculares Esqueléticas/patologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Transdução de Sinais/efeitos dos fármacos , Adulto Jovem
7.
Artigo em Inglês | MEDLINE | ID: mdl-30838203

RESUMO

Tissue engineered skeletal muscle allows investigation of the cellular and molecular mechanisms that regulate skeletal muscle pathology. The fabricated model must resemble characteristics of in vivo tissue and incorporate cost-effective and high content primary human tissue. Current models are limited by low throughput due to the complexities associated with recruiting tissue donors, donor specific variations, as well as cellular senescence associated with passaging. This research presents a method using fused deposition modeling (FDM) and laser sintering (LS) 3D printing to generate reproducible and scalable tissue engineered primary human muscle, possessing aligned mature myotubes reminiscent of in vivo tissue. Many existing models are bespoke causing variability when translated between laboratories. To this end, a scalable model has been developed (25-500 µL construct volumes) allowing fabrication of mature primary human skeletal muscle. This research provides a strategy to overcome limited biopsy cell numbers, enabling high throughput screening of functional human tissue.

8.
Chem Biol Interact ; 308: 164-169, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31100272

RESUMO

Emerging data indicate that prenatal exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) could interfere with myogenic differentiation in vivo. Acetylcholinesterase (EC3.1.1.7; AChE), an enzyme critical for cholinergic neurotransmission, is abundantly expressed in neurons and mature myotubes, and we recently found that muscle AChE expression was suppressed in parallel with the inhibition of myogenic differentiation upon TCDD treatment in mouse C2C12 cells. This TCDD-induced suppression of muscle AChE was proposed to involve an aryl hydrocarbon receptor (AhR)-independent mechanism, but the precise underlying mechanism remains unclear. Considering the widely recognized role of muscular activity in AChE expression and its potential crosstalk with the AhR signaling pathway, we sought to investigate the effect of TCDD on muscle AChE expression in the presence of muscular activity. Therefore, we employed a highly contractile rat primary skeletal muscle culture system in which AChE activity and the expression of genes related to it (AChE T subunit and collagen Q (ColQ)) were increased during the myogenic differentiation process. Although TCDD treatment successfully induced the expression of genes regulated by AhR activation, the treatment exerted no notable effects on myogenic differentiation. Moreover, muscle AChE enzymatic activity and mRNA level remained unchanged following TCDD treatment, and only ColQ mRNA expression was slightly increased after 4-day treatment with TCDD (10-10 M). The compensatory role of muscle-contraction-related signaling pathways in this newly identified unresponsiveness of muscle AChE to TCDD warrants further investigation.


Assuntos
Acetilcolinesterase/metabolismo , Diferenciação Celular/efeitos dos fármacos , Desenvolvimento Muscular/efeitos dos fármacos , Dibenzodioxinas Policloradas/toxicidade , Acetilcolinesterase/genética , Animais , Células Cultivadas , Colágeno/genética , Colágeno/metabolismo , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Contração Muscular/efeitos dos fármacos , Mioblastos Esqueléticos/citologia , Mioblastos Esqueléticos/efeitos dos fármacos , Mioblastos Esqueléticos/metabolismo , Dibenzodioxinas Policloradas/metabolismo , Ratos , Ratos Sprague-Dawley , Regulação para Cima/efeitos dos fármacos
9.
Virology ; 530: 65-74, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30782564

RESUMO

The eukaryotic translation elongation factor 1A (eEF1A) has two cell-type specific paralogs, eEF1A1 and eEF1A2. Both paralogs undertake a canonical function in delivering aminoacyl-tRNA to the ribosome for translation, but differences in other functions are emerging. eEF1A1 has been reported to be important for the replication of many viruses, but no study has specifically linked the eEF1A2 paralog. We have previously demonstrated that eEF1A1 directly interacts with HIV-1 RT and supports efficient reverse transcription. Here, we showed that RT interacted more strongly with eEF1A1 than with eEF1A2 in immunoprecipitation assay. Biolayer interferometry using eEF1A paralogs showed different association and dissociation rates with RT. Over expressed eEF1A1, but not eEF1A2, was able to restore HIV-1 reverse transcription efficiency in HEK293T cells with endogenous eEF1A knocked-down and HIV-1 reverse transcription efficiency correlated with the level of eEF1A1 mRNA, but not to eEF1A2 mRNA in both HEK293T and primary human skeletal muscle cells.


Assuntos
Transcriptase Reversa do HIV/metabolismo , HIV-1/crescimento & desenvolvimento , Interações Hospedeiro-Patógeno , Fator 1 de Elongação de Peptídeos/metabolismo , Transcrição Reversa , Células HEK293 , Humanos , Imunoprecipitação , Células Musculares , Ligação Proteica
10.
Mol Clin Oncol ; 8(1): 80-82, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29387400

RESUMO

Primary lymphomas of the bone or skeletal muscle are rare. Three mechanisms of lymphomatous involvement of the muscle have been described, namely direct invasion from adjacent involved lymph nodes or bone, metastatic spread and, least commonly, primary muscle lymphoma. We herein present a rare case of primary mucle non-Hodgkin lymphoma with a description if the associated clinicopathological findings and a review of the relevant literature. A 41-year-old female patient was referred to our hospital with a painful mass in the right lower extremity. Following resection and histopathological examination, a diffuse large B-cell lymphoma originating from the muscle with cutaneous and subcutanenous infiltration was diagnosed. The patient received chemotherapy with six cycles of cyclophosphamide, hydroxydaunomycin, oncovin and prednisone (CHOP regimen) and a complete radiological response was achieved after six cycles of treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA