Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.911
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 165(7): 1762-1775, 2016 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-27315483

RESUMO

Maternal obesity during pregnancy has been associated with increased risk of neurodevelopmental disorders, including autism spectrum disorder (ASD), in offspring. Here, we report that maternal high-fat diet (MHFD) induces a shift in microbial ecology that negatively impacts offspring social behavior. Social deficits and gut microbiota dysbiosis in MHFD offspring are prevented by co-housing with offspring of mothers on a regular diet (MRD) and transferable to germ-free mice. In addition, social interaction induces synaptic potentiation (LTP) in the ventral tegmental area (VTA) of MRD, but not MHFD offspring. Moreover, MHFD offspring had fewer oxytocin immunoreactive neurons in the hypothalamus. Using metagenomics and precision microbiota reconstitution, we identified a single commensal strain that corrects oxytocin levels, LTP, and social deficits in MHFD offspring. Our findings causally link maternal diet, gut microbial imbalance, VTA plasticity, and behavior and suggest that probiotic treatment may relieve specific behavioral abnormalities associated with neurodevelopmental disorders. VIDEO ABSTRACT.


Assuntos
Transtorno do Espectro Autista/microbiologia , Dieta Hiperlipídica , Microbioma Gastrointestinal , Obesidade/complicações , Comportamento Social , Animais , Disbiose/fisiopatologia , Feminino , Vida Livre de Germes , Abrigo para Animais , Limosilactobacillus reuteri , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ocitocina/análise , Ocitocina/metabolismo , Gravidez , Área Tegmentar Ventral
2.
FASEB J ; 38(5): e23530, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38466314

RESUMO

Brevibacillus laterosporus is a strain of probiotic bacteria that has been widely used in pest control, cash crop, and other production areas. However, few studies have been conducted on its use as a feed additive in animals. Therefore, the probiotic potential of B. laterosporus PBC01 was evaluated by characterizing hydrophobicity, auto-aggregation activity, bile salt and simulated gastrointestinal fluid tolerance, bienzymatic, and antibacterial activity. Antibiotic susceptibility, hemolysis assays, and supplemental feeding of mice were also performed to evaluate safety features. Our results showed that B. laterosporus PBC01 had moderate hydrophobicity, high auto-agglutination ability. Meanwhile, B. laterosporus PBC01 had good tolerance to bile salt and simulated gastrointestinal fluid. It had the ability to secrete protease, cellulase, and to inhibit various pathogens. In addition, B. laterosporus PBC01 was sensitive to many antibiotics, and did not produce hemolysin. In the safety assessment of mice, it did not cause any deaths, nor did it affect the cell components of blood, antioxidant capacity, and reproductive health. The study indicated the great probiotic characteristics and safety of B. laterosporus PBC01. This may provide a theoretical basis for the clinical application and development of probiotic-based feed additives.


Assuntos
Bacillus , Brevibacillus , Animais , Camundongos , Antibacterianos/farmacologia , Ácidos e Sais Biliares
3.
Lab Invest ; 104(4): 100330, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38242234

RESUMO

Intestinal microbiota confers susceptibility to diet-induced obesity, yet many probiotic species that synthesize tryptophan (trp) actually attenuate this effect, although the underlying mechanisms are unclear. We monocolonized germ-free mice with a widely consumed probiotic Lacticaseibacillus rhamnosus GG (LGG) under trp-free or -sufficient dietary conditions. We obtained untargeted metabolomics from the mouse feces and serum using liquid chromatography-mass spectrometry and obtained intestinal transcriptomic profiles via bulk-RNA sequencing. When comparing LGG-monocolonized mice with germ-free mice, we found a synergy between LGG and dietary trp in markedly promoting the transcriptome of fatty acid metabolism and ß-oxidation. Upregulation was specific and was not observed in transcriptomes of trp-fed conventional mice and mice monocolonized with Ruminococcus gnavus. Metabolomics showed that fecal and serum metabolites were also modified by LGG-host-trp interaction. We developed an R-Script-based MEtabolome-TRanscriptome Correlation Analysis algorithm and uncovered LGG- and trp-dependent metabolites that were positively or negatively correlated with fatty acid metabolism and ß-oxidation gene networks. This high-throughput metabolome-transcriptome correlation strategy can be used in similar investigations to reveal potential interactions between specific metabolites and functional or disease-related transcriptomic networks.


Assuntos
Microbioma Gastrointestinal , Lacticaseibacillus rhamnosus , Camundongos , Animais , Intestinos , Microbioma Gastrointestinal/genética , Perfilação da Expressão Gênica , Ácidos Graxos
4.
Curr Issues Mol Biol ; 46(2): 1259-1280, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38392198

RESUMO

The aim of the study was to determine differences in the proteome and peptidome and zinc concentrations in the serum and tissues of chickens supplemented with a multi-strain probiotic and/or zinc glycine chelate in ovo. A total of 1400 fertilized broiler eggs (Ross × Ross 708) were divided into four groups: a control and experimental groups injected with a multi-strain probiotic, with zinc glycine chelate, and with the multi-strain probiotic and zinc glycine chelate. The proteome and peptidome were analyzed using SDS-PAGE and MALDI-TOF MS, and the zinc concentration was determined by flame atomic absorption spectrometry. We showed that in ovo supplementation with zinc glycine chelate increased the Zn concentration in the serum and yolk sac at 12 h post-hatch. The results of SDS-PAGE and western blot confirmed the presence of Cu/Zn SOD in the liver and in the small and large intestines at 12 h and at 7 days after hatching in all groups. Analysis of the MALDI-TOF MS spectra of chicken tissues showed in all experimental groups the expression of proteins and peptides that regulate immune response, metabolic processes, growth, development, and reproduction.

5.
Am J Physiol Gastrointest Liver Physiol ; 326(2): G163-G175, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-37988603

RESUMO

The growing incidence of human diseases involving inflammation and increased gut permeability makes the quest for protective functional foods more crucial than ever. Propionibacterium freudenreichii (P. freudenreichii) is a beneficial bacterium used in the dairy and probiotic industries. Selected strains exert anti-inflammatory effects, and the present work addresses whether the P. freudenreichii CIRM-BIA129, consumed daily in a preventive way, could protect mice from acute colitis induced by dextran sodium sulfate (DSS), and more precisely, whether it could protect from intestinal epithelial breakdown induced by inflammation. P. freudenreichii CIRM-BIA129 mitigated colitis severity and inhibited DSS-induced permeability. It limited crypt length reduction and promoted the expression of zonula occludens-1 (ZO-1), without reducing interleukin-1ß mRNA (il-1ß) expression. In vitro, P. freudenreichii CIRM-BIA129 prevented the disruption of a Caco-2 monolayer induced by proinflammatory cytokines. It increased transepithelial electrical resistance (TEER) and inhibited permeability induced by inflammation, along with an increased ZO-1 expression. Extracellular vesicles (EVs) from P. freudenreichii CIRM-BIA129, carrying the surface layer protein (SlpB), reproduced the protective effect of P. freudenreichii CIRM-BIA129. A mutant strain deleted for slpB (ΔslpB), or EVs from this mutant strain, had lost their protective effects and worsened both DSS-induced colitis and inflammation in vivo. These results shown that P. freudenreichii CIRM-BIA129 daily consumption has the potential to greatly alleviate colitis symptoms and, particularly, to counter intestinal epithelial permeability induced by inflammation by restoring ZO-1 expression through mechanisms involving S-layer protein B. They open new avenues for the use of probiotic dairy propionibacteria and/or postbiotic fractions thereof, in the context of gut permeability.NEW & NOTEWORTHY Propionibacterium freudenreichii reduces dextran sodium sulfate (DSS)-induced intestinal permeability in vivo. P. freudenreichii does not inhibit inflammation but damages linked to inflammation. P. freudenreichii inhibits intestinal epithelial breakdown through S-layer protein B. The protective effects of P. freudenreichii depend on S-layer protein B. Extracellular vesicles from P. freudenreichii CB 129 mimic the protective effect of the probiotic.


Assuntos
Colite , Propionibacterium freudenreichii , Receptores Fc , Sulfatos , Humanos , Camundongos , Animais , Células CACO-2 , Dextranos/farmacologia , Colite/induzido quimicamente , Colite/prevenção & controle , Colite/metabolismo , Inflamação/metabolismo , Sulfato de Dextrana/farmacologia , Camundongos Endogâmicos C57BL , Mucosa Intestinal/metabolismo , Modelos Animais de Doenças
6.
Artigo em Inglês | MEDLINE | ID: mdl-38992408

RESUMO

Inflammatory bowel disease (IBD) comprises chronic and relapsing disorders of the gastrointestinal tract, characterized by dysregulated immune responses to the gut microbiome. The gut microbiome and diet are key environmental factors that influence the onset and progression of IBD and can be leveraged for treatment. In this review, we summarize the current evidence on the role of the gut microbiome and diet in IBD pathogenesis, and the potential of microbiome-directed therapies and dietary interventions to improve IBD outcomes. We discuss available data and the advantages and drawbacks of the different approaches to manipulate the gut microbiome, such as fecal microbiota transplantation, next-generation and conventional probiotics, and postbiotics. We also review the use of diet as a therapeutic tool in IBD, including the effects in induction and maintenance, special diets, and exclusive enteral nutrition. Finally, we highlight the challenges and opportunities for the translation of diet and microbiome interventions into clinical practice, such as the need for personalization, manufacturing and regulatory hurdles, and the specificity to take into account for clinical trial design.

7.
Brief Bioinform ; 23(1)2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-34849572

RESUMO

Lactic acid bacteria consortia are commonly present in food, and some of these bacteria possess probiotic properties. However, discovery and experimental validation of probiotics require extensive time and effort. Therefore, it is of great interest to develop effective screening methods for identifying probiotics. Advances in sequencing technology have generated massive genomic data, enabling us to create a machine learning-based platform for such purpose in this work. This study first selected a comprehensive probiotics genome dataset from the probiotic database (PROBIO) and literature surveys. Then, k-mer (from 2 to 8) compositional analysis was performed, revealing diverse oligonucleotide composition in strain genomes and apparently more probiotic (P-) features in probiotic genomes than non-probiotic genomes. To reduce noise and improve computational efficiency, 87 376 k-mers were refined by an incremental feature selection (IFS) method, and the model achieved the maximum accuracy level at 184 core features, with a high prediction accuracy (97.77%) and area under the curve (98.00%). Functional genomic analysis using annotations from gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and Rapid Annotation using Subsystem Technology (RAST) databases, as well as analysis of genes associated with host gastrointestinal survival/settlement, carbohydrate utilization, drug resistance and virulence factors, revealed that the distribution of P-features was biased toward genes/pathways related to probiotic function. Our results suggest that the role of probiotics is not determined by a single gene, but by a combination of k-mer genomic components, providing new insights into the identification and underlying mechanisms of probiotics. This work created a novel and free online bioinformatic tool, iProbiotics, which would facilitate rapid screening for probiotics.


Assuntos
Probióticos , Trato Gastrointestinal , Genoma , Genômica/métodos , Aprendizado de Máquina , Probióticos/análise
8.
Appl Environ Microbiol ; 90(2): e0201423, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38294252

RESUMO

Bifidobacteria are among the first microbial colonizers of the human gut, being frequently associated with human health-promoting activities. In the current study, an in silico methodology based on an ecological and phylogenomic-driven approach allowed the selection of a Bifidobacterium adolescentis prototype strain, i.e., B. adolescentis PRL2023, which best represents the overall genetic content and functional features of the B. adolescentis taxon. Such features were confirmed by in vitro experiments aimed at evaluating the ability of this strain to survive in the gastrointestinal tract of the host and its ability to interact with human intestinal cells and other microbial gut commensals. In this context, co-cultivation of B. adolescentis PRL2023 and several gut commensals revealed various microbe-microbe interactions and indicated co-metabolism of particular plant-derived glycans, such as xylan.IMPORTANCEThe use of appropriate bacterial strains in experimental research becomes imperative in order to investigate bacterial behavior while mimicking the natural environment. In the current study, through in silico and in vitro methodologies, we were able to identify the most representative strain of the Bifidobacterium adolescentis species. The ability of this strain, B. adolescentis PRL2023, to cope with the environmental challenges imposed by the gastrointestinal tract, together with its ability to switch its carbohydrate metabolism to compete with other gut microorganisms, makes it an ideal choice as a B. adolescentis prototype and a member of the healthy microbiota of adults. This strain possesses a genetic blueprint appropriate for its exploitation as a candidate for next-generation probiotics.


Assuntos
Bifidobacterium adolescentis , Microbioma Gastrointestinal , Probióticos , Adulto , Humanos , Bifidobacterium adolescentis/genética , Bifidobacterium adolescentis/metabolismo , Microbioma Gastrointestinal/genética , Bifidobacterium/genética , Bifidobacterium/metabolismo , Filogenia
9.
Appl Environ Microbiol ; : e0119724, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39240119

RESUMO

Some strains of lactic acid bacteria can regulate the host's intestinal immune system. Bacterial cells and membrane vesicles (MVs) of Limosilactobacillus antri JCM 15950T promote immunoglobulin A (IgA) production in murine Peyer's patch cells via toll-like receptor (TLR) 2. This study aimed to investigate the role of lipoteichoic acid (LTA), a ligand of TLR2, in the immunostimulatory activity of these bacterial cells and their MVs. LTA extracted from bacterial cells was purified through hydrophobic interaction chromatography and then divided into fractions LTA1 and LTA2 through anion-exchange chromatography. LTA1 induced greater interleukin (IL)-6 production from macrophage-like RAW264 cells than LTA2, and the induced IL-6 production was suppressed by TLR2 neutralization using an anti-TLR2 antibody. The LTAs in both fractions contained two hexose residues in the glycolipid anchor; however, LTA1 was particularly rich in triacyl LTA. The free hydroxy groups in the glycerol phosphate (GroP) repeating units were substituted by d-alanine (d-Ala) and α-glucose in LTA1, but only by α-glucose in LTA2. The dealanylation of LTA1 slightly suppressed IL-6 production in RAW264 cells, whereas deacylation almost completely suppressed IL-6 production. Furthermore, IL-6 production induced by dealanylated LTA1 was markedly higher than that induced by dealanylated LTA2. These results indicated that the critical moieties for the immunostimulatory activity of L. antri-derived LTA were the three fatty acid residues rather than the substitution with d-Ala in GroP. LTA was also detected in MVs, suggesting that the triacyl LTA, but not the diacyl LTA, translocated to the MVs and conferred immunostimulatory activity. IMPORTANCE: Some lactic acid bacteria activate the host intestinal immune system via toll-like receptor (TLR) 2. Lipoteichoic acid (LTA) is a TLR2 ligand; however, the moieties of LTA that determine its immunostimulatory activity remain unclear because of the wide diversity of LTA partial structures. We found that Limosilactobacillus antri JCM 15950T has three types of LTAs (triacyl, diacyl, and monoacyl LTAs). Specifically, structural analysis of the LTAs revealed that triacyl LTA plays a crucial role in immunostimulation and that the fatty acid residues are essential for the activity. The three acyl residues are characteristic of LTAs from many lactic acid bacteria, and our findings can explain the immunostimulatory mechanisms widely exhibited by lactic acid bacteria. Furthermore, the immunostimulatory activity of membrane vesicles released by L. antri JCM 15950T is due to the transferred LTA, demonstrating a novel mechanism of membrane vesicle-mediated immunostimulation.

10.
Am J Physiol Regul Integr Comp Physiol ; 327(2): R123-R132, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38780441

RESUMO

Obesity in adolescence is increasing in frequency and is associated with elevated proinflammatory cytokines and chronic pain in a sex-dependent manner. Dietary probiotics may mitigate these detrimental effects of obesity. Using a Long-Evans adolescent and adult rat model of overweight (high-fat diet (HFD) - 45% kcal from fat from weaning), we determined the effect of a single-strain dietary probiotic [Lactiplantibacillus plantarum 299v (Lp299v) from weaning] on the theoretically increased neuropathic injury-induced pain phenotype and inflammatory cytokines. We found that although HFD increased fat mass, it did not markedly affect pain phenotype, particularly in adolescence, but there were subtle differences in pain in adult male versus female rats. The combination of HFD and Lp299v augmented the increase in leptin in adolescent females. There were many noninteracting main effects of age, diet, and probiotic on an array of cytokines and adipokines with adults being higher than adolescents, HFD higher than the control diet, and a decrease with probiotic compared with placebo. Of particular interest were the probiotic-induced increases in IL12p70 in female adolescents on an HFD. We conclude that a more striking pain phenotype could require a higher and longer duration caloric diet or a different etiology of pain. A major strength of our study was that a single-strain probiotic had a wide range of inhibiting effects on most proinflammatory cytokines. The positive effect of the probiotic on leptin in female adolescent rats is intriguing and worthy of exploration.NEW & NOTEWORTHY A single-strain probiotic (Lp299v) had a wide range of inhibiting effects on most proinflammatory cytokines (especially IL12p70) measured in this high-fat diet rat model of mild obesity. The positive effect of probiotic on leptin in female adolescent rats is intriguing and worthy of exploration.


Assuntos
Citocinas , Dieta Hiperlipídica , Probióticos , Ratos Long-Evans , Animais , Probióticos/farmacologia , Feminino , Masculino , Dieta Hiperlipídica/efeitos adversos , Citocinas/metabolismo , Ratos , Composição Corporal , Medição da Dor , Leptina/sangue , Modelos Animais de Doenças , Fatores Etários , Obesidade/fisiopatologia , Fatores Sexuais , Dor/prevenção & controle , Dor/etiologia
11.
BMC Microbiol ; 24(1): 60, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38373929

RESUMO

BACKGROUND: The impact of probiotic strains on host health is widely known. The available studies on the interaction between bacteria and the host are focused on the changes induced by bacteria in the host mainly. The studies determining the changes that occurred in the bacteria cells are in the minority. Within this paper, we determined what happens to the selected Bifidobacterium adolescentis and Bifidobacterium longum ssp. longum in an experimental environment with the intestinal epithelial layer. For this purpose, we tested the bacteria cells' viability, redox activity, membrane potential and enzymatic activity in different environments, including CaCo-2/HT-29 co-culture, cell culture medium, presence of inflammatory inductor (TNF-α) and oxygen. RESULTS: We indicated that the external milieu impacts the viability and vitality of bacteria. Bifidobacterium adolescentis decrease the size of the live population in the cell culture medium with and without TNF-α (p < 0.001 and p < 0.01 respectively). In contrast, Bifidobacterium longum ssp. longum significantly increased survivability in contact with the eukaryotic cells and cell culture medium (p < 0.001). Bifidobacterium adolescentis showed significant changes in membrane potential, which was decreased in the presence of eukaryotic cells (p < 0.01), eukaryotic cells in an inflammatory state (p < 0.01), cell culture medium (p < 0.01) and cell culture medium with TNF-α (p < 0.05). In contrast, Bifidobacterium longum ssp. longum did not modulate membrane potential. Instead, bacteria significantly decreased the redox activity in response to milieus such as eukaryotic cells presence, inflamed eukaryotic cells as well as the culture medium (p < 0.001). The redox activity was significantly different in the cells culture medium vs the presence of eukaryotic cells (p < 0.001). The ability to ß-galactosidase production was different for selected strains: Bifidobacterium longum ssp. longum indicated 91.5% of positive cells, whereas Bifidobacterium adolescentis 4.34% only. Both strains significantly reduced the enzyme production in contact with the eukaryotic milieu but not in the cell culture media. CONCLUSION: The environmental-induced changes may shape the probiotic properties of bacterial strains. It seems that the knowledge of the sensitivity of bacteria to the external environment may help to select the most promising probiotic strains, reduce research costs, and contribute to greater reproducibility of the obtained probiotic effects.


Assuntos
Bifidobacterium adolescentis , Bifidobacterium longum , Bifidobacterium , Probióticos , Humanos , Fator de Necrose Tumoral alfa , Células CACO-2 , Células Eucarióticas , Reprodutibilidade dos Testes , Bactérias
12.
BMC Microbiol ; 24(1): 114, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575861

RESUMO

BACKGROUND: Diarrhea poses a major threat to bovine calves leading to mortality and economic losses. Among the causes of calf diarrhea, bovine rotavirus is a major etiological agent and may result in dysbiosis of gut microbiota. The current study was designed to investigate the effect of probiotic Limosilactobacillus fermentum (Accession No.OR504458) on the microbial composition of rotavirus-infected calves using 16S metagenomic analysis technique. Screening of rotavirus infection in calves below one month of age was done through clinical signs and Reverse Transcriptase PCR. The healthy calves (n = 10) were taken as control while the infected calves (n = 10) before treatment was designated as diarrheal group were treated with Probiotic for 5 days. All the calves were screened for the presence of rotavirus infection on each day and fecal scoring was done to assess the fecal consistency. Infected calves after treatment were designated as recovered group. Fecal samples from healthy, recovered and diarrheal (infected calves before sampling) were processed for DNA extraction while four samples from each group were processed for 16S metagenomic analysis using Illumina sequencing technique and analyzed via QIIME 2. RESULTS: The results show that Firmicutes were more abundant in the healthy and recovered group than in the diarrheal group. At the same time Proteobacteria was higher in abundance in the diarrheal group. Order Oscillospirales dominated healthy and recovered calves and Enterobacterials dominated the diarrheal group. Alpha diversity indices show that diversity indices based on richness were higher in the healthy group and lower in the diarrheal group while a mixed pattern of clustering between diarrheal and recovered groups samples in PCA plots based on beta diversity indices was observed. CONCLUSION: It is concluded that probiotic Limosilactobacillus Fermentum N-30 ameliorate the dysbiosis caused by rotavirus diarrhea and may be used to prevent diarrhea in pre-weaned calves after further exploration.


Assuntos
Doenças dos Bovinos , Microbioma Gastrointestinal , Limosilactobacillus fermentum , Probióticos , Infecções por Rotavirus , Rotavirus , Animais , Bovinos , Rotavirus/genética , Infecções por Rotavirus/tratamento farmacológico , Infecções por Rotavirus/veterinária , Microbioma Gastrointestinal/genética , Disbiose , Diarreia/tratamento farmacológico , Diarreia/veterinária , Fezes/microbiologia , Probióticos/uso terapêutico , Doenças dos Bovinos/tratamento farmacológico , Doenças dos Bovinos/microbiologia
13.
BMC Microbiol ; 24(1): 105, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561662

RESUMO

Diabetes mellitus (DM) is a chronic metabolic disorder characterized by an elevated level of blood glucose due to the absence of insulin secretion, ineffectiveness, or lack of uptake of secreted insulin in the body. The improperly diagnosed and poorly managed DM can cause severe damage to organs in the body like the nerves, eyes, heart, and kidneys. This study was aimed at investigating the effect of Clostridium butyricum (probiotic) with magnesium supplementation to evaluate the effect on gut microbial dysbiosis and blood glucose levels. In the laboratory, 6-8 weeks old 24 male albino rats weighing 200-250 g were given free access to water and food. Diabetes was induced using streptozotocin (60 mg/kg) in overnight fasted rats. Diabetic rats were randomly divided into four groups (n = 6, 6 replicates in each group). Metformin (100 mg/kg/day) with a standard basal diet was provided to control group (G0), Clostridium butyricum (1.5 × 105 CFU/day) with standard basal diet was provided to treatment group (G1), magnesium (500 mg/kg/day) was provided to group (G2). Clostridium butyricum (1.5 × 105 CFU/day) and magnesium (300 mg/kg/day) in combination with a standard basal diet was provided to group (G3). Blood Glucose, Magnesium blood test and microbial assay were done. Random blood glucose levels were monitored twice a week for 21 days and were represented as mean of each week. The results conclude that Clostridium butyricum (1.5 × 105 CFU) is very effective in balancing random blood glucose levels from 206.6 ± 67.7 to 85.1 ± 3.8 (p = 0.006) compared to other groups (p > 0.005). The results of stool analysis showed that Clostridium butyricum as probiotic restores microbial dysbiosis as evident by the 105 CFU Clostridium butyricum load in G1, which was higher than G0, G2 and G3 which were 103 and 104 CFU respectively. The findings of this study conclude that Clostridium butyricum supplementation improved blood glucose levels and intestinal bacterial load in type II diabetes mellitus.


Assuntos
Clostridium butyricum , Diabetes Mellitus Tipo 2 , Probióticos , Masculino , Ratos , Animais , Clostridium butyricum/fisiologia , Glicemia , Magnésio , Disbiose , Probióticos/farmacologia
14.
BMC Microbiol ; 24(1): 229, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38943061

RESUMO

BACKGROUND: Lactobacillus plantarum has been found to play a significant role in maintaining the balance of intestinal flora in the human gut. However, it is sensitive to commonly used antibiotics and is often incidentally killed during treatment. We attempted to identify a means to protect L. plantarum ATCC14917 from the metabolic changes caused by two commonly used antibiotics, ampicillin, and doxycycline. We examined the metabolic changes under ampicillin and doxycycline treatment and assessed the protective effects of adding key exogenous metabolites. RESULTS: Using metabolomics, we found that under the stress of ampicillin or doxycycline, L. plantarum ATCC14917 exhibited reduced metabolic activity, with purine metabolism a key metabolic pathway involved in this change. We then screened the key biomarkers in this metabolic pathway, guanine and adenosine diphosphate (ADP). The exogenous addition of each of these two metabolites significantly reduced the lethality of ampicillin and doxycycline on L. plantarum ATCC14917. Because purine metabolism is closely related to the production of reactive oxygen species (ROS), the results showed that the addition of guanine or ADP reduced intracellular ROS levels in L. plantarum ATCC14917. Moreover, the killing effects of ampicillin and doxycycline on L. plantarum ATCC14917 were restored by the addition of a ROS accelerator in the presence of guanine or ADP. CONCLUSIONS: The metabolic changes of L. plantarum ATCC14917 under antibiotic treatments were determined. Moreover, the metabolome information that was elucidated can be used to help L. plantarum cope with adverse stress, which will help probiotics become less vulnerable to antibiotics during clinical treatment.


Assuntos
Ampicilina , Antibacterianos , Doxiciclina , Lactobacillus plantarum , Metabolômica , Lactobacillus plantarum/metabolismo , Lactobacillus plantarum/efeitos dos fármacos , Antibacterianos/farmacologia , Ampicilina/farmacologia , Doxiciclina/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Purinas/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Redes e Vias Metabólicas/efeitos dos fármacos , Difosfato de Adenosina/metabolismo , Humanos
15.
BMC Microbiol ; 24(1): 331, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39245724

RESUMO

BACKGROUND: The quest for candidate probiotics and prebiotics to develop novel synbiotics for sustainable and profitable fish farming remains a major focus for various stakeholders. In this study, we examined the effects of combining two fungal probiotics, Saccharomyces cerevisiae and Aspergillus niger with extracts of Jerusalem artichoke and white button mushroom to develop a synbiotic formulation to improve the growth and health status of zebrafish (Danio rerio). An initial in vitro study determined the most effective synbiotic combination, which was then tested in a 60-day in vivo nutritional trial using zebrafish (80 ± 1.0 mg) as a model animal. Four experimental diets were prepared: a control diet (basal diet), a prebiotic diet with 100% selected mushroom extract, a probiotic diet with 107 CFU of S. cerevisiae/g of diet, and a synbiotic diet with 107 CFU of S. cerevisiae/g of diet and 100% mushroom extract. As readouts, growth performance, survival, digestive enzyme activity and innate immune responses were evaluated. RESULTS: In vitro results showed that the S. cerevisiae cultured in a medium containing 100% mushroom extract exhibited the maximum specific growth rate and shortest doubling time. In the in vivo test with zebrafish, feeding them with a synbiotic diet, developed with S. cerevisiae and mushroom extract, led to a significant improvement in the growth performance of zebrafish (P < 0.05). The group of zebrafish fed with the synbiotic diet showed significantly higher levels of digestive enzyme activity and immune responses compared to the control group (P < 0.05). CONCLUSION: Taken together, these results indicated that the combination of S. cerevisiae and mushroom extract forms an effective synbiotic, capable of enhancing growth performance and immune response in zebrafish.


Assuntos
Agaricales , Probióticos , Saccharomyces cerevisiae , Simbióticos , Peixe-Zebra , Animais , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/imunologia , Simbióticos/administração & dosagem , Probióticos/farmacologia , Ração Animal/análise , Aspergillus niger/crescimento & desenvolvimento , Imunidade Inata/efeitos dos fármacos , Prebióticos
16.
BMC Microbiol ; 24(1): 134, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654189

RESUMO

BACKGROUND: The incidence of exertional heat stroke (EHS) escalates during periods of elevated temperatures, potentially leading to persistent cognitive impairment postrecovery. Currently, effective prophylactic or therapeutic measures against EHS are nonexistent. METHODS: The selection of days 14 and 23 postinduction for detailed examination was guided by TEM of neuronal cells and HE staining of intestinal villi and the hippocampal regions. Fecal specimens from the ileum and cecum at these designated times were analyzed for changes in gut microbiota and metabolic products. Bioinformatic analyses facilitated the identification of pivotal microbial species and metabolites. The influence of supplementing these identified microorganisms on behavioral outcomes and the expression of functional proteins within the hippocampus was subsequently assessed. RESULTS: TEM analyses of neurons, coupled with HE staining of intestinal villi and the hippocampal region, indicated substantial recovery in intestinal morphology and neuronal injury on Day 14, indicating this time point for subsequent microbial and metabolomic analyses. Notably, a reduction in the Lactobacillaceae family, particularly Lactobacillus murinus, was observed. Functional annotation of 16S rDNA sequences suggested diminished lipid metabolism and glycan biosynthesis and metabolism in EHS models. Mice receiving this intervention (EHS + probiotics group) exhibited markedly reduced cognitive impairment and increased expression of BDNF/TrKB pathway molecules in the hippocampus during behavioral assessment on Day 28. CONCLUSION: Probiotic supplementation, specifically with Lactobacillus spp., appears to mitigate EHS-induced cognitive impairment, potentially through the modulation of the BDNF/TrKB signaling pathway within the hippocampus, illustrating the therapeutic potential of targeting the gut-brain axis.


Assuntos
Disfunção Cognitiva , Microbioma Gastrointestinal , Golpe de Calor , Animais , Feminino , Masculino , Camundongos , Eixo Encéfalo-Intestino , Disfunção Cognitiva/dietoterapia , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/microbiologia , Disfunção Cognitiva/psicologia , Microbioma Gastrointestinal/fisiologia , Golpe de Calor/complicações , Golpe de Calor/metabolismo , Golpe de Calor/fisiopatologia , Hipocampo/citologia , Hipocampo/fisiopatologia , Lactobacillus/metabolismo , Neurônios/ultraestrutura , Probióticos , Comportamento Animal , Ácidos Graxos Voláteis/metabolismo
17.
BMC Microbiol ; 24(1): 85, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38468236

RESUMO

Antimicrobial peptides, such as bacteriocin, produced by probiotics have become a promising novel class of therapeutic agents for treating infectious diseases. Selected lactic acid bacteria (LAB) isolated from fermented foods with probiotic potential were evaluated for various tests, including exopolysaccharide production, antibiotic susceptibility, acid and bile tolerance, antibacterial activity, and cell adhesion and cytotoxicity to gastric cell lines. Six selected LAB strains maintained their high viability under gastrointestinal conditions, produced high exopolysaccharides, showed no or less cytotoxicity, and adhered successfully to gastric cells. Furthermore, three strains, Weissella confusa CYLB30, Lactiplantibacillus plantarum CYLB47, and Limosilactobacillus fermentum CYLB55, demonstrated a strong antibacterial effect against drug-resistant Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Salmonella enterica serovar Choleraesuis, Enterococcus faecium, and Staphylococcus aureus. Whole genome sequencing was performed on these three strains using the Nanopore platform; then, the results showed that all three strains did not harbor genes related to toxins, superantigens, and acquired antimicrobial resistance, in their genome. The bacteriocin gene cluster was found in CYLB47 genome, but not in CYLB30 and CYLB55 genomes. In SDS-PAGE, the extract of CYLB30 and CYLB47 bacteriocin-like inhibitory substance (BLIS) yielded a single band with a size of less than 10 kDa. These BLIS inhibited the growth and biofilm formation of drug-resistant P. aeruginosa and methicillin-resistant S. aureus (MRSA), causing membrane disruption and inhibiting adhesion ability to human skin HaCaT cells. Moreover, CYLB30 and CYLB47 BLIS rescued the larvae after being infected with P. aeruginosa and MRSA infections. In conclusion, CYLB30 and CYLB47 BLIS may be potential alternative treatment for multidrug-resistant bacteria infections.


Assuntos
Bacteriocinas , Alimentos Fermentados , Lactobacillales , Staphylococcus aureus Resistente à Meticilina , Probióticos , Humanos , Bacteriocinas/metabolismo , Staphylococcus aureus Resistente à Meticilina/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Probióticos/metabolismo
18.
Mol Ecol ; 33(2): e17218, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38038696

RESUMO

Host-microbe interactions are increasingly recognized as important drivers of organismal health, growth, longevity and community-scale ecological processes. However, less is known about how genetic variation affects hosts' associated microbiomes and downstream phenotypes. We demonstrate that sunflower (Helianthus annuus) harbours substantial, heritable variation in microbial communities under field conditions. We show that microbial communities co-vary with heritable variation in resistance to root infection caused by the necrotrophic pathogen Sclerotinia sclerotiorum and that plants grown in autoclaved soil showed almost complete elimination of pathogen resistance. Association mapping suggests at least 59 genetic locations with effects on both microbial relative abundance and Sclerotinia resistance. Although the genetic architecture appears quantitative, we have elucidated previously unexplained genetic variation for resistance to this pathogen. We identify new targets for plant breeding and demonstrate the potential for heritable microbial associations to play important roles in defence in natural and human-altered environments.


Assuntos
Melhoramento Vegetal , Rizosfera , Humanos , Fenótipo , Plantas , Microbiologia do Solo , Raízes de Plantas/genética , Raízes de Plantas/microbiologia
19.
Cytokine ; 174: 156458, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38071842

RESUMO

PURPOSE: The maternal immune system is implicated in adverse pregnancy outcomes. Manipulation of maternal immune response by probiotics holds potential to reduce pregnancy complications. The MicrobeMom2 study investigates the impact of probiotic supplementation on maternal immune responses to pathogen associated molecular patterns (PAMPs) in peripheral blood mononuclear cells (PBMCs) during pregnancy. METHODS: This double-blinded randomised-controlled trial involved oral supplementation of Bifidobacterium longum subsp. longum 1714® (B. longum 1714; daily ingestion of a minimum of 1x109 colony forming units) or placebo from 16 to 20-weeks' gestation until delivery in healthy pregnant women. The primary outcome was a change in IL-10 production, after stimulation with Lipopolysaccharide (LPS) or anti-CD3/28/2, in PBMCs isolated from blood samples taken at baseline (11-15 weeks' gestation) and late pregnancy (28-32 weeks' gestation) after 48 h incubation. 68 subjects were needed (34ineachgroup) for 80 % power at an alpha significance of 0.05 to detect differences in IL10. RESULTS: 72 women (mean ± SD age 33.17 ± 4.53 years and median (25th, 75th centile) body mass index 24.93 (21.93, 27.57 kg/m2)) were recruited with primary outcome data. Using LPS, late pregnancy fold change in IL-10 in PBMCs after 48 h incubation was median (25th, 75th centile) 88.45 (4.88, 488.78) in the intervention, 24.18 (6.36, 141.17) in the control group, p = 0.183. Using anti-CD3/28/2, values were 189.69 (425.96, 866.57),148.74 (31.67, 887.03) in intervention and control groups, respectively, p = 0.506. No significant differences were observed between the two groups. CONCLUSION: Maternal antenatal supplementation with B. longum 1714 did not alter cytokine production by maternal PBMCs in response to PAMPs or anti-CD3/28/2. TRIAL REGISTRATION NUMBER: ISRCTN registry ISRCTN43013285.


Assuntos
Citocinas , Interleucina-10 , Humanos , Feminino , Gravidez , Adulto , Leucócitos Mononucleares , Lipopolissacarídeos/farmacologia , Moléculas com Motivos Associados a Patógenos , Método Duplo-Cego , Bifidobacterium
20.
Microb Pathog ; 194: 106844, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39128644

RESUMO

This study investigated the effect of pumpkin powder (2 %, 4 %, and 6 %) and Enterococcus faecium and Enterococcus faecalis probiotics on the physicochemical, microbiological, and sensory properties of yogurt samples during 28 days of storage at 4 °C. The prebiotic effect of pumpkin powder (Cucurbita pepo) and the probiotic effect of Enterococcus faecium and E. faecalis were determined. Adding pumpkin powder to yogurt did not significantly alter the pH, acidity, fat, protein, and ash content (p > 0.05). Water holding was not changed during the storage time in the samples of probiotic yogurts, but as the pumpkin powder content increased, the water holding capacity also increased (p < 0.05). This situation did lead to a reduction in syneresis (p < 0.05). The lowest gumminess value at the end of storage was found in the D2 sample (p < 0.05), and the highest adhesiveness value was found in the D4 sample (p < 0.05). Furthermore, throughout the 28-day storage period, E. faecium and E. faecalis maintained a live cell count of ≥6 log CFU g-1 in the probiotic product. As a result of the statistical evaluation, there was a decrease in E. faecium in the D4, S2, and S4 samples, and then it increased again (p > 0.05) during the storage time. As a result of the statistical evaluation, it was determined that the smell, consistency in the spoon, consistency in the mouth, flavor, and acidity changes during the storage were not substantial (p > 0.05). In conclusion, it was found that pumpkin, a byproduct of the pumpkin seed industry, has the potential to act as a prebiotic and improve the properties of dairy products. Additionally, the study suggests that E. faecium and E. faecalis strains could be suitable for probiotic yogurts.


Assuntos
Cucurbita , Enterococcus faecalis , Enterococcus faecium , Prebióticos , Probióticos , Iogurte , Enterococcus faecium/crescimento & desenvolvimento , Cucurbita/microbiologia , Enterococcus faecalis/crescimento & desenvolvimento , Enterococcus faecalis/efeitos dos fármacos , Iogurte/microbiologia , Concentração de Íons de Hidrogênio , Microbiologia de Alimentos , Armazenamento de Alimentos , Contagem de Colônia Microbiana , Paladar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA