RESUMO
As an output effector of the Hippo signaling pathway, the TEAD transcription factor and co-activator YAP play crucial functions in promoting cell proliferation and organ size. The tumor suppressor NF2 has been shown to activate LATS1/2 kinases and interplay with the Hippo pathway to suppress the YAP-TEAD complex. However, whether and how NF2 could directly regulate TEAD remains unknown. We identified a direct link and physical interaction between NF2 and TEAD4. NF2 interacted with TEAD4 through its FERM domain and C-terminal tail and decreased the protein stability of TEAD4 independently of LATS1/2 and YAP. Furthermore, NF2 inhibited TEAD4 palmitoylation and induced the cytoplasmic translocation of TEAD4, resulting in ubiquitination and dysfunction of TEAD4. Moreover, the interaction with TEAD4 is required for NF2 function to suppress cell proliferation. These findings reveal an unanticipated role of NF2 as a binding partner and inhibitor of the transcription factor TEAD, shedding light on an alternative mechanism of how NF2 functions as a tumor suppressor through the Hippo signaling cascade.
Assuntos
Via de Sinalização Hippo , Neurofibromina 2 , Proteínas Serina-Treonina Quinases , Transdução de Sinais , Fatores de Transcrição de Domínio TEA , Humanos , Proliferação de Células , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Células HEK293 , Lipoilação , Neurofibromina 2/metabolismo , Neurofibromina 2/genética , Ligação Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Estabilidade Proteica , Fatores de Transcrição de Domínio TEA/metabolismo , Proteínas Supressoras de Tumor , UbiquitinaçãoRESUMO
Mitochondrial fatty acid oxidation (ß-oxidation) is an essential metabolic process for energy production in eukaryotic cells, but the regulatory mechanisms of this pathway are largely unknown. In the present study, we found that several enzymes involved in ß-oxidation are associated with CLPX, the AAA+ unfoldase that is a component of the mitochondrial matrix protease ClpXP. The suppression of CLPX expression increased ß-oxidation activity in the HepG2 cell line and in primary human hepatocytes without glucagon treatment. However, the protein levels of enzymes involved in ß-oxidation did not significantly increase in CLPX-deleted HepG2 cells (CLPX-KO cells). Coimmunoprecipitation experiments revealed that the protein level in the immunoprecipitates of each antibody changed after the treatment of WT cells with glucagon, and a part of these changes was also observed in the comparison of WT and CLPX-KO cells without glucagon treatment. Although the exogenous expression of WT or ATP-hydrolysis mutant CLPX suppressed ß-oxidation activity in CLPX-KO cells, glucagon treatment induced ß-oxidation activity only in CLPX-KO cells expressing WT CLPX. These results suggest that the dissociation of CLPX from its target proteins is essential for the induction of ß-oxidation in HepG2 cells. Moreover, specific phosphorylation of AMP-activated protein kinase and a decrease in the expression of acetyl-CoA carboxylase 2 were observed in CLPX-KO cells, suggesting that CLPX might participate in the regulation of the cytosolic signaling pathway for ß-oxidation. The mechanism for AMP-activated protein kinase phosphorylation remains elusive; however, our results uncovered the hitherto unknown role of CLPX in mitochondrial ß-oxidation in human liver cells.
RESUMO
Breast cancer (BC) is the most commonly diagnosed cancer and the predominant cause of death in women. BC is a complex disorder, and the exploration of several types of BC omic data, highlighting genes, perturbations, signaling and cellular mechanisms, is needed. We collected mutational data from 9,555 BC samples using cBioPortal. We classified 1174 BC genes (mutated ≥ 40 samples) into five tiers (BCtier_I-V) and subjected them to pathway and proteinâprotein network analyses using EnrichR and STRING 11, respectively. BCtier_I possesses 12 BC genes with mutational frequencies > 5%, with only 5 genes possessing > 10% frequencies, namely, PIK3CA (35.7%), TP53 (34.3%), GATA3 (11.5%), CDH1 (11.4%) and MUC16 (11%), and the next seven BC genes are KMT2C (8.8%), TTN (8%), MAP3K1 (8%), SYNE1 (7.2%), AHNAK2 (7%), USH2A (5.5%), and RYR2 (5.4%). Our pathway analyses revealed that the five top BC pathways were the PI3K-AKT, TP53, NOTCH, HIPPO, and RAS pathways. We found that BC panels share only seven genes. These findings show that BC arises from genetic disruptions evident in BC signaling and protein networks.
Assuntos
Neoplasias da Mama , Mutação , Transdução de Sinais , Humanos , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Transdução de Sinais/genética , Redes Reguladoras de Genes , Mapas de Interação de Proteínas/genética , Genômica , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismoRESUMO
Neisseria gonorrheae, the causative agent of genitourinary infections, has been associated with asymptomatic or recurrent infections and has the potential to form biofilms and induce inflammation and cell transformation. Herein, we aimed to use computational analysis to predict novel associations between chronic inflammation caused by gonorrhea infection and neoplastic transformation. Prioritization and gene enrichment strategies based on virulence and resistance genes utilizing essential genes from the DEG and PANTHER databases, respectively, were performed. Using the STRING database, proteinâprotein interaction networks were constructed with 55 nodes of bacterial proteins and 72 nodes of proteins involved in the host immune response. MCODE and cytoHubba were used to identify 12 bacterial hub proteins (murA, murB, murC, murD, murE, purN, purL, thyA, uvrB, kdsB, lpxC, and ftsH) and 19 human hub proteins, of which TNF, STAT3 and AKT1 had high significance. The PPI networks are based on the connectivity degree (K), betweenness centrality (BC), and closeness centrality (CC) values. Hub genes are vital for cell survival and growth, and their significance as potential drug targets is discussed. This computational study provides a comprehensive understanding of inflammation and carcinogenesis pathways that are activated during gonorrhea infection.
Assuntos
Proteínas de Bactérias , Transformação Celular Neoplásica , Biologia Computacional , Gonorreia , Neisseria gonorrhoeae , Mapas de Interação de Proteínas , Humanos , Gonorreia/microbiologia , Gonorreia/genética , Neisseria gonorrhoeae/genética , Neisseria gonorrhoeae/patogenicidade , Mapas de Interação de Proteínas/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Transformação Celular Neoplásica/genética , Genes Essenciais , Virulência/genética , Inflamação/genética , Fatores de Virulência/genética , Interações Hospedeiro-Patógeno/genética , MultiômicaRESUMO
BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) has a poor prognosis, and its molecular mechanisms are unclear. Nucleolar and spindle-associated protein 1 (NUSAP1), an indispensable mitotic regulator, has been reported to be involved in the development of several types of tumors. The biological function and molecular mechanism of NUSAP1 in PDAC remain controversial. This study explored the effects and mechanism of NUSAP1 in PDAC. METHODS: Differentially expressed genes (DEGs) were screened. A proteinâprotein interaction (PPI) network was constructed to identify hub genes. Experimental studies and tissue microarray (TMA) analysis were performed to investigate the effects of NUSAP1 in PDAC and explore its mechanism. RESULTS: Network analysis revealed that NUSAP1 is an essential hub gene in the PDAC transcriptome. Genome heterogeneity analysis revealed that NUSAP1 is related to tumor mutation burden (TMB), loss of heterozygosity (LOH) and homologous recombination deficiency (HRD) in PDAC. NUSAP1 is correlated with the levels of infiltrating immune cells, such as B cells and CD8 T cells. High NUSAP1 expression was found in PDAC tissues and was associated with a poor patient prognosis. NUSAP1 promoted cancer cell proliferation, migration and invasion, drives the epithelial-mesenchymal transition and reduces AMPK phosphorylation. CONCLUSIONS: NUSAP1 is an essential hub gene that promotes PDAC progression and leads to a dismal prognosis by drives the epithelial-mesenchymal transition and reduces AMPK phosphorylation.
Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Carcinoma Ductal Pancreático/patologia , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Pancreáticas/patologia , Fosforilação , PrognósticoRESUMO
Bluetongue virus (BTV) infection induces profound and intricate changes in the transcriptional profile of the host to facilitate its survival and replication. However, there have been no whole-transcriptome studies on ovine lung microvascular endothelial cells (OLMECs) infected with BTV. In this study, we comprehensively analysed the whole-transcriptome sequences of BTV-1 serotype-infected and mock-infected OLMECs and subsequently performed bioinformatics differential analysis. Our analysis revealed 1215 differentially expressed mRNA transcripts, 82 differentially expressed long noncoding RNAs (lncRNAs) transcripts, 63 differentially expressed microRNAs (miRNAs) transcripts, and 42 differentially expressed circular RNAs (circRNAs) transcripts. Annotation from Gene Ontology, enrichment from the Kyoto Encyclopedia of Genes and Genomes, and construction of endogenous competing RNA network analysis revealed that the differentially expressed RNAs primarily participated in viral sensing and signal transduction pathways, antiviral and immune responses, inflammation, and extracellular matrix (ECM)-related pathways. Furthermore, proteinâprotein interaction network analysis revealed that BTV may regulate the conformation of ECM receptor proteins and change their biological activity through a series of complex mechanisms. Finally, on the basis of real-time fluorescence quantitative polymerase chain reaction results, the expression trends of the differentially expressed RNA were consistent with the whole-transcriptome sequencing data, such as downregulation of the expression of COL4A1, ITGA8, ITGB5, and TNC and upregulation of the expression of CXCL10, RNASEL, IRF3, IRF7, and IFIHI. This study provides a novel perspective for further investigations of the mechanism of the ECM in the BTV-host interactome and the pathogenesis of lung microvascular endothelial cells.
Assuntos
Vírus Bluetongue , Células Endoteliais , Perfilação da Expressão Gênica , Pulmão , Animais , Vírus Bluetongue/fisiologia , Vírus Bluetongue/genética , Células Endoteliais/virologia , Pulmão/virologia , Ovinos , Perfilação da Expressão Gênica/veterinária , Transcriptoma , Bluetongue/virologiaRESUMO
Aggregation of α-synuclein, a component of Lewy bodies (LBs) or Lewy neurites in Parkinson's disease (PD), is strongly linked with disease development, making it an attractive therapeutic target. Inhibiting aggregation can slow or prevent the neurodegenerative process. However, the bottleneck towards achieving this goal is the lack of such inhibitors. In the current study, we established a high-throughput screening platform to identify candidate compounds for preventing the aggregation of α-synuclein among the natural products in our in-house compound library. We found that a small molecule, 03A10, i.e., (+)-desdimethylpinoresinol, which is present in the fruits of Vernicia fordii (Euphorbiaceae), modulated aggregated α-synuclein, but not monomeric α-synuclein, to prevent further elongation of α-synuclein fibrils. In α-synuclein-overexpressing cell lines, 03A10 (10 µM) efficiently prevented α-synuclein aggregation and markedly ameliorated the cellular toxicity of α-synuclein fibril seeds. In the MPTP/probenecid (MPTP/p) mouse model, oral administration of 03A10 (0.3 mg· kg-1 ·d-1, 1 mg ·kg-1 ·d-1, for 35 days) significantly alleviated behavioral deficits, tyrosine hydroxylase (TH) neuron degeneration and p-α-synuclein aggregation in the substantia nigra (SN). As the Braak hypothesis postulates that the prevailing site of early PD pathology is the gastrointestinal tract, we inoculated α-synuclein preformed fibrils (PFFs) into the mouse colon. We demonstrated that α-synuclein PFF inoculation promoted α-synuclein pathology and neuroinflammation in the gut and brain; oral administration of 03A10 (5 mg· kg-1 ·d-1, for 4 months) significantly attenuated olfactory deficits, α-synuclein accumulation and neuroinflammation in the olfactory bulb and SN. We conclude that 03A10 might be a promising drug candidate for the treatment of PD. 03A10 might be a novel drug candidate for PD treatment, as it inhibits α-synuclein aggregation by modulating aggregated α-synuclein rather than monomeric α-synuclein to prevent further elongation of α-synuclein fibrils and prevent α-synuclein toxicity in vitro, in an MPTP/p mouse model, and PFF-inoculated mice.
Assuntos
Doença de Parkinson , Camundongos , Animais , Doença de Parkinson/metabolismo , alfa-Sinucleína/metabolismo , Doenças Neuroinflamatórias , Substância Negra/metabolismo , Substância Negra/patologia , Encéfalo/metabolismoRESUMO
The number of patients with COVID-19 caused by severe acute respiratory syndrome coronavirus 2 is still increasing. In the case of COVID-19 and tuberculosis (TB), the presence of one disease affects the infectious status of the other. Meanwhile, coinfection may result in complications that make treatment more difficult. However, the molecular mechanisms underpinning the interaction between TB and COVID-19 are unclear. Accordingly, transcriptome analysis was used to detect the shared pathways and molecular biomarkers in TB and COVID-19, allowing us to determine the complex relationship between COVID-19 and TB. Two RNA-seq datasets (GSE114192 and GSE163151) from the Gene Expression Omnibus were used to find concerted differentially expressed genes (DEGs) between TB and COVID-19 to identify the common pathogenic mechanisms. A total of 124 common DEGs were detected and used to find shared pathways and drug targets. Several enterprising bioinformatics tools were applied to perform pathway analysis, enrichment analysis and networks analysis. Protein-protein interaction analysis and machine learning was used to identify hub genes (GAS6, OAS3 and PDCD1LG2) and datasets GSE171110, GSE54992 and GSE79362 were used for verification. The mechanism of protein-drug interactions may have reference value in the treatment of coinfection of COVID-19 and TB.
RESUMO
White spot syndrome virus (WSSV) is a notorious pathogen that has plagued shrimp farming worldwide for decades. To date, there are no known treatments that are effective against this virus. Lactoferrin (LF) is a protein with many bioactivities, including antiviral properties. In this study, the activities and mechanisms of bovine LF (bLF) against WSSV were analyzed. Our results showed that bLF treatment significantly reduced shrimp mortalities caused by WSSV infection. bLF was found to have the ability to bind to surfaces of both host cells and WSSV virions. These bindings may have been a result of bLF interactions with the host cellular chitin binding protein and F1 ATP synthase ß subunit protein and the WSSV structural proteins VP28, VP110, VP150 and VP160B. bLF demonstrated potential for development as an anti-WSSV agent in shrimp culture. Furthermore, these reactionary proteins may play a role in WSSV infection.
Assuntos
Penaeidae , Vírus da Síndrome da Mancha Branca 1 , Animais , Vírus da Síndrome da Mancha Branca 1/metabolismo , Lactoferrina/metabolismo , Proteínas do Envelope Viral/metabolismoRESUMO
To enhance the understanding of molecular mechanisms and mine previously unidentified biomarkers of pediatric atopic dermatitis, PBMC gene expression profiles were generated by RNA sequencing in infants with atopic dermatitis and age-matched controls. A total of 178 significantly differentially expressed genes (DEGs) (115 upregulations and 63 downregulations) were seen, compared with those in healthy controls. The DEGs identified included IL1ß, TNF, TREM1, IL18R1, and IL18RAP. DEGs were validated by real-time RT- qPCR in a larger number of samples from PBMCs of infants with atopic dermatitis aged <12 months. Using the DAVID (Database for Annotation, Visualization and Integrated Discovery) database, functional and pathway enrichment analyses of DEGs were performed. Gene ontology enrichment analysis showed that DEGs were associated with immune responses, inflammatory responses, regulation of immune responses, and platelet activation. Pathway analysis indicated that DEGs were enriched in cytokineâcytokine receptor interaction, immunoregulatory interactions between lymphoid and nonlymphoid cells, hematopoietic cell lineage, phosphoinositide 3-kinaseâprotein kinase B signaling pathway, NK cellâmediated cytotoxicity, and platelet activation. Furthermore, the proteinâprotein interaction network was predicted using the STRING (Search Tool for the Retrieval of Interacting Genes/Proteins) database and visualized with Cytoscape software. Finally, on the basis of the proteinâprotein interaction network, 18 hub genes were selected, and two significant modules were obtained. In conclusion, this study sheds light on the molecular mechanisms of pediatric atopic dermatitis and may provide diagnostic biomarkers and therapeutic targets.
RESUMO
Proteins are major functional units that are tightly connected to form complex and dynamic networks. These networks enable cells and organisms to operate properly and respond efficiently to environmental cues. Over the past decades, many biochemical methods have been developed to search for protein-binding partners in order to understand how protein networks are constructed and connected. At the same time, rapid development in proteomics and mass spectrometry (MS) techniques makes it possible to identify interacting proteins and build comprehensive proteinâprotein interaction networks. The resulting interactomes and networks have proven informative in the investigation of biological functions, such as in the field of DNA damage repair. In recent years, a number of proteins involved in DNA damage response and DNA repair pathways have been uncovered with MS-based proteinâprotein interaction studies. As the technologies for enriching associated proteins and MS become more sophisticated, the studies of proteinâprotein interactions are entering a new era. In this review, we summarize the strategies and recent developments for exploring proteinâprotein interaction. In addition, we discuss the application of these tools in the investigation of proteinâprotein interaction networks involved in DNA damage response and DNA repair.
Assuntos
Reparo do DNA , Espectrometria de Massas/métodos , Mapas de Interação de Proteínas , Animais , Dano ao DNA , Humanos , Mapeamento de Interação de Proteínas/métodos , Proteômica/métodosRESUMO
Exploring the interactions between the Ca2+ binding protein calmodulin (CaM) and its target proteins remains a challenging task. Members of the Munc13 protein family play an essential role in short-term synaptic plasticity, modulated via the interaction with CaM at the presynaptic compartment. In this study, we focus on the bMunc13-2 isoform expressed in the brain, as strong changes in synaptic transmission were observed upon its mutagenesis or deletion. The CaMâbMunc13-2 interaction was previously characterized at the molecular level using short bMunc13-2-derived peptides only, revealing a classical 1â5â10 CaM binding motif. Using larger protein constructs, we have now identified for the first time a novel and unique CaM binding site in bMunc13-2 that contains an N-terminal extension of a classical 1â5â10 CaM binding motif. We characterize this motif using a range of biochemical and biophysical methods and highlight its importance for the CaMâbMunc13-2 interaction.
Assuntos
Calmodulina/metabolismo , Reagentes de Ligações Cruzadas/metabolismo , Espectrometria de Massas , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Sítios de Ligação , Calmodulina/química , Bovinos , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Ligação Proteica , Domínios Proteicos , Ratos , SuínosRESUMO
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease driven by genetic, environmental and epigenetic factors. Long non-coding RNAs (LncRNAs) are a key component of the epigenetic mechanisms and are known to be involved in the development of autoimmune diseases. In this work we aimed to identify significantly differentially expressed LncRNAs (DE-LncRNAs) that are functionally connected to modulated genes strictly associated with RA. In total, 542,500 transcripts have been profiled in peripheral blood mononuclear cells (PBMCs) from four patients with early onset RA prior any treatment and four healthy donors using Clariom D arrays. Results were confirmed by real-time PCR in 20 patients and 20 controls. Six DE-LncRNAs target experimentally validated miRNAs able to regulate differentially expressed genes (DEGs) in RA; among them, only FTX, HNRNPU-AS1 and RP11-498C9.15 targeted a large number of DEGs. Most importantly, RP11-498C9.15 targeted the largest number of signalling pathways that were found to be enriched by the global amount of RA-DEGs and that have already been associated with RA and RA-synoviocytes. Moreover, RP11-498C9.15 targeted the most highly connected genes in the RA interactome, thus suggesting its involvement in crucial gene regulation. These results indicate that, by modulating both microRNAs and gene expression, RP11-498C9.15 may play a pivotal role in RA pathogenesis.