Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Virol J ; 20(1): 43, 2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36879270

RESUMO

Zika virus (ZIKV) infection is a major public health threat, making the study of its biology a matter of great importance. By analyzing the viral-host protein interactions, new drug targets may be proposed. In this work, we showed that human cytoplasmic dynein-1 (Dyn) interacts with the envelope protein (E) of ZIKV. Biochemical evidence indicates that the E protein and the dimerization domain of the heavy chain of Dyn binds directly without dynactin or any cargo adaptor. Analysis of this interactions in infected Vero cells by proximity ligation assay suggest that the E-Dyn interaction is dynamic and finely tuned along the replication cycle. Altogether, our results suggest new steps in the replication cycle of the ZIKV for virion transport and indicate a suitable molecular target to modulate infection by ZIKV.


Assuntos
Infecção por Zika virus , Zika virus , Chlorocebus aethiops , Humanos , Animais , Dineínas do Citoplasma , Células Vero , Transporte Biológico
2.
Biotechnol Bioeng ; 120(5): 1366-1381, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36710487

RESUMO

To probe signal propagation and genetic actuation in microbial consortia, we have coopted the components of both redox and quorum sensing (QS) signaling into a communication network for guiding composition by "programming" cell lysis. Here, we use an electrode to generate hydrogen peroxide as a redox cue that determines consortia composition. The oxidative stress regulon of Escherichia coli, OxyR, is employed to receive and transform this signal into a QS signal that coordinates the lysis of a subpopulation of cells. We examine a suite of information transfer modalities including "monoculture" and "transmitter-receiver" models, as well as a series of genetic circuits that introduce time-delays for altering information relay, thereby expanding design space. A simple mathematical model aids in developing communication schemes that accommodate the transient nature of redox signals and the "collective" attributes of QS signals. We suggest this platform methodology will be useful in understanding and controlling synthetic microbial consortia for a variety of applications, including biomanufacturing and biocontainment.


Assuntos
Consórcios Microbianos , Percepção de Quorum , Consórcios Microbianos/genética , Percepção de Quorum/genética , Escherichia coli/genética , Transdução de Sinais/genética , Oxirredução
3.
Fish Shellfish Immunol ; 128: 7-18, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35843525

RESUMO

Members of the E74-like factor (ELF) subfamily are involved in the immune stress process of organisms by regulating immune responses and the development of immune-related cells. PmE74 of Penaeus monodon was characterized and functionally analyzed in this study. The full length of PmE74 was 3106 bp, with a 5'-UTR of 297 bp, and a 3'-UTR of 460 bp. The ORF (Open reading frame) was 2349 bp and encoded 782 amino acids. Domain analysis showed that PmE74 contains a typical Ets domain. Multiple sequence alignment and phylogenetic tree analysis showed that PmE74 clustered with Litopenaeus vannamei E74 and displayed significant similarity (98.98%). PmE74 was expressed in all tissues tested in P. monodon, with the highest levels of expression observed in the testis, intestine, and epidermis. Different pathogen stimulation studies have revealed that PmE74 expression varies in response to different pathogen stimuli. A 96-h acute low salt stress study revealed that PmE74 in the hepatopancreas was upregulated and downregulated in the salinity 17 group and considerably downregulated in the salinity 3 group, whereas PmE74 in gill tissue was considerably downregulated in both groups. Further, by knocking down PmE74 and learning the trends of its linkage genes PmAQP1, PmNKA, PmE75, PmFtz-f1, PmEcR, and PmRXR in response to low salt stress, it was further indicated that PmE74 could have a vital role in the regulation of low salt stress. The SNP test revealed that PmE74-In1-53 was significantly associated with low salt tolerance traits in P. monodon (P < 0.05). The findings of this study can aid in the advancement of molecular marker-assisted breeding in P. monodon, as well as provide fundamental data and methodologies for further investigation of its low salt tolerance strains in P. monodon.


Assuntos
Penaeidae , Sequência de Aminoácidos , Aminoácidos/genética , Animais , Sequência de Bases , Penaeidae/genética , Filogenia , Polimorfismo de Nucleotídeo Único , Tolerância ao Sal/genética
4.
Int J Neurosci ; : 1-13, 2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36168932

RESUMO

Background: Neuroblastoma (NB) is a common malignancy occurring in infants and young children. Centrosome-associated protein E (CENPE) is a kinetochore-related motor protein highly expressed in NB, with the mechanism largely unknown. This study is committed to investigating the role and mechanism of CENPE in NB.Method: Short hairpin RNAs targeting CENPE and E2F transcription factor 1 (shCENPE and shE2F1) and CENPE overexpression plasmid were transfected into IMR-32 and SK-N-SH cells. The mRNA expressions of CENPE, N-Cadherin, Vimentin, and proliferating cell nuclear antigen (PCNA) in NB cells were detected by qRT-PCR. The viability, migration, and invasion of cells were tested through cell function experiments. Western blot was applied to detect the protein levels of N-Cadherin, Vimentin, PCNA, CENPE and Forkhead box M1 (FOXM1). The relationship between CENPE and E2F1 was verified by dual-luciferase reporter assay, while the interaction between FOXM1 and CENPE in NB cells was analyzed by rescue experiments.Results: CENPE expression was upregulated in NB cells from metastatic sites. Silencing of CENPE suppressed the NB cell viability, migration, and invasion; and decreased N-Cadherin, Vimentin and PCNA expressions, while overexpressed CENPE did oppositely. E2F1 positively targeted CENPE and CENPE partly reversed the effects of shE2F1 on repressing NB cell viability, migration, invasion and the activation of CENPE/FOXM1 signaling pathway. In addition, silenced FOXM1 partly offset the effects of CENPE on promoting NB cell migration and invasion.Conclusion: E2F1 induces NB cell migration and invasion via activating CENPE/FOXM1 pathway.

5.
J Virol ; 94(23)2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-32938768

RESUMO

Chikungunya virus (CHIKV), a mosquito-transmitted alphavirus, enters a cell through endocytosis, followed by viral and cell membrane fusion. The fusion protein, E1, undergoes an acid pH-induced pre- to postfusion conformation change during membrane fusion. As part of the conformation change, E1 dissociates from the receptor-binding protein, E2, and swivels its domains I and II over domain III to form an extended intermediate and then eventually to form a postfusion hairpin homotrimer. In this study, we tested if the domain I-III linker acts as a "hinge" for the swiveling motion of E1 domains. We found a conserved spring-twisted structure in the linker, stabilized by a salt bridge between a conserved arginine-aspartic acid pair, as a "hinge point" for domain swiveling. Molecular dynamics (MD) simulation of the CHIKV E1 or E2-E1 structure predicted that the spring-twisted region untwists at pH 5.5. Corroborating the prediction, introduction of a "cystine staple" at the hinge point, replacing the conserved arginine-aspartic acid pair with cysteine residues, resulted in loss of fusion activity of E1. MD simulation also predicted domain I-III swiveling at acidic pH. We tested if breaking the His 331-Lys 16 H bond between domains I and III, seen only in the prefusion conformation, is important for domain swiveling. When domains I and III are "stapled" by introducing a disulfide bond in between, E1 showed loss of fusion activity, implying that domain I and III dissociation is a critical acid pH-induced step in membrane fusion. However, replacement of His 331 with an acidic residue did not affect the pH threshold for fusion, suggesting His 331 is not an acid-sensing residue.IMPORTANCEAedes mosquito-transmitted viruses such as the Zika, dengue, and chikungunya viruses have spread globally. CHIKV, similar to many other enveloped viruses, enters cells in sequential steps: step 1 involves receptor binding followed by endocytosis, and step 2 involves viral-cell membrane fusion in the endocytic vesicle. The viral envelope surface protein, E1, performs membrane fusion. E1 is triggered to undergo conformational changes by acidic pH of the maturing endosome. Different domains of E1 rearrange during the pre- to postfusion conformation change. Using in silico analysis of the E1 structure and different biochemical experiments, we explained a structural mechanism of key conformational changes in E1 triggered by acidic pH. We noted two important structural changes in E1 at acidic pH. In the first, a spring-twisted region in a loop connecting two domains (I and III) untwists, bringing a swiveling motion of domains on each other. In the second, breaking of interactions between domains I and III and domain separation are required for membrane fusion. This knowledge will help devise new therapeutic strategies to block conformation changes in E1 and thus viral entry.


Assuntos
Vírus Chikungunya/metabolismo , Domínios Proteicos , Proteínas Virais de Fusão/química , Proteínas Virais de Fusão/metabolismo , Febre de Chikungunya/virologia , Vírus Chikungunya/genética , Endocitose , Concentração de Íons de Hidrogênio , Fusão de Membrana , Glicoproteínas de Membrana/química , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/metabolismo , Proteínas Virais de Fusão/genética , Internalização do Vírus
6.
J Virol ; 93(8)2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30760569

RESUMO

Tick-borne encephalitis virus (TBEV) and louping ill virus (LIV) are members of the tick-borne flaviviruses (TBFVs) in the family Flaviviridae which cause encephalomeningitis and encephalitis in humans and other animals. Although vaccines against TBEV and LIV are available, infection rates are rising due to the low vaccination coverage. To date, no specific therapeutics have been licensed. Several neutralizing monoclonal antibodies (MAbs) show promising effectiveness in the control of TBFVs, but the underlying molecular mechanisms are yet to be characterized. Here, we determined the crystal structures of the LIV envelope (E) protein and report the comparative structural analysis of a TBFV broadly neutralizing murine MAb (MAb 4.2) in complex with either the LIV or TBEV E protein. The structures reveal that MAb 4.2 binds to the lateral ridge of domain III of the E protein (EDIII) of LIV or TBEV, an epitope also reported for other potently neutralizing MAbs against mosquito-borne flaviviruses (MBFVs), but adopts a unique binding orientation. Further structural analysis suggested that MAb 4.2 may neutralize flavivirus infection by preventing the structural rearrangement required for membrane fusion during virus entry. These findings extend our understanding of the vulnerability of TBFVs and other flaviviruses (including MBFVs) and provide an avenue for antibody-based TBFV antiviral development.IMPORTANCE Understanding the mechanism of antibody neutralization/protection against a virus is crucial for antiviral countermeasure development. Tick-borne encephalitis virus (TBEV) and louping ill virus (LIV) are tick-borne flaviviruses (TBFVs) in the family Flaviviridae They cause encephalomeningitis and encephalitis in humans and other animals. Although vaccines for both viruses are available, infection rates are rising due to low vaccination coverage. In this study, we solved the crystal structures of the LIV envelope protein (E) and a broadly neutralizing/protective TBFV MAb, MAb 4.2, in complex with E from either TBEV or LIV. Key structural features shared by TBFV E proteins were analyzed. The structures of E-antibody complexes showed that MAb 4.2 targets the lateral ridge of both the TBEV and LIV E proteins, a vulnerable site in flaviviruses for other potent neutralizing MAbs. Thus, this site represents a promising target for TBFV antiviral development. Further, these structures provide important information for understanding TBFV antigenicity.


Assuntos
Anticorpos Monoclonais Murinos/química , Anticorpos Neutralizantes/química , Anticorpos Antivirais/química , Vírus da Encefalite Transmitidos por Carrapatos/química , Epitopos/química , Proteínas do Envelope Viral/química , Cristalografia por Raios X , Vírus da Encefalite Transmitidos por Carrapatos/genética , Flavivirus/química , Domínios Proteicos
7.
Gynecol Endocrinol ; 36(2): 117-121, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31429337

RESUMO

Endometriosis is an estrogen-dependent disease that affects 5 to 15% of women of reproductive age. Data from large-cohort and case-control studies indicate an increased risk for ovarian cancers in women with endometrioma. Recently, as an ovarian cancer biomarker, human epididymal secretory protein E4 (HE4) has been increasingly investigated in the differentiating of endometrioma from ovary malignancy and in confirming the benign structure of the endometrioma. This case series study describes women who underwent surgery due to increased serum HE4 levels and higher Risk of Ovarian Malignancy Algorithm (ROMA) index, in whom the final pathology was reported as benign, although, ultrasonography and magnetic resonance imaging (MRI) findings showed features of "typical" endometrioma.


Assuntos
Endometriose/diagnóstico por imagem , Neoplasias Ovarianas/diagnóstico por imagem , Proteína 2 do Domínio Central WAP de Quatro Dissulfetos/metabolismo , Adulto , Biomarcadores Tumorais/sangue , Estudos de Casos e Controles , Endometriose/sangue , Endometriose/complicações , Feminino , Humanos , Neoplasias Ovarianas/sangue , Neoplasias Ovarianas/etiologia , Estudos Retrospectivos , Fatores de Risco , Ultrassonografia , Adulto Jovem
8.
Infect Immun ; 87(8)2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31109946

RESUMO

PE-PilA is a fusion protein composed of immunologically relevant parts of protein E (PE) and the majority subunit of the type IV pilus (PilA), two major antigens of nontypeable Haemophilus influenzae (NTHi). Here we report on the preclinical evaluation of PE-PilA as a vaccine antigen. The immunogenic potential of the PE and PilA within the fusion was compared with that of isolated PE and PilA antigens. When injected intramuscularly into mice, the immunogenicity of PE within the fusion was equivalent to that of isolated PE, except when it was formulated with alum. In contrast, in our murine models PilA was consistently found to be more immunogenic as a subentity of the PE-PilA fusion protein than when it was injected as an isolated antigen. Following immunization with PE-PilA, anti-PE antibodies demonstrated the same capacity to inhibit the binding of PE to vitronectin as those induced after PE immunization. Likewise, PE-PilA-induced anti-PilA antibodies inhibited the formation of NTHi biofilms and disrupted established biofilms in vitro These experiments support the immunogenic equivalence between fused PE-PilA and isolated PE and PilA. Further, the potential of PE-PilA immunization against NTHi-induced disease was evaluated. After intranasal NTHi challenge, colonization of the murine nasopharynx significantly dropped in animals formerly immunized with PE-PilA, and in chinchillas, signs of otitis media were significantly reduced in animals that had received anti-PE-PilA antibodies. Taken together, our data support the use of PE-PilA as an NTHi vaccine antigen.


Assuntos
Proteínas de Bactérias/imunologia , Proteínas de Fímbrias/imunologia , Vacinas Anti-Haemophilus/imunologia , Haemophilus influenzae/imunologia , Animais , Aderência Bacteriana , Biofilmes , Chinchila , Feminino , Imunização , Camundongos , Camundongos Endogâmicos BALB C , Nasofaringe/microbiologia , Otite Média/prevenção & controle , Vacinas Sintéticas/imunologia , Vitronectina/metabolismo
9.
Int J Mol Sci ; 19(11)2018 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-30400384

RESUMO

PURPOSE: Sjögren syndrome (SS) is a chronic inflammatory autoimmune disease of the lacrimal and salivary glands. This study compared the concentrations of epidermal fatty-acid binding protein (E-FABP) in the saliva, serum, and tears of SS patients with dry eye and dry mouth, with those of healthy adults to investigate the usefulness of E-FABP as a diagnostic marker for SS. DESIGN: Prospective, observational case series. PARTICIPANTS: The subjects were 11 new patients with untreated Sjogren syndrome and 12 healthy control individuals. METHODS: The diagnosis of SS was in accordance with the Ministry of Health, Labour and Welfare (Japan) Diagnostic Criteria (1999). Saliva, serum, and tear specimens were collected during internal medicine, dental, and ophthalmological examinations. The ophthalmological tests included the Dry Eye-related Quality of life Score (DEQS), tear break-up time (BUT), vital staining with fluorescein (FS) and lissamine green (LG), and the Schirmer test-1. The E-FABP concentration in the tears, saliva, and serum was measured by enzyme-linked immunosorbent assay (ELISA). MAIN OUTCOME MEASURE: The E-FABP concentrations were compared between patients and controls. RESULTS: There were significant differences between the patient and healthy control groups in all ophthalmological test results. There were no significant differences between the groups in the E-FABP concentrations in the saliva (p = 0.1513) or the serum (p = 0.4799), but the E-FABP concentration in the tears significantly differed between groups. The E-FABP concentration in tears tended to be significantly lower in patients with SS (mean, 323.5 ± 325.6 pg/mL) than healthy control subjects (mean, 4076 pg/mL; p = 0.0136). The E-FABP concentration in tears significantly correlated with the results of dry eye parameters. CONCLUSION: The E-FABP concentration in tears appears to be related to ocular surface epithelial damage and tear stability and may be a promising novel biomarker in the diagnosis of SS.


Assuntos
Proteínas de Ligação a Ácido Graxo/genética , Síndrome de Sjogren/diagnóstico , Xeroftalmia/diagnóstico , Adulto , Idoso , Biomarcadores/metabolismo , Estudos de Casos e Controles , Proteínas de Ligação a Ácido Graxo/metabolismo , Feminino , Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Qualidade de Vida/psicologia , Saliva/química , Síndrome de Sjogren/genética , Síndrome de Sjogren/metabolismo , Síndrome de Sjogren/psicologia , Lágrimas/química , Xeroftalmia/genética , Xeroftalmia/metabolismo , Xeroftalmia/psicologia
10.
Biochem Biophys Res Commun ; 486(2): 398-405, 2017 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-28315332

RESUMO

Senescence-associated autophagy downregulation leads to cardiomyocyte dysfunction. Coactivator-associated arginine methyltransferase 1 (CARM1) participates in many cellular processes, including autophagy in mammals. However, the effect of CARM1 in aging-related cardiac autophagy decline remains undefined. Moreover, AMP-activated protein kinase (AMPK) is a key regulator in metabolism and autophagy, however, the role of nuclear AMPK in autophagy outcome in aged hearts still unclear. Hers we identify the correlation between nuclear AMPK and CARM1 in aging heart. We found that fasting could promote autophagy in young hearts but not in aged hearts. The CARM1 stabilization is markedly decrease in aged hearts, which impaired nucleus TFEB-CARM1 complex and autophagy flux. Further, S-phase kinase-associated protein 2(SKP2), responsible for CARM1 degradation, was increased in aged hearts. We further validated that AMPK dependent FoxO3 phosphorylation was markedly reduced in nucleus, the decreased nuclear AMPK-FoxO3 activity fails to suppress SKP2-E3 ubiquitin ligase. This loss of repression leads to The CARM1 level and autophagy in aged hearts could be restored through AMPK activation. Taken together, AMPK deficiency results in nuclear CARM1 decrease mediated in part by SKP2, contributing to autophagy dysfunction in aged hearts. Our results identified nuclear AMPK controlled CARM1 stabilization as a new actor that regulates cardiac autophagy.


Assuntos
Proteínas Quinases Ativadas por AMP/genética , Envelhecimento/genética , Autofagia/genética , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Proteínas Quinases Associadas a Fase S/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Envelhecimento/metabolismo , Envelhecimento/patologia , Animais , Animais Recém-Nascidos , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Jejum , Proteína Forkhead Box O3/genética , Proteína Forkhead Box O3/metabolismo , Regulação da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miocárdio/patologia , Miócitos Cardíacos/patologia , Fosforilação , Cultura Primária de Células , Estabilidade Proteica , Proteína-Arginina N-Metiltransferases/metabolismo , Proteólise , Proteínas Quinases Associadas a Fase S/metabolismo , Transdução de Sinais , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
11.
Microb Cell Fact ; 16(1): 71, 2017 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-28446197

RESUMO

BACKGROUND: Recombinant expression of toxic proteins remains a challenging problem. One potential method to shield toxicity and thus improve expression of these proteins is to encapsulate them within protein compartments to sequester them away from their targets. Many bacteria naturally produce so-called bacterial microcompartments (BMCs) in which enzymes comprising a biosynthetic pathway are encapsulated in a proteinaeous shell, which is in part thought to shield the cells from the toxicity of reaction intermediates. As a proof-of-concept, we attempted to encapsulate toxic, lysis protein E (E) from bacteriophage ϕX174 inside recombinant BMCs to enhance its expression and achieve higher yields during downstream purification. RESULTS: E was fused with various N-terminal BMC targeting tags (PduP-, PduD-, and EutC-tags, 18-20 amino acids) and co-expressed with appropriate BMC shell proteins that associate with the tags and are required to form BMCs. Only BMC targeted E fusions, but not non-tagged E, could be successfully cloned, suggesting that the BMC tags reduce the toxicity of E. A PduP-tagged E system appeared to achieve the highest expression of E. Co-expression of Pdu BMC shell proteins with PduP-E increased its expression by 20-50%. Affinity purification of PduP-E via Ni-NTA in the presence of Empigen BB detergent yielded 270 µg of PduP-E per L of induced culture. Removal of the PduP-tag via proteolysis resulted in a final yield of 200 µg of E per L of induced culture, a nearly order of magnitude (~sevenfold) improvement compared to prior reports. CONCLUSIONS: These results demonstrate improved expression of ϕX174 lysis protein E via re-directed BMC systems and ultimately higher E purification yields. Similar strategies can be used to enhance expression of other toxic proteins in recombinant Escherichia coli systems.


Assuntos
Escherichia coli/genética , Expressão Gênica , Proteínas Virais/biossíntese , Proteínas Virais/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Compartimento Celular , Meios de Cultura/química , Escherichia coli/citologia , Escherichia coli/metabolismo , Proteólise , Proteínas Recombinantes/biossíntese , Proteínas Virais/isolamento & purificação
12.
J Obstet Gynaecol ; 37(1): 58-63, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28006994

RESUMO

We evaluated the concentrations of human epididymis secretory protein E4 (HE4) and Ca-125 in relation to clinicopathologic features in patients with endometrial cancer and premalignant endometrial lesions. Women with abnormal uterine bleeding (n = 167) who underwent endometrial sampling were divided into four groups. Group 1: endometrial cancer (n = 68), group 2: atypical endometrial hyperplasia (n = 12), group 3: endometrial hyperplasia without atypia (n = 39) and group 4: controls (n = 48). Women with endometrial cancer exhibited higher concentrations of HE4 levels than controls (91.4 pmol/L vs. 46.2 pmol/L, p < 0.001). HE4 levels were significantly higher in patients with lymphatic involvement, deep myometrial invasion, lymphovascular space involvement and non-endometrioid histology (p < 0.001). The sensitivity, specificity, positive and negative predictive values for HE4 in detecting endometrial cancer were 72.7%, 84.4%, 80% and 78.4%, respectively. Preoperative HE4 levels are more elevated in women with endometrial cancer than those with benign endometrium as well as in women with prognostic high-risk factors with endometrial cancer. HE4 may be used as an additional marker in combination with other clinicopathologic features for planning the treatment.


Assuntos
Hiperplasia Endometrial/sangue , Neoplasias do Endométrio/sangue , Lesões Pré-Cancerosas/sangue , Proteínas/análise , Idoso , Hiperplasia Endometrial/cirurgia , Neoplasias do Endométrio/cirurgia , Endométrio/patologia , Endométrio/cirurgia , Feminino , Humanos , Pessoa de Meia-Idade , Lesões Pré-Cancerosas/cirurgia , Valor Preditivo dos Testes , Prognóstico , Sensibilidade e Especificidade , Proteína 2 do Domínio Central WAP de Quatro Dissulfetos
13.
Bioorg Med Chem ; 24(24): 6340-6347, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27021004

RESUMO

This review covers recent developments in the inhibition of translocase MraY and related phospho-GlcNAc transferases WecA and TagO, and insight into the inhibition and catalytic mechanism of this class of integral membrane proteins from the structure of Aquifex aeolicus MraY. Recent studies have also identified a protein-protein interaction site in Escherichia coli MraY, that is targeted by bacteriophage ϕX174 lysis protein E, and also by cationic antimicrobial peptides containing Arg-Trp close to their N- or C-termini.


Assuntos
Proteínas de Bactérias/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Escherichia coli/enzimologia , Transferases/antagonistas & inibidores , Proteínas Virais/metabolismo , Antibacterianos/química , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Proteínas de Bactérias/metabolismo , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Inibidores Enzimáticos/química , Nucleosídeos/química , Nucleosídeos/farmacologia , Transferases/metabolismo , Transferases (Outros Grupos de Fosfato Substituídos)
14.
Biochim Biophys Acta ; 1840(1): 262-70, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24055374

RESUMO

BACKGROUND: Photodynamic therapy (PDT) is used for cancer treatment including brain tumors. But the role of epigenetic processes in photodynamic injury of normal brain tissue is unknown. METHODS: 5-Aminolevulinic acid (ALA), a precursor of protoporphyrin IX (PpIX), was used to photosensitize mouse cerebral cortex. PpIX accumulation in cortical tissue was measured spectrofluorometrically. Hematoxylin/eosin, gallocyanin-chromalum and immunohistochemical staining were used to study morphological changes in PDT-treated cerebral cortex. Proteomic antibody microarrays were used to evaluate expression of 112 proteins involved in epigenetic regulation. RESULTS: ALA administration induced 2.5-fold increase in the PpIX accumulation in the mouse brain cortex compared to untreated mice. Histological study demonstrated PDT-induced injury of some neurons and cortical vessels. ALA-PDT induced dimethylation of histone H3, upregulation of histone deacetylases HDAC-1 and HDAC-11, and DNA methylation-dependent protein Kaiso that suppressed transcriptional activity. Upregulation of HDAC-1 and H3K9me2 was confirmed immunohistochemically. Down-regulation of transcription factor FOXC2, PABP, and hBrm/hsnf2a negatively regulated transcription. Overexpression of phosphorylated histone H2AX indicated activation of DNA repair, but down-regulation of MTA1/MTA1L1 and PML - impairment of DNA repair. Overexpression of arginine methyltransferase PRMT5 correlated with up-regulation of transcription factor E2F4 and importin α5/7. CONCLUSION: ALA-PDT injures and kills some but not all neurons and caused limited microvascular alterations in the mouse cerebral cortex. It alters expression of some proteins involved in epigenetic regulation of transcription, histone modification, DNA repair, nuclear protein import, and proliferation. GENERAL SIGNIFICANCE: These data indicate epigenetic markers of photo-oxidative injury of normal brain tissue.


Assuntos
Ácido Aminolevulínico/farmacologia , Córtex Cerebral/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Regulação da Expressão Gênica , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Proteoma/análise , Animais , Córtex Cerebral/patologia , Córtex Cerebral/efeitos da radiação , Epigênese Genética/genética , Epigênese Genética/efeitos da radiação , Epigenômica , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos da radiação , Histonas/metabolismo , Técnicas Imunoenzimáticas , Masculino , Camundongos , Análise Serial de Proteínas
15.
Biochem Soc Trans ; 43(6): 1241-6, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26614667

RESUMO

Unr (upstream of N-ras) is a post-transcriptional regulator of gene expression, essential for mammalian development and mutated in many human cancers. The expression of unr is itself regulated at many levels; transcription of unr, which also affects expression of the downstream N-ras gene, is tissue and developmental stage-dependent and is repressed by c-Myc and Max (Myc associated factor X). Alternative splicing gives rise to six transcript variants, which include three different 5'-UTRs. The transcripts are further diversified by the use of three alternative polyadenylation signals, which governs whether AU-rich instability elements are present in the 3'-UTR or not. Translation of at least some unr transcripts can occur by internal initiation and is regulated in a cell-cycle-dependent manner; binding of PTB (polypyrimidine tract-binding protein) and Unr to the 5'-UTR inhibits translation, but these are displaced by heterogeneous nuclear ribonucleoproteins C1/C2 (hnRNPC1/C2) during mitosis to stimulate translation. Finally, Unr is post-translationally modified by phosphorylation and lysine acetylation, although it is not yet known how these modifications affect Unr activity.


Assuntos
Regiões 3' não Traduzidas/genética , Proteínas de Ligação a DNA/genética , Biossíntese de Proteínas , Proteínas de Ligação a RNA/genética , Transcrição Gênica , Acetilação , Processamento Alternativo , Animais , Proteínas de Ligação a DNA/metabolismo , Humanos , Modelos Genéticos , Fosforilação , Proteínas de Ligação a RNA/metabolismo
16.
J Biol Chem ; 288(26): 18685-95, 2013 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-23658013

RESUMO

Borrelia burgdorferi spirochetes that cause Lyme borreliosis survive for a long time in human serum because they successfully evade the complement system, an important arm of innate immunity. The outer surface protein E (OspE) of B. burgdorferi is needed for this because it recruits complement regulator factor H (FH) onto the bacterial surface to evade complement-mediated cell lysis. To understand this process at the molecular level, we used a structural approach. First, we solved the solution structure of OspE by NMR, revealing a fold that has not been seen before in proteins involved in complement regulation. Next, we solved the x-ray structure of the complex between OspE and the FH C-terminal domains 19 and 20 (FH19-20) at 2.83 Å resolution. The structure shows that OspE binds FH19-20 in a way similar to, but not identical with, that used by endothelial cells to bind FH via glycosaminoglycans. The observed interaction of OspE with FH19-20 allows the full function of FH in down-regulation of complement activation on the bacteria. This reveals the molecular basis for how B. burgdorferi evades innate immunity and suggests how OspE could be used as a potential vaccine antigen.


Assuntos
Antígenos de Bactérias/imunologia , Proteínas da Membrana Bacteriana Externa/imunologia , Borrelia burgdorferi/imunologia , Fator H do Complemento/imunologia , Lipoproteínas/imunologia , Doença de Lyme/microbiologia , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Células Endoteliais/metabolismo , Glicosaminoglicanos/metabolismo , Humanos , Ligação de Hidrogênio , Imunidade Inata , Doença de Lyme/imunologia , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Homologia de Sequência de Aminoácidos
17.
Chembiochem ; 15(9): 1300-8, 2014 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-24895118

RESUMO

Translocase MraY is the site of action of lysis protein E from bacteriophage ϕX174. Previous genetic studies have shown that mutation F288L in transmembrane helix 9 of E. coli MraY confers resistance to protein E. Construction of a helical wheel model for transmembrane helix 9 of MraY and the transmembrane domain of protein E enabled the identification of an Arg-Trp-x-x-Trp (RWxxW) motif in protein E that might interact with Phe288 of MraY and the neighbouring Glu287. This motif is also found in a number of cationic antimicrobial peptide sequences. Synthetic dipeptides and pentapeptides based on the RWxxW consensus sequence showed inhibition of particulate E. coli MraY activity (IC50 200-600 µM), and demonstrated antimicrobial activity against E. coli (MIC 31-125 µg mL(-1)). Cationic antimicrobial peptides at a concentration of 100 µg mL(-1) containing Arg-Trp sequences also showed 30-60 % inhibition of E. coli MraY activity. Assay of the synthetic peptide inhibitors against recombinant MraY enzymes from Bacillus subtilis, Pseudomonas aeruginosa, and Micrococcus flavus (all of which lack Phe288) showed reduced levels of enzyme inhibition, and assay against recombinant E. coli MraY F288L and an E287A mutant demonstrated either reduced or no detectable enzyme inhibition, thus indicating that these peptides interact at this site. The MIC of Arg-Trp-octyl ester against E. coli was increased eightfold by overexpression of mraY, and was further increased by overexpression of the mraY mutant F288L, also consistent with inhibition at the RWxxW site. As this site is on the exterior face of the cytoplasmic membrane, it constitutes a potential new site for antimicrobial action, and provides a new cellular target for cationic antimicrobial peptides.


Assuntos
Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Escherichia coli/enzimologia , Peptídeos/farmacologia , Transferases/antagonistas & inibidores , Transferases/química , Proteínas Virais/metabolismo , Proteínas de Bactérias/metabolismo , Sítios de Ligação/efeitos dos fármacos , Relação Dose-Resposta a Droga , Peptídeos/síntese química , Peptídeos/química , Conformação Proteica , Relação Estrutura-Atividade , Transferases/metabolismo , Transferases (Outros Grupos de Fosfato Substituídos)
18.
J Mol Recognit ; 27(12): 727-38, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25319621

RESUMO

The specific interactions of the pairs laminin binding protein (LBP)-purified tick-borne encephalitis viral surface protein E and certain recombinant fragments of this protein, as well as West Nile viral surface protein E and certain recombinant fragments of that protein, are studied by combined methods of single-molecule dynamic force spectroscopy (SMDFS), enzyme immunoassay and optical surface waves-based biosensor measurements. The experiments were performed at neutral pH (7.4) and acid pH (5.3) conditions. The data obtained confirm the role of LBP as a cell receptor for two typical viral species of the Flavivirus genus. A comparison of these data with similar data obtained for another cell receptor of this family, namely human αVß3 integrin, reveals that both these receptors are very important. Studying the specific interaction between the cell receptors in question and specially prepared monoclonal antibodies against them, we could show that both interaction sites involved in the process of virus-cell interaction remain intact at pH 5.3. At the same time, for these acid conditions characteristic for an endosome during flavivirus-cell membrane fusion, SMDFS data reveal the existence of a force-induced (effective already for forces as small as 30-70 pN) sharp globule-coil transition for LBP and LBP-fragments of protein E complexes. We argue that this conformational transformation, being an analog of abrupt first-order phase transition and having similarity with the famous Rayleigh hydrodynamic instability, might be indispensable for the flavivirus-cell membrane fusion process.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos/fisiologia , Laminina/metabolismo , Fusão de Membrana , Estresse Mecânico , Internalização do Vírus , Humanos , Concentração de Íons de Hidrogênio , Integrina alfaVbeta3/metabolismo , Cinética , Ligantes , Ligação Proteica , Receptores de Superfície Celular/metabolismo , Proteínas Recombinantes/metabolismo , Análise Espectral , Termodinâmica , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/metabolismo
19.
Int J Med Microbiol ; 304(5-6): 662-8, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24863527

RESUMO

The human pathogen Haemophilus influenzae causes mainly respiratory tract infections such as acute otitis media in children and exacerbations in patients with chronic obstructive pulmonary disease. We recently revealed the crystal structure of H. influenzeae protein E (PE), a multifunctional adhesin that is involved in direct interactions with lung epithelial cells and host proteins. Based upon the PE structure we here suggest a hypothetical binding pocket that is compatible in size with a hemin molecule. An H. influenzae mutant devoid of PE bound significantly less hemin in comparison to the PE-expressing wild type counterpart. In addition, E. coli expressing PE at the surface resulted in a hemin-binding phenotype. An interaction between hemin and recombinant soluble PE was also demonstrated by native-PAGE and UV-visible spectrophotometry. Surface plasmon resonance revealed an affinity (Kd) of 1.6 × 10(-6)M for the hemin-PE interaction. Importantly, hemin that was bound to PE at the H. influenzae surface, was donated to co-cultured luciferase-expressing H. influenzae that were starved of hemin. When hemin is bound to PE it thus may serve as a storage pool for H. influenzae. To our knowledge this is the first report showing that H. influenzae can share hemin via a surface-located outer membrane protein.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Haemophilus influenzae/metabolismo , Hemina/metabolismo , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/genética , Sítios de Ligação , Deleção de Genes , Haemophilus influenzae/genética , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Ressonância de Plasmônio de Superfície
20.
Virulence ; 15(1): 2350893, 2024 12.
Artigo em Inglês | MEDLINE | ID: mdl-38725096

RESUMO

Coxiella burnetii (C. burnetii) is the causative agent of Q fever, a zoonotic disease. Intracellular replication of C. burnetii requires the maturation of a phagolysosome-like compartment known as the replication permissive Coxiella-containing vacuole (CCV). Effector proteins secreted by the Dot/Icm secretion system are indispensable for maturation of a single large CCV by facilitating the fusion of promiscuous vesicles. However, the mechanisms of CCV maintenance and evasion of host cell clearance remain to be defined. Here, we show that C. burnetii secreted Coxiella vacuolar protein E (CvpE) contributes to CCV biogenesis by inducing lysosome-like vacuole (LLV) enlargement. LLV fission by tubulation and autolysosome degradation is impaired in CvpE-expressing cells. Subsequently, we found that CvpE suppresses lysosomal Ca2+ channel transient receptor potential channel mucolipin 1 (TRPML1) activity in an indirect manner, in which CvpE binds phosphatidylinositol 3-phosphate [PI(3)P] and perturbs PIKfyve activity in lysosomes. Finally, the agonist of TRPML1, ML-SA5, inhibits CCV biogenesis and C. burnetii replication. These results provide insight into the mechanisms of CCV maintenance by CvpE and suggest that the agonist of TRPML1 can be a novel potential treatment that does not rely on antibiotics for Q fever by enhancing Coxiella-containing vacuoles (CCVs) fission.


Assuntos
Proteínas de Bactérias , Coxiella burnetii , Lisossomos , Fosfatidilinositol 3-Quinases , Fosfatos de Fosfatidilinositol , Canais de Potencial de Receptor Transitório , Vacúolos , Animais , Humanos , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Coxiella burnetii/metabolismo , Coxiella burnetii/crescimento & desenvolvimento , Coxiella burnetii/genética , Células HeLa , Interações Hospedeiro-Patógeno , Lisossomos/metabolismo , Lisossomos/microbiologia , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Febre Q/microbiologia , Canais de Potencial de Receptor Transitório/metabolismo , Canais de Potencial de Receptor Transitório/genética , Vacúolos/microbiologia , Vacúolos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA