Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 174
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Pharmacol Toxicol ; 63: 359-382, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36100222

RESUMO

The fibroblast growth factor (FGF) family, which comprises 22 structurally related proteins, plays diverse roles in cell proliferation, differentiation, development, and metabolism. Among them, two classical members (FGF1 and FGF4) and two endocrine members (FGF19 and FGF21) are important regulators of whole-body energy homeostasis, glucose/lipid metabolism, and insulin sensitivity. Preclinical studies have consistently demonstrated the therapeutic benefits of these FGFs for the treatment of obesity, diabetes, dyslipidemia, and nonalcoholic steatohepatitis (NASH). Several genetically engineered FGF19 and FGF21 analogs with improved pharmacodynamic and pharmacokinetic properties have been developed and progressed into various stages of clinical trials. These FGF analogs are effective in alleviating hepatic steatosis, steatohepatitis, and liver fibrosis in biopsy-confirmed NASH patients, whereas their antidiabetic and antiobesity effects are mildand vary greatly in different clinical trials. This review summarizes recent advances in biopharmaceutical development of FGF-based therapies against obesity-related metabolic complications, highlights major challenges in clinical implementation, and discusses possible strategies to overcome these hurdles.


Assuntos
Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica , Humanos , Fatores de Crescimento de Fibroblastos/farmacologia , Fatores de Crescimento de Fibroblastos/uso terapêutico , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Obesidade/complicações , Obesidade/tratamento farmacológico
2.
Proc Natl Acad Sci U S A ; 119(33): e2207829119, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35943988

RESUMO

Although patients generally prefer oral drug delivery to injections, low permeability of the gastrointestinal tract makes this method impossible for most biomacromolecules. One potential solution is codelivery of macromolecules, including therapeutic proteins or nucleic acids, with intestinal permeation enhancers; however, enhancer use has been limited clinically by modest efficacy and toxicity concerns surrounding long-term administration. Here, we hypothesized that plant-based foods, which are well tolerated by the gastrointestinal tract, may contain compounds that enable oral macromolecular absorption without causing adverse effects. Upon testing more than 100 fruits, vegetables, and herbs, we identified strawberry and its red pigment, pelargonidin, as potent, well-tolerated enhancers of intestinal permeability. In mice, an oral capsule formulation comprising pelargonidin and a 1 U/kg dose of insulin reduced blood glucose levels for over 4 h, with bioactivity exceeding 100% relative to subcutaneous injection. Effects were reversible within 2 h and associated with actin and tight junction rearrangement. Furthermore, daily dosing of mice with pelargonidin for 1 mo resulted in no detectable side effects, including weight loss, tissue damage, or inflammatory responses. These data suggest that pelargonidin is an exceptionally effective enhancer of oral protein uptake that may be safe for routine pharmaceutical use.


Assuntos
Antocianinas , Fragaria , Absorção Intestinal , Intestinos , Proteínas , Administração Oral , Animais , Antocianinas/química , Antocianinas/farmacologia , Fragaria/química , Insulina/administração & dosagem , Insulina/farmacocinética , Absorção Intestinal/efeitos dos fármacos , Intestinos/efeitos dos fármacos , Intestinos/metabolismo , Camundongos , Permeabilidade , Proteínas/administração & dosagem , Proteínas/farmacocinética
3.
Trends Biochem Sci ; 45(4): 332-346, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32014389

RESUMO

Miniproteins are a diverse group of protein scaffolds characterized by small (1-10 kDa) size, stability, and versatility in drug-like roles. Coming largely from native sources, they have been widely adopted into drug development pipelines. While their structures and capabilities are diverse, the approaches to their utilization share more similarities with each other than with more widely used modalities (e.g., antibodies or small molecules). In this review, we highlight recent advances in miniprotein-based approaches to otherwise poorly addressed clinical needs, including structure-based and functional characterization. We also summarize their unique screening strategies and pharmacology considerations. Through a greater understanding of the unique properties that make them attractive for drug design, miniproteins can be effectively utilized against targets that are intractable by other approaches.


Assuntos
Desenvolvimento de Medicamentos , Proteínas , Animais , Humanos , Proteínas/química , Proteínas/metabolismo
4.
Biochem Biophys Res Commun ; 718: 150082, 2024 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-38735141

RESUMO

A number of small molecule and protein therapeutic candidates have been developed in the last four years against SARS-CoV-2 spike. However, there are hardly a few molecules that have advanced through the subsequent discovery steps to eventually work as a therapeutic agent. This is majorly because of the hurdles in determining the affinity of potential therapeutics with live SARS-CoV-2 virus. Furthermore, affinity determined for the receptor binding domain (RBD) of the SARS-CoV-2 spike protein, at times, fails to mimic physiological conditions of the host-virus interaction. To bridge this gap between in vitro and in vivo methods of therapeutic agent screening, we report an improved screening protocol for therapeutic candidates using SARS-CoV-2 virus like particles (VLPs). To minimise the interference from the bulkier reporters like GPF in the affinity studies, a smaller hemagglutinin (HA) tag has been fused to one of the proteins of VLP. This HA tag serves as readout, when probed with fluorescent anti-HA antibodies. Outcome of this study sheds light on the lesser known virus neutralisation capabilities of AM type miniprotein mimics. Further, to assess the stability of SARS-CoV-2 spike - miniprotein complex, we have performed molecular dynamic simulations on the membrane embedded protein complex. Simulation results reveal extremely stable intermolecular interactions between RBD and one of the AM type miniproteins, AM1. Furthermore, we discovered a robust network of intramolecular interactions that help stabilise AM1. Findings from our in vitro and in silico experiments concurrently highlight advantages and capabilities of mimic based miniprotein therapeutics.


Assuntos
SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , SARS-CoV-2/imunologia , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/imunologia , Humanos , COVID-19/virologia , COVID-19/imunologia , Ligação Proteica , Vírion/metabolismo , Antivirais/farmacologia , Antivirais/química , Células HEK293
5.
Chembiochem ; : e202400674, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39356249

RESUMO

Disulfide-bonded peptides and proteins, including hormones, toxins, growth factors, and others, are abundant in living organisms. These molecules play crucial physiological roles such as regulating cell and organism growth, development, and metabolism. They have also found widespread applications as drugs or tool molecules in biomedical and pharmaceutical research. However, the chemical synthesis of disulfide-bonded proteins is complicated by the challenges associated with their folding. This review focuses on the latest advancements in disulfide-bonded peptide and protein folding technologies. Particularly, it highlights biomimetic folding strategies that emulate the naturally occurring oxidative folding processes in nature. These strategies include chaperone-assisted folding, glycosylation-assisted folding, and organic-based oxidative folding methods. The review also anticipates future directions in folding technology. Such research offers innovative approaches for the chemical synthesis of complex proteins that are otherwise difficult-to-fold.

6.
J Comput Aided Mol Des ; 38(1): 30, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39164492

RESUMO

The development of novel therapeutic proteins is a lengthy and costly process, with an average attrition rate of 91% (Thomas et al. Clinical Development Success Rates and Contributing Factors 2011-2020, 2021). To increase the probability of success and ensure robust drug supply beyond approval, it is essential to assess the developability profile of new potential drug candidates as early and broadly as possible in development (Jain et al. MAbs, 2023. https://doi.org/10.1016/j.copbio.2011.06.002 ). Predicting these properties in silico is expected to be the next leap in innovation as it would enable significantly reduced development timelines combined with broader screens at lower costs. However, developing predictive algorithms typically requires substantial datasets generated under very defined conditions, a limiting factor especially for new classes of therapeutic proteins that hold immense clinical promise. Here we describe a strategy for assessing the developability of a novel class of small therapeutic Anticalin® proteins using machine learning in conjunction with a knowledge-driven approach. The knowledge-driven approach considers developability attributes such as aggregation propensity, charge variants, immunogenicity, specificity, thermal stability, hydrophobicity, and potential post-translational modifications, to calculate a holistic developability score. Based on sequence-derived descriptors as input parameters we established novel statistical models designed to predict the developability scores for Anticalin proteins. The best models yielded low root mean square errors across the entire dataset and were further validated by removing input data from individual screening campaigns and predicting developability scores for those drug candidates. The adoption of the described workflow will enable significantly streamlined preclinical development of Anticalin drug candidates and could potentially be applied to other therapeutic protein scaffolds.


Assuntos
Simulação por Computador , Aprendizado de Máquina , Proteínas , Humanos , Proteínas/química , Algoritmos , Descoberta de Drogas/métodos , Desenho de Fármacos
7.
J Nanobiotechnology ; 22(1): 58, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38341574

RESUMO

Multivalent drugs targeting homo-oligomeric viral surface proteins, such as the SARS-CoV-2 trimeric spike (S) protein, have the potential to elicit more potent and broad-spectrum therapeutic responses than monovalent drugs by synergistically engaging multiple binding sites on viral targets. However, rational design and engineering of nanoscale multivalent protein drugs are still lacking. Here, we developed a computational approach to engineer self-assembling trivalent microproteins that simultaneously bind to the three receptor binding domains (RBDs) of the S protein. This approach involves four steps: structure-guided linker design, molecular simulation evaluation of self-assembly, experimental validation of self-assembly state, and functional testing. Using this approach, we first designed trivalent constructs of the microprotein miniACE2 (MP) with different trimerization scaffolds and linkers, and found that one of the constructs (MP-5ff) showed high trimerization efficiency, good conformational homogeneity, and strong antiviral neutralizing activity. With its trimerization unit (5ff), we then engineered a trivalent nanobody (Tr67) that exhibited potent and broad neutralizing activity against the dominant Omicron variants, including XBB.1 and XBB.1.5. Cryo-EM complex structure confirmed that Tr67 stably binds to all three RBDs of the Omicron S protein in a synergistic form, locking them in the "3-RBD-up" conformation that could block human receptor (ACE2) binding and potentially facilitate immune clearance. Therefore, our approach provides an effective strategy for engineering potent protein drugs against SARS-CoV-2 and other deadly coronaviruses.


Assuntos
COVID-19 , Humanos , Micropeptídeos , SARS-CoV-2 , Sítios de Ligação , Anticorpos Neutralizantes , Anticorpos Antivirais
8.
Artigo em Inglês | MEDLINE | ID: mdl-38691205

RESUMO

Two-pore physiologically based pharmacokinetic (PBPK) modeling has demonstrated its potential in describing the pharmacokinetics (PK) of different-size proteins. However, all existing two-pore models lack either diverse proteins for validation or interspecies extrapolation. To fill the gap, here we have developed and optimized a translational two-pore PBPK model that can characterize plasma and tissue disposition of different-size proteins in mice, rats, monkeys, and humans. Datasets used for model development include more than 15 types of proteins: IgG (150 kDa), F(ab)2 (100 kDa), minibody (80 kDa), Fc-containing proteins (205, 200, 110, 105, 92, 84, 81, 65, or 60 kDa), albumin conjugate (85.7 kDa), albumin (67 kDa), Fab (50 kDa), diabody (50 kDa), scFv (27 kDa), dAb2 (23.5 kDa), proteins with an albumin-binding domain (26, 23.5, 22, 16, 14, or 13 kDa), nanobody (13 kDa), and other proteins (110, 65, or 60 kDa). The PBPK model incorporates: (i) molecular weight (MW)-dependent extravasation through large and small pores via diffusion and filtration, (ii) MW-dependent renal filtration, (iii) endosomal FcRn-mediated protection from catabolism for IgG and albumin-related modalities, and (iv) competition for FcRn binding from endogenous IgG and albumin. The finalized model can well characterize PK of most of these proteins, with area under the curve predicted within two-fold error. The model also provides insights into contribution of renal filtration and lysosomal degradation towards total elimination of proteins, and contribution of paracellular convection/diffusion and transcytosis towards extravasation. The PBPK model presented here represents a cross-modality, cross-species platform that can be used for development of novel biologics.

9.
Angew Chem Int Ed Engl ; 63(14): e202317817, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38342757

RESUMO

The differential enzymatic activity in the endo/lysosomes of particular cells could trigger targeted endosomal escape functions, enabling selective intracellular protein delivery. However, this strategy may be jeopardized due to protein degradation during endosomal trafficking. Herein, using custom made fluorescent probes to assess the endosomal activity of cathepsin B (CTSB) and protein degradation, we found that certain cancer cells with hyperacidified endosomes grant a spatiotemporal window where CTSB activity surpass protein digestion. This inspired the engineering of antibody-loaded polymeric nanocarriers having CTSB-activatable endosomal escape ability. The nanocarriers selectively escaped from the endo/lysosomes in the cells with high endosomal CTSB activity and delivered active antibodies to intracellular targets. This study provides a viable strategy for cell-specific protein delivery using stimuli-responsive nanocarriers with controlled endosomal escape.


Assuntos
Endossomos , Neoplasias , Endossomos/metabolismo , Anticorpos/metabolismo , Polímeros/metabolismo , Lisossomos/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo
10.
Molecules ; 28(8)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37110623

RESUMO

Large molecule protein therapeutics have steadily grown and now represent a significant portion of the overall pharmaceutical market. These complex therapies are commonly manufactured using cell culture technology. Sequence variants (SVs) are undesired minor variants that may arise from the cell culture biomanufacturing process that can potentially affect the safety and efficacy of a protein therapeutic. SVs have unintended amino acid substitutions and can come from genetic mutations or translation errors. These SVs can either be detected using genetic screening methods or by mass spectrometry (MS). Recent advances in Next-generation Sequencing (NGS) technology have made genetic testing cheaper, faster, and more convenient compared to time-consuming low-resolution tandem MS and Mascot Error Tolerant Search (ETS)-based workflows which often require ~6 to 8 weeks data turnaround time. However, NGS still cannot detect non-genetic derived SVs while MS analysis can do both. Here, we report a highly efficient Sequence Variant Analysis (SVA) workflow using high-resolution MS and tandem mass spectrometry combined with improved software to greatly reduce the time and resource cost associated with MS SVA workflows. Method development was performed to optimize the high-resolution tandem MS and software score cutoff for both SV identification and quantitation. We discovered that a feature of the Fusion Lumos caused significant relative under-quantitation of low-level peptides and turned it off. A comparison of common Orbitrap platforms showed that similar quantitation values were obtained on a spiked-in sample. With this new workflow, the amount of false positive SVs was decreased by up to 93%, and SVA turnaround time by LC-MS/MS was shortened to 2 weeks, comparable to NGS analysis speed and making LC-MS/MS the top choice for SVA workflow.


Assuntos
Software , Espectrometria de Massas em Tandem , Espectrometria de Massas em Tandem/métodos , Fluxo de Trabalho , Cromatografia Líquida/métodos , Sequenciamento de Nucleotídeos em Larga Escala
11.
Angew Chem Int Ed Engl ; 62(9): e202215801, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36550087

RESUMO

Single-cell protein therapeutics is expected to promote our in-depth understanding of how a specific protein with a therapeutic dosage treats the cell without population averaging. However, it has not yet been tackled by current single-cell nanotools. We address this challenge by the use of a double-barrel nanopipette, in which one lumen was used for electroosmotic cytosolic protein delivery and the other was customized for ionic evaluation of the consequence. Upon injection of protein DJ-1 through the delivery lumen, upregulation of the antioxidant protein could protect neural PC-12 cells against oxidative stress from phorbol myristate acetate exposure, as deduced by targeting of the cytosolic hydrogen peroxide by the detecting lumen. The nanotool developed in this study for single-cell protein therapeutics provides a perspective for future single-cell therapeutics involving different therapeutic modalities, such as peptides, enzymes and nucleic acids.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Proteína Desglicase DJ-1 , Íons , Peptídeos , Terapia Baseada em Transplante de Células e Tecidos/métodos , Sistemas de Liberação de Fármacos por Nanopartículas , Proteína Desglicase DJ-1/farmacologia , Proteína Desglicase DJ-1/uso terapêutico , Estresse Oxidativo , Acetato de Tetradecanoilforbol
12.
Pharm Res ; 39(2): 263-279, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35080706

RESUMO

OBJECTIVE: Digital microscopy is used to monitor particulates such as protein aggregates within biopharmaceutical products. The images that result encode a wealth of information that is underutilized in pharmaceutical process monitoring. For example, images of particles in protein drug products typically are analyzed only to obtain particle counts and size distributions, even though the images also reflect particle characteristics such as shape and refractive index. Multiple groups have demonstrated that convolutional neural networks (CNNs) can extract information from images of protein aggregates allowing assignment of the likely stress at the "root-cause" of aggregation. A practical limitation of previous CNN-based approaches is that the potential aggregation-inducing stresses must be known a priori, disallowing identification of particles produced by unknown stresses. METHODS: We demonstrate an expanded CNN analysis of flow imaging microscopy (FIM) images incorporating judiciously chosen particle standards within a recently proposed "fingerprinting algorithm" (Biotechnol. & Bioeng. (2020) 117:3322) that allows detection of particles formed by unknown root-causes. We focus on ethylene tetrafluoroethylene (ETFE) microparticles as standard surrogates for protein aggregates. We quantify the sensitivity of the new algorithm to experimental parameters such as microscope focus and solution refractive index changes, and explore how FIM sample noise affects statistical testing procedures. RESULTS & CONCLUSIONS: Applied to real-world microscopy images of protein aggregates, the algorithm reproducibly detects complex, distinguishing "textural features" of particles that are not easily described by standard morphological measurements. This offers promise for quality control applications and for detecting shifts in protein aggregate populations due to stresses resulting from unknown process upsets.


Assuntos
Ensaios de Triagem em Larga Escala , Processamento de Imagem Assistida por Computador , Microscopia , Redes Neurais de Computação , Proteínas/análise , Composição de Medicamentos , Agregados Proteicos , Reprodutibilidade dos Testes
13.
Mol Biol Rep ; 49(11): 10949-10959, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36044113

RESUMO

Malignant tumor cells can obtain proliferative benefits from deviant metabolic networks. Emerging evidence suggests that lipid metabolism are dramatically altered in gliomas and excessive fatty acd accumulation is detrimentally correlated with the prognosis of glioma patients. Glioma cells possess remarkably high levels of free fatty acids, which, in turn, enhance post-translational modifications (e.g. palmitoylation). Our and other groups found that palmitoylational modification is essential for remaining intracellular homeostasis and cell survival. Disrupting the balance between palmitoylation and depalmitoylation affects glioma cell viability, apoptosis, invasion, self-renew and pyroptosis. In this review, we focused on summarizing roles and relevant mechanisms of protein palmitoylational modification in gliomas.


Assuntos
Glioma , Lipoilação , Humanos , Glioma/metabolismo , Processamento de Proteína Pós-Traducional , Apoptose
14.
Proc Natl Acad Sci U S A ; 116(2): 512-521, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30610181

RESUMO

Protein therapeutics represent a significant and growing component of the modern pharmacopeia, but their potential to treat human disease is limited because most proteins fail to traffic across biological membranes. Recently, we discovered a class of cell-permeant miniature proteins (CPMPs) containing a precisely defined, penta-arginine (penta-Arg) motif that traffics readily to the cytosol and nucleus of mammalian cells with efficiencies that rival those of hydrocarbon-stapled peptides active in animals and man. Like many cell-penetrating peptides (CPPs), CPMPs enter the endocytic pathway; the difference is that CPMPs containing a penta-Arg motif are released efficiently from endosomes, while other CPPs are not. Here, we seek to understand how CPMPs traffic from endosomes into the cytosol and what factors contribute to the efficiency of endosomal release. First, using two complementary cell-based assays, we exclude endosomal rupture as the primary means of endosomal escape. Next, using an RNA interference screen, fluorescence correlation spectroscopy, and confocal imaging, we identify VPS39-a gene encoding a subunit of the homotypic fusion and protein-sorting (HOPS) complex-as a critical determinant in the trafficking of CPMPs and hydrocarbon-stapled peptides to the cytosol. Although CPMPs neither inhibit nor activate HOPS function, HOPS activity is essential to efficiently deliver CPMPs to the cytosol. CPMPs localize within the lumen of Rab7+ and Lamp1+ endosomes and their transport requires HOPS activity. Overall, our results identify Lamp1+ late endosomes and lysosomes as portals for passing proteins into the cytosol and suggest that this environment is prerequisite for endosomal escape.


Assuntos
Proteínas de Transporte/genética , Peptídeos Penetradores de Células , Endossomos/metabolismo , Fusão de Membrana/efeitos dos fármacos , Motivos de Aminoácidos , Proteínas Relacionadas à Autofagia , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Peptídeos Penetradores de Células/farmacocinética , Peptídeos Penetradores de Células/farmacologia , Citosol/metabolismo , Endossomos/genética , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana Lisossomal/genética , Proteínas de Membrana Lisossomal/metabolismo , Transporte Proteico/efeitos dos fármacos , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo , proteínas de unión al GTP Rab7
15.
J Pharmacokinet Pharmacodyn ; 49(6): 607-624, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36266517

RESUMO

Lung related disorders like COPD and Asthma, as well as various infectious diseases, form a major therapeutic area which would benefit from a predictive and adaptable mathematical model for describing pulmonary disposition of biological modalities. In this study we fill that gap by extending the cross-species two-pore physiologically-based pharmacokinetic (PBPK) platform with more detailed respiratory tract that includes the airways and alveolar space with epithelial lining fluid. We parameterize the paracellular and FcRn-facilitated exchange pathways between the epithelial lining fluid and lung interstitial space by building a mechanistic model for the exchange between the two. The optimized two-pore PBPK model described pulmonary exposure of several systemically dosed mAbs for which data is available and is also in agreement with the observed levels of endogenous IgG and albumin. The proposed framework can be used to assess pharmacokinetics of new lung-targeting biologic therapies and guide their dosing to achieve desired exposure at the pulmonary site-of-action.


Assuntos
Anticorpos Monoclonais , Modelos Biológicos , Humanos , Anticorpos Monoclonais/farmacocinética , Albuminas , Pulmão
16.
Biotechnol Bioeng ; 118(9): 3323-3333, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33522595

RESUMO

An 8 ton per year manufacturing facility is described based on the framework for integrated and continuous bioprocessing (ICB) common to all known biopharmaceutical implementations. While the output of this plant rivals some of the largest fed-batch plants in the world, the equipment inside the plant is relatively small: the plant consists of four 2000 L single-use bioreactors and has a maximum flow rate of 13 L/min. The equipment and facility for the ICB framework is described in sufficient detail to allow biopharmaceutical companies, vendors, contract manufacturers to build or buy their own systems. The design will allow the creation of a global ICB ecosystem that will transform biopharmaceutical manufacturing. The design is fully backward compatible with legacy fed-batch processes. A clinical production scale is described that can produce smaller batch sizes with the same equipment as that used at the commercial scale. The design described allows the production of as little as 10 g to nearly 35 kg of drug substance per day.


Assuntos
Anticorpos Monoclonais , Técnicas de Cultura Celular por Lotes , Reatores Biológicos , Modelos Teóricos , Tecnologia Farmacêutica , Anticorpos Monoclonais/biossíntese , Anticorpos Monoclonais/química , Anticorpos Monoclonais/isolamento & purificação
17.
Biotechnol Bioeng ; 118(4): 1721-1735, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33491769

RESUMO

There is a growing application of integrated and continuous bioprocessing (ICB) for manufacturing recombinant protein therapeutics produced from mammalian cells. At first glance, the newly evolved ICB has created a vast diversity of platforms. A closer inspection reveals convergent evolution: nearly all of the major ICB methods have a common framework that could allow manufacturing across a global ecosystem of manufacturers using simple, yet effective, equipment designs. The framework is capable of supporting the manufacturing of most major biopharmaceutical ICB and legacy processes without major changes in the regulatory license. This article reviews the ICB that are being used, or are soon to be used, in a GMP manufacturing setting for recombinant protein production from mammalian cells. The adaptation of the various ICB modes to the common ICB framework will be discussed, along with the pros and cons of such adaptation. The equipment used in the common framework is generally described. This review is presented in sufficient detail to enable discussions of IBC implementation strategy in biopharmaceutical companies and contract manufacturers, and to provide a road map for vendors equipment design. An example plant built on the common framework will be discussed. The flexibility of the plant is demonstrated with batches as small as 0.5 kg or as large as 500 kg. The yearly output of the plant is as much as 8 tons.


Assuntos
Produtos Biológicos , Indústria Farmacêutica , Tecnologia Farmacêutica , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Produtos Biológicos/metabolismo , Produtos Biológicos/uso terapêutico , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/uso terapêutico
18.
Mol Pharm ; 18(8): 3158-3170, 2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34292741

RESUMO

Cell-free hemoglobin (Hb) is a driver of disease progression in conditions with intravascular or localized hemolysis. Genetic and acquired anemias or emergency medical conditions such as aneurysmal subarachnoid hemorrhage involve tissue Hb exposure. Haptoglobin (Hp) captures Hb in an irreversible protein complex and prevents its pathophysiological contributions to vascular nitric oxide depletion and tissue oxidation. Preclinical proof-of-concept studies suggest that human plasma-derived Hp is a promising therapeutic candidate for several Hb-driven diseases. Optimizing the efficacy and safety of Hb-targeting biotherapeutics may require structural and functional modifications for specific indications. Improved Hp variants could be designed to achieve the desired tissue distribution, metabolism, and elimination to target hemolytic disease states effectively. However, it is critical to ensure that these modifications maintain the function of Hp. Using transient mammalian gene expression of Hp combined with co-transfection of the pro-haptoglobin processing protease C1r-LP, we established a platform for generating recombinant Hp-variants. We designed an Hpß-scaffold, which was expressed in this system at high levels as a monomeric unit (mini-Hp) while maintaining the key protective functions of Hp. We then used this Hpß-scaffold as the basis to develop an initial proof-of-concept Hp fusion protein using human serum albumin as the fusion partner. Next, a hemopexin-Hp fusion protein with bispecific heme and Hb detoxification capacity was generated. Further, we developed a Hb scavenger devoid of CD163 scavenger receptor binding. The functions of these proteins were then characterized for Hb and heme-binding, binding of the Hp-Hb complexes with the clearance receptor CD163, antioxidant properties, and vascular nitric oxide sparing capacity. Our platform is designed to support the generation of innovative Hb scavenger biotherapeutics with novel modes of action and potentially improved formulation characteristics, function, and pharmacokinetics.


Assuntos
Produtos Biológicos/metabolismo , Desenho de Fármacos/métodos , Haptoglobinas/metabolismo , Hemoglobinas/metabolismo , Hemopexina/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/farmacologia , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Artéria Basilar/efeitos dos fármacos , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Células HEK293 , Haptoglobinas/química , Haptoglobinas/genética , Heme/metabolismo , Hemoglobinas/química , Hemólise , Hemopexina/química , Hemopexina/genética , Humanos , Ligação Proteica , Receptores de Superfície Celular/metabolismo , Receptores Depuradores/metabolismo , Proteínas Recombinantes de Fusão/genética , Albumina Sérica Humana/química , Albumina Sérica Humana/genética , Albumina Sérica Humana/metabolismo , Suínos , Transfecção , Vasodilatação/efeitos dos fármacos
19.
Pharmacol Res ; 170: 105735, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34146695

RESUMO

Therapeutic mAbs have dominated the class of immunotherapeutics in general and immune checkpoint inhibitors in particular. The high specificity of mAbs to the target molecule as well as their extended half-life and (or) the effector functions raised by the Fc part are some of the important aspects that contribute to the success of this class of therapeutics. Equally potential candidates are decoys and their fusions that can address some of the inherent limitations of mAbs, like immunogenicity, resistance development, low bio-availability and so on, besides maintaining the advantages of mAbs. The decoys are molecules that trap the ligands and prevent them from interacting with the signaling receptors. Although a few FDA-approved decoy immune modulators are very successful, the potential of this class of drugs is yet to be fully realized. Here, we review various strategies employed in fusion protein therapeutics with a focus on the design of decoy immunomodulators from the structural perspective and discuss how the information on protein structure and function can strategically guide the development of next-generation immune modulators.


Assuntos
Anticorpos Monoclonais/química , Desenho de Fármacos , Imunoconjugados/química , Agentes de Imunomodulação/química , Receptores Imunológicos/antagonistas & inibidores , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacocinética , Estabilidade de Medicamentos , Meia-Vida , Humanos , Imunoconjugados/imunologia , Imunoconjugados/farmacocinética , Agentes de Imunomodulação/imunologia , Agentes de Imunomodulação/farmacocinética , Ligantes , Estrutura Molecular , Estabilidade Proteica , Receptores Imunológicos/metabolismo , Transdução de Sinais , Relação Estrutura-Atividade
20.
Bioorg Med Chem Lett ; 38: 127852, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33609660

RESUMO

De novo design of mini-proteins (4-12 kDa) has recently been shown to produce new candidates for protein therapeutics. They are temperature stable molecules that bind to the drug target with high affinity for inhibiting its interactions. The development of mini-protein binders requires laboratory screening of tens of thousands of molecules for effective target binding. In this study we trained machine learning classifiers which can distinguish, with 90% accuracy and 80% precision, mini-protein binders from non-binding molecules designed for a particular target; this significantly reduces the number of mini protein candidates for experimental screening. Further, on the basis of our results we propose a multi-stage protocol where a small dataset (few hundred experimentally verified target-specific mini-proteins) can be used to train classifiers for improving the efficiency of mini-protein design for any specific target.


Assuntos
Aprendizado de Máquina , Proteínas/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Ligantes , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA