Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Chemistry ; 29(21): e202203660, 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-36650716

RESUMO

Two new 2,3-dicyanopyrazinophenanthrene-based acceptors (A) p-QCN and m-QCN were synthesized to blend with a donor (D) CPTBF for the exciplex formation. The energy levels of p-QCN and m-QCN are modulated by the peripheral substituents 4- and 3-benzonitrile, respectively. Exciplex-forming blends were identified by the observation of the red-shifted emissions from various D : A blends with higher ratios of donor for suppressing the aggregation of acceptor. The two-component relaxation processes observed by time-resolved photoluminescence support the thermally activated delayed fluorescence (TADF) character of the exciplex-forming blends. The device employing CPTBF : p-QCN and (2 : 1) and CPTBF : m-QCN (2 : 1) blend as the emitting layer (EML) gave EQEmax of 1.76 % and 5.12 %, and electroluminescence (EL) λmax of 629 nm and 618 nm, respectively. The device efficiency can be further improved to 4.32 % and 5.57 % with CPTBF : p-QCN and (4 : 1) and CPTBF : m-QCN (4 : 1) as the EML, which is consistent with their improved photoluminescence quantum yields (PLQYs). A new fluorescent emitter BPBBT with photoluminescence (PL) λmax of 726 nm and a high PLQY of 67 % was synthesized and utilized as the dopant of CPTBF : m-QCN (4 : 1) cohost system. The device employing CPTBF : m-QCN (4 : 1): 5 wt.% BPBBT as the EML gave an EQEmax of 5.02 % and EL λmax centered at 735 nm, however, the weak residual exciplex emission remains. By reducing the donor ratio, the exciplex emission can be completely transferred to BPBBT and the corresponding device with CPTBF : m-QCN (2 : 1): 5 wt.% BPBBT as the EML can achieve EL λmax of 743 nm and EQEmax of 4.79 %. This work manifests the high efficiency near infrared (NIR) OLED can be realized by triplet excitons harvesting of exciplex-forming cohost system, followed by the effective energy transfer to an NIR fluorescent dopant.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA