Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.807
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 180(2): 340-347.e9, 2020 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-31883792

RESUMO

KCNQ1, also known as Kv7.1, is a voltage-dependent K+ channel that regulates gastric acid secretion, salt and glucose homeostasis, and heart rhythm. Its functional properties are regulated in a tissue-specific manner through co-assembly with beta subunits KCNE1-5. In non-excitable cells, KCNQ1 forms a complex with KCNE3, which suppresses channel closure at negative membrane voltages that otherwise would close it. Pore opening is regulated by the signaling lipid PIP2. Using cryoelectron microscopy (cryo-EM), we show that KCNE3 tucks its single-membrane-spanning helix against KCNQ1, at a location that appears to lock the voltage sensor in its depolarized conformation. Without PIP2, the pore remains closed. Upon addition, PIP2 occupies a site on KCNQ1 within the inner membrane leaflet, which triggers a large conformational change that leads to dilation of the pore's gate. It is likely that this mechanism of PIP2 activation is conserved among Kv7 channels.


Assuntos
Canal de Potássio KCNQ1/metabolismo , Canal de Potássio KCNQ1/ultraestrutura , Microscopia Crioeletrônica , Humanos , Ativação do Canal Iônico/fisiologia , Canal de Potássio KCNQ1/química , Potenciais da Membrana/fisiologia , Técnicas de Patch-Clamp , Fosfatidilinositol 4,5-Difosfato/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/química , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/ultraestrutura
2.
Cell ; 169(3): 422-430.e10, 2017 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-28431243

RESUMO

The human ether-à-go-go-related potassium channel (hERG, Kv11.1) is a voltage-dependent channel known for its role in repolarizing the cardiac action potential. hERG alteration by mutation or pharmacological inhibition produces Long QT syndrome and the lethal cardiac arrhythmia torsade de pointes. We have determined the molecular structure of hERG to 3.8 Å using cryo-electron microscopy. In this structure, the voltage sensors adopt a depolarized conformation, and the pore is open. The central cavity has an atypically small central volume surrounded by four deep hydrophobic pockets, which may explain hERG's unusual sensitivity to many drugs. A subtle structural feature of the hERG selectivity filter might correlate with its fast inactivation rate, which is key to hERG's role in cardiac action potential repolarization.


Assuntos
Canal de Potássio ERG1/química , Canal de Potássio ERG1/ultraestrutura , Sequência de Aminoácidos , Microscopia Crioeletrônica , Canal de Potássio ERG1/isolamento & purificação , Canal de Potássio ERG1/metabolismo , Humanos , Modelos Moleculares , Conformação Proteica , Alinhamento de Sequência
3.
Cell ; 169(6): 1042-1050.e9, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28575668

RESUMO

KCNQ1 is the pore-forming subunit of cardiac slow-delayed rectifier potassium (IKs) channels. Mutations in the kcnq1 gene are the leading cause of congenital long QT syndrome (LQTS). Here, we present the cryoelectron microscopy (cryo-EM) structure of a KCNQ1/calmodulin (CaM) complex. The conformation corresponds to an "uncoupled," PIP2-free state of KCNQ1, with activated voltage sensors and a closed pore. Unique structural features within the S4-S5 linker permit uncoupling of the voltage sensor from the pore in the absence of PIP2. CaM contacts the KCNQ1 voltage sensor through a specific interface involving a residue on CaM that is mutated in a form of inherited LQTS. Using an electrophysiological assay, we find that this mutation on CaM shifts the KCNQ1 voltage-activation curve. This study describes one physiological form of KCNQ1, depolarized voltage sensors with a closed pore in the absence of PIP2, and reveals a regulatory interaction between CaM and KCNQ1 that may explain CaM-mediated LQTS.


Assuntos
Calmodulina/química , Canal de Potássio KCNQ1/química , Síndrome do QT Longo/metabolismo , Sequência de Aminoácidos , Animais , Calmodulina/metabolismo , Microscopia Crioeletrônica , Humanos , Canal de Potássio KCNQ1/genética , Canal de Potássio KCNQ1/metabolismo , Modelos Moleculares , Mutação , Alinhamento de Sequência , Xenopus laevis
4.
Hum Mol Genet ; 33(2): 110-121, 2024 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-37769355

RESUMO

The c.453delC (p.Thr152Profs*14) frameshift mutation in KCNH2 is associated with an elevated risk of Long QT syndrome (LQTS) and fatal arrhythmia. Nevertheless, the loss-of-function mechanism underlying this mutation remains unexplored and necessitates an understanding of electrophysiology. To gain insight into the mechanism of the LQT phenotype, we conducted whole-cell patch-clamp and immunoblot assays, utilizing both a heterologous expression system and patient-derived induced pluripotent stem cell-cardiomyocytes (iPSC-CMs) with 453delC-KCNH2. We also explored the site of translational reinitiation by employing LC/MS mass spectrometry. Contrary to the previous assumption of early termination of translation, the findings of this study indicate that the 453delC-KCNH2 leads to an N-terminally truncated hERG channel, a potential from a non-canonical start codon, with diminished expression and reduced current (IhERG). The co-expression with wildtype KCNH2 produced heteromeric hERG channel with mild dominant-negative effect. Additionally, the heterozygote patient-derived iPSC-CMs exhibited prolonged action potential duration and reduced IhERG, which was ameliorated with the use of a hERG activator, PD-118057. The results of our study offer novel insights into the mechanisms involved in congenital LQTS associated with the 453delC mutation of KCNH2. The mutant results in the formation of less functional N-terminal-truncated channels with reduced amount of membrane expression. A hERG activator is capable of correcting abnormalities in both the heterologous expression system and patient-derived iPSC-CMs.


Assuntos
Células-Tronco Pluripotentes Induzidas , Síndrome do QT Longo , Humanos , Miócitos Cardíacos/metabolismo , Mutação da Fase de Leitura , Células-Tronco Pluripotentes Induzidas/metabolismo , Canais de Potássio Éter-A-Go-Go/genética , Canal de Potássio ERG1/genética , Canal de Potássio ERG1/metabolismo , Heterozigoto , Mutação , Síndrome do QT Longo/genética , Síndrome do QT Longo/metabolismo
5.
Circ Res ; 135(7): 722-738, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39166328

RESUMO

BACKGROUND: The KCNQ1+KCNE1 (IKs) potassium channel plays a crucial role in cardiac adaptation to stress, in which ß-adrenergic stimulation phosphorylates the IKs channel through the cyclic adenosine monophosphate (cAMP)/PKA (protein kinase A) pathway. Phosphorylation increases the channel current and accelerates repolarization to adapt to an increased heart rate. Variants in KCNQ1 can cause long-QT syndrome type 1 (LQT1), and those with defective cAMP effects predispose patients to the highest risk of cardiac arrest and sudden death. However, the molecular connection between IKs channel phosphorylation and channel function, as well as why high-risk LQT1 mutations lose cAMP sensitivity, remain unclear. METHODS: Regular patch clamp and voltage clamp fluorometry techniques were utilized to record pore opening and voltage sensor movement of wild-type and mutant KCNQ1/IKs channels. The clinical phenotypic penetrance of each LQT1 mutation was analyzed as a metric for assessing their clinical risk. The patient-specific-induced pluripotent stem-cell model was used to test mechanistic findings in physiological conditions. RESULTS: By systematically elucidating mechanisms of a series of LQT1 variants that lack cAMP sensitivity, we identified molecular determinants of IKs channel regulation by phosphorylation. These key residues are distributed across the N-terminus of KCNQ1 extending to the central pore region of IKs. We refer to this pattern as the IKs channel PKA phosphorylation axis. Next, by examining LQT1 variants from clinical databases containing 10 579 LQT1 carriers, we found that the distribution of the most high-penetrance LQT1 variants extends across the IKs channel PKA phosphorylation axis, demonstrating its clinical relevance. Furthermore, we found that a small molecule, ML277, which binds at the center of the phosphorylation axis, rescues the defective cAMP effects of multiple high-risk LQT1 variants. This finding was then tested in high-risk patient-specific induced pluripotent stem cell-derived cardiomyocytes, where ML277 remarkably alleviates the beating abnormalities. CONCLUSIONS: Our findings not only elucidate the molecular mechanism of PKA-dependent IKs channel phosphorylation but also provide an effective antiarrhythmic strategy for patients with high-risk LQT1 variants.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico , Células-Tronco Pluripotentes Induzidas , Canal de Potássio KCNQ1 , Humanos , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Fosforilação , Canal de Potássio KCNQ1/genética , Canal de Potássio KCNQ1/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Síndrome de Romano-Ward/genética , Síndrome de Romano-Ward/metabolismo , AMP Cíclico/metabolismo , Miócitos Cardíacos/metabolismo , Mutação , Síndrome do QT Longo/genética , Síndrome do QT Longo/metabolismo , Células HEK293 , Canais de Potássio de Abertura Dependente da Tensão da Membrana
6.
J Biol Chem ; 300(8): 107526, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38960041

RESUMO

The human ether-a-go-go-related gene (hERG) encodes the Kv11.1 (or hERG) channel that conducts the rapidly activating delayed rectifier potassium current (IKr). Naturally occurring mutations in hERG impair the channel function and cause long QT syndrome type 2. Many missense hERG mutations lead to a lack of channel expression on the cell surface, representing a major mechanism for the loss-of-function of mutant channels. While it is generally thought that a trafficking defect underlies the lack of channel expression on the cell surface, in the present study, we demonstrate that the trafficking defective mutant hERG G601S can reach the plasma membrane but is unstable and quickly degrades, which is akin to WT hERG channels under low K+ conditions. We previously showed that serine (S) residue at 624 in the innermost position of the selectivity filter of hERG is involved in hERG membrane stability such that substitution of serine 624 with threonine (S624T) enhances hERG stability and renders hERG insensitive to low K+ culture. Here, we report that the intragenic addition of S624T substitution to trafficking defective hERG mutants G601S, N470D, and P596R led to a complete rescue of the function of these otherwise loss-of-function mutant channels to a level similar to the WT channel, representing the most effective rescue means for the function of mutant hERG channels. These findings not only provide novel insights into hERG mutation-mediated channel dysfunction but also point to the critical role of S624 in hERG stability on the plasma membrane.


Assuntos
Membrana Celular , Canal de Potássio ERG1 , Síndrome do QT Longo , Humanos , Síndrome do QT Longo/metabolismo , Síndrome do QT Longo/genética , Membrana Celular/metabolismo , Canal de Potássio ERG1/metabolismo , Canal de Potássio ERG1/genética , Células HEK293 , Mutação de Sentido Incorreto , Estabilidade Proteica , Canais de Potássio Éter-A-Go-Go/metabolismo , Canais de Potássio Éter-A-Go-Go/genética , Transporte Proteico , Substituição de Aminoácidos , Animais
7.
J Biol Chem ; 300(7): 107465, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38876300

RESUMO

The voltage-gated potassium ion channel KV11.1 plays a critical role in cardiac repolarization. Genetic variants that render Kv11.1 dysfunctional cause long QT syndrome (LQTS), which is associated with fatal arrhythmias. Approximately 90% of LQTS-associated variants cause intracellular protein transport (trafficking) dysfunction, which pharmacological chaperones like E-4031 can rescue. Protein folding and trafficking decisions are regulated by chaperones, protein quality control factors, and trafficking machinery comprising the cellular proteostasis network. Here, we test whether trafficking dysfunction is associated with alterations in the proteostasis network of pathogenic Kv11.1 variants and whether pharmacological chaperones can normalize the proteostasis network of responsive variants. We used affinity-purification coupled with tandem mass tag-based quantitative mass spectrometry to assess protein interaction changes of WT KV11.1 or trafficking-deficient channel variants in the presence or absence of E-4031. We identified 572 core KV11.1 protein interactors. Trafficking-deficient variants KV11.1-G601S and KV11.1-G601S-G965∗ had significantly increased interactions with proteins responsible for folding, trafficking, and degradation compared to WT. We confirmed previous findings that the proteasome is critical for KV11.1 degradation. Our report provides the first comprehensive characterization of protein quality control mechanisms of KV11.1. We find extensive interactome remodeling associated with trafficking-deficient KV11.1 variants and with pharmacological chaperone rescue of KV11.1 cell surface expression. The identified protein interactions could be targeted therapeutically to improve KV11.1 trafficking and treat LQTS.


Assuntos
Síndrome do QT Longo , Transporte Proteico , Proteostase , Humanos , Síndrome do QT Longo/metabolismo , Síndrome do QT Longo/genética , Células HEK293 , Canais de Potássio Éter-A-Go-Go/metabolismo , Canais de Potássio Éter-A-Go-Go/genética , Canal de Potássio ERG1/metabolismo , Canal de Potássio ERG1/genética , Animais
8.
Circulation ; 150(7): 516-530, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39051104

RESUMO

BACKGROUND: Whether vigorous exercise increases risk of ventricular arrhythmias for individuals diagnosed and treated for congenital long QT syndrome (LQTS) remains unknown. METHODS: The National Institutes of Health-funded LIVE-LQTS study (Lifestyle and Exercise in the Long QT Syndrome) prospectively enrolled individuals 8 to 60 years of age with phenotypic and/or genotypic LQTS from 37 sites in 5 countries from May 2015 to February 2019. Participants (or parents) answered physical activity and clinical events surveys every 6 months for 3 years with follow-up completed in February 2022. Vigorous exercise was defined as ≥6 metabolic equivalents for >60 hours per year. A blinded Clinical Events Committee adjudicated the composite end point of sudden death, sudden cardiac arrest, ventricular arrhythmia treated by an implantable cardioverter defibrillator, and likely arrhythmic syncope. A National Death Index search ascertained vital status for those with incomplete follow-up. A noninferiority hypothesis (boundary of 1.5) between vigorous exercisers and others was tested with multivariable Cox regression analysis. RESULTS: Among the 1413 participants (13% <18 years of age, 35% 18-25 years of age, 67% female, 25% with implantable cardioverter defibrillators, 90% genotype positive, 49% with LQT1, 91% were treated with beta-blockers, left cardiac sympathetic denervation, and/or implantable cardioverter defibrillator), 52% participated in vigorous exercise (55% of these competitively). Thirty-seven individuals experienced the composite end point (including one sudden cardiac arrest and one sudden death in the nonvigorous group, one sudden cardiac arrest in the vigorous group) with overall event rates at 3 years of 2.6% in the vigorous and 2.7% in the nonvigorous exercise groups. The unadjusted hazard ratio for experience of events for the vigorous group compared with the nonvigorous group was 0.97 (90% CI, 0.57-1.67), with an adjusted hazard ratio of 1.17 (90% CI, 0.67-2.04). The upper 95% one-sided confidence level extended beyond the 1.5 boundary. Neither vigorous or nonvigorous exercise was found to be superior in any group or subgroup. CONCLUSIONS: Among individuals diagnosed with phenotypic and/or genotypic LQTS who were risk assessed and treated in experienced centers, LQTS-associated cardiac event rates were low and similar between those exercising vigorously and those not exercising vigorously. Consistent with the low event rate, CIs are wide, and noninferiority was not demonstrated. These data further inform shared decision-making discussions between patient and physician about exercise and competitive sports participation. REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT02549664.


Assuntos
Exercício Físico , Síndrome do QT Longo , Humanos , Síndrome do QT Longo/terapia , Síndrome do QT Longo/congênito , Síndrome do QT Longo/diagnóstico , Síndrome do QT Longo/fisiopatologia , Síndrome do QT Longo/mortalidade , Feminino , Masculino , Adolescente , Criança , Estudos Prospectivos , Adulto , Pessoa de Meia-Idade , Adulto Jovem , Morte Súbita Cardíaca/prevenção & controle , Morte Súbita Cardíaca/epidemiologia , Fatores de Risco
9.
Circulation ; 149(4): 317-329, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-37965733

RESUMO

BACKGROUND: Pathogenic variants in SCN5A can result in long QT syndrome type 3, a life-threatening genetic disease. Adenine base editors can convert targeted A T base pairs to G C base pairs, offering a promising tool to correct pathogenic variants. METHODS: We generated a long QT syndrome type 3 mouse model by introducing the T1307M pathogenic variant into the Scn5a gene. The adenine base editor was split into 2 smaller parts and delivered into the heart by adeno-associated virus serotype 9 (AAV9-ABEmax) to correct the T1307M pathogenic variant. RESULTS: Both homozygous and heterozygous T1307M mice showed significant QT prolongation. Carbachol administration induced Torsades de Pointes or ventricular tachycardia for homozygous T1307M mice (20%) but not for heterozygous or wild-type mice. A single intraperitoneal injection of AAV9-ABEmax at postnatal day 14 resulted in up to 99.20% Scn5a transcripts corrected in T1307M mice. Scn5a mRNA correction rate >60% eliminated QT prolongation; Scn5a mRNA correction rate <60% alleviated QT prolongation. Partial Scn5a correction resulted in cardiomyocytes heterogeneity, which did not induce severe arrhythmias. We did not detect off-target DNA or RNA editing events in ABEmax-treated mouse hearts. CONCLUSIONS: These findings show that in vivo AAV9-ABEmax editing can correct the variant Scn5a allele, effectively ameliorating arrhythmia phenotypes. Our results offer a proof of concept for the treatment of hereditary arrhythmias.


Assuntos
Doença do Sistema de Condução Cardíaco , Edição de Genes , Síndrome do QT Longo , Camundongos , Animais , Síndrome do QT Longo/genética , Síndrome do QT Longo/terapia , Síndrome do QT Longo/diagnóstico , Arritmias Cardíacas , Miócitos Cardíacos , Adenina , RNA Mensageiro , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Mutação
10.
Circulation ; 150(7): 563-576, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-38682330

RESUMO

BACKGROUND: Drug-induced QT prolongation (diLQT) is a feared side effect that could expose susceptible individuals to fatal arrhythmias. The occurrence of diLQT is primarily attributed to unintended drug interactions with cardiac ion channels, notably the hERG (human ether-a-go-go-related gene) channels that generate the delayed-rectifier potassium current (IKr) and thereby regulate the late repolarization phase. There is an important interindividual susceptibility to develop diLQT, which is of unknown origin but can be reproduced in patient-specific induced pluripotent stem cell-derived cardiomyocytes (iPS-CMs). We aimed to investigate the dynamics of hERG channels in response to sotalol and to identify regulators of the susceptibility to developing diLQT. METHODS: We measured electrophysiological activity and cellular distribution of hERG channels after hERG blocker treatment in iPS-CMs derived from patients with highest sensitivity (HS) or lowest sensitivity (LS) to sotalol administration in vivo (ie, on the basis of the measure of the maximal change in QT interval 3 hours after administration). Specific small interfering RNAs and CAVIN1-T2A-GFP adenovirus were used to manipulate CAVIN1 expression. RESULTS: Whereas HS and LS iPS-CMs showed similar electrophysiological characteristics at baseline, the late repolarization phase was prolonged and IKr significantly decreased after exposure of HS iPS-CMs to low sotalol concentrations. IKr reduction was caused by a rapid translocation of hERG channel from the membrane to the cytoskeleton-associated fractions upon sotalol application. CAVIN1, essential for caveolae biogenesis, was 2× more highly expressed in HS iPS-CMs, and its knockdown by small interfering RNA reduced their sensitivity to sotalol. CAVIN1 overexpression in LS iPS-CMs using adenovirus showed reciprocal effects. We found that treatment with sotalol promoted translocation of the hERG channel from the plasma membrane to the cytoskeleton fractions in a process dependent on CAVIN1 (caveolae associated protein 1) expression. CAVIN1 silencing reduced the number of caveolae at the membrane and abrogated the translocation of hERG channel in sotalol-treated HS iPS-CMs. CAVIN1 also controlled cardiomyocyte responses to other hERG blockers, such as E4031, vandetanib, and clarithromycin. CONCLUSIONS: Our study identifies unbridled turnover of the potassium channel hERG as a mechanism supporting the interindividual susceptibility underlying diLQT development and demonstrates how this phenomenon is finely tuned by CAVIN1.


Assuntos
Canal de Potássio ERG1 , Células-Tronco Pluripotentes Induzidas , Síndrome do QT Longo , Miócitos Cardíacos , Sotalol , Humanos , Síndrome do QT Longo/induzido quimicamente , Síndrome do QT Longo/metabolismo , Síndrome do QT Longo/genética , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Canal de Potássio ERG1/genética , Canal de Potássio ERG1/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Sotalol/farmacologia , Potenciais de Ação/efeitos dos fármacos , Canais de Potássio Éter-A-Go-Go/metabolismo , Canais de Potássio Éter-A-Go-Go/genética , Masculino
11.
Circulation ; 150(7): 531-543, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-38939955

RESUMO

BACKGROUND: Despite major advances in the clinical management of long QT syndrome, some patients are not fully protected by beta-blocker therapy. Mexiletine is a well-known sodium channel blocker, with proven efficacy in patients with sodium channel-mediated long QT syndrome type 3. Our aim was to evaluate the efficacy of mexiletine in long QT syndrome type 2 (LQT2) using cardiomyocytes derived from patient-specific human induced pluripotent stem cells, a transgenic LQT2 rabbit model, and patients with LQT2. METHODS: Heart rate-corrected field potential duration, a surrogate for QTc, was measured in human induced pluripotent stem cells from 2 patients with LQT2 (KCNH2-p.A561V, KCNH2-p.R366X) before and after mexiletine using a multiwell multi-electrode array system. Action potential duration at 90% repolarization (APD90) was evaluated in cardiomyocytes isolated from transgenic LQT2 rabbits (KCNH2-p.G628S) at baseline and after mexiletine application. Mexiletine was given to 96 patients with LQT2. Patients were defined as responders in the presence of a QTc shortening ≥40 ms. Antiarrhythmic efficacy of mexiletine was evaluated by a Poisson regression model. RESULTS: After acute treatment with mexiletine, human induced pluripotent stem cells from both patients with LQT2 showed a significant shortening of heart rate-corrected field potential duration compared with dimethyl sulfoxide control. In cardiomyocytes isolated from LQT2 rabbits, acute mexiletine significantly shortened APD90 by 113 ms, indicating a strong mexiletine-mediated shortening across different LQT2 model systems. Mexiletine was given to 96 patients with LQT2 either chronically (n=60) or after the acute oral drug test (n=36): 65% of the patients taking mexiletine only chronically and 75% of the patients who performed the acute oral test were responders. There was a significant correlation between basal QTc and ∆QTc during the test (r= -0.8; P<0.001). The oral drug test correctly predicted long-term effect in 93% of the patients. Mexiletine reduced the mean yearly event rate from 0.10 (95% CI, 0.07-0.14) to 0.04 (95% CI, 0.02-0.08), with an incidence rate ratio of 0.40 (95% CI, 0.16-0.84), reflecting a 60% reduction in the event rate (P=0.01). CONCLUSIONS: Mexiletine significantly shortens cardiac repolarization in LQT2 human induced pluripotent stem cells, in the LQT2 rabbit model, and in the majority of patients with LQT2. Furthermore, mexiletine showed antiarrhythmic efficacy. Mexiletine should therefore be considered a valid therapeutic option to be added to conventional therapies in higher-risk patients with LQT2.


Assuntos
Animais Geneticamente Modificados , Células-Tronco Pluripotentes Induzidas , Síndrome do QT Longo , Mexiletina , Miócitos Cardíacos , Mexiletina/farmacologia , Mexiletina/uso terapêutico , Animais , Humanos , Coelhos , Miócitos Cardíacos/efeitos dos fármacos , Síndrome do QT Longo/tratamento farmacológico , Síndrome do QT Longo/fisiopatologia , Síndrome do QT Longo/genética , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Masculino , Feminino , Adulto , Potenciais de Ação/efeitos dos fármacos , Antiarrítmicos/farmacologia , Antiarrítmicos/uso terapêutico , Adolescente , Pessoa de Meia-Idade , Adulto Jovem , Canal de Potássio ERG1/genética , Canal de Potássio ERG1/antagonistas & inibidores , Canal de Potássio ERG1/metabolismo , Frequência Cardíaca/efeitos dos fármacos , Modelos Animais de Doenças , Criança , Resultado do Tratamento
12.
Am J Hum Genet ; 109(7): 1208-1216, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35688148

RESUMO

Many genes, including KCNH2, contain "hotspot" domains associated with a high density of variants associated with disease. This has led to the suggestion that variant location can be used as evidence supporting classification of clinical variants. However, it is not known what proportion of all potential variants in hotspot domains cause loss of function. Here, we have used a massively parallel trafficking assay to characterize all single-nucleotide variants in exon 2 of KCNH2, a known hotspot for variants that cause long QT syndrome type 2 and an increased risk of sudden cardiac death. Forty-two percent of KCNH2 exon 2 variants caused at least 50% reduction in protein trafficking, and 65% of these trafficking-defective variants exerted a dominant-negative effect when co-expressed with a WT KCNH2 allele as assessed using a calibrated patch-clamp electrophysiology assay. The massively parallel trafficking assay was more accurate (AUC of 0.94) than bioinformatic prediction tools (REVEL and CardioBoost, AUC of 0.81) in discriminating between functionally normal and abnormal variants. Interestingly, over half of variants in exon 2 were found to be functionally normal, suggesting a nuanced interpretation of variants in this "hotspot" domain is necessary. Our massively parallel trafficking assay can provide this information prospectively.


Assuntos
Canal de Potássio ERG1 , Canais de Potássio Éter-A-Go-Go , Síndrome do QT Longo , Alelos , Morte Súbita Cardíaca , Canal de Potássio ERG1/genética , Canal de Potássio ERG1/metabolismo , Canais de Potássio Éter-A-Go-Go/genética , Canais de Potássio Éter-A-Go-Go/metabolismo , Humanos , Síndrome do QT Longo/genética , Síndrome do QT Longo/metabolismo , Transporte Proteico/genética
13.
Am J Hum Genet ; 109(7): 1199-1207, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35688147

RESUMO

Modern sequencing technologies have revolutionized our detection of gene variants. However, in most genes, including KCNH2, the majority of missense variants are currently classified as variants of uncertain significance (VUSs). The aim of this study was to investigate the utility of an automated patch-clamp assay for aiding clinical variant classification in KCNH2. The assay was designed according to recommendations proposed by the Clinical Genome Sequence Variant Interpretation Working Group. Thirty-one variants (17 pathogenic/likely pathogenic, 14 benign/likely benign) were classified internally as variant controls. They were heterozygously expressed in Flp-In HEK293 cells for assessing the effects of variants on current density and channel gating in order to determine the sensitivity and specificity of the assay. All 17 pathogenic variant controls had reduced current density, and 13 of 14 benign variant controls had normal current density, which enabled determination of normal and abnormal ranges for applying evidence of moderate or supporting strength for VUS reclassification. Inclusion of functional assay evidence enabled us to reclassify 6 out of 44 KCNH2 VUSs as likely pathogenic. The high-throughput patch-clamp assay can provide moderate-strength evidence for clinical interpretation of clinical KCNH2 variants and demonstrates the value of developing automated patch-clamp assays for functional characterization of ion channel gene variants.


Assuntos
Síndrome do QT Longo , Canal de Potássio ERG1/genética , Células HEK293 , Humanos , Síndrome do QT Longo/diagnóstico , Síndrome do QT Longo/genética , Mutação de Sentido Incorreto/genética
14.
Circ Res ; 132(1): 127-149, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36603066

RESUMO

Cardiac alternans arises from dynamical instabilities in the electrical and calcium cycling systems of the heart, and often precedes ventricular arrhythmias and sudden cardiac death. In this review, we integrate clinical observations with theory and experiment to paint a holistic portrait of cardiac alternans: the underlying mechanisms, arrhythmic manifestations and electrocardiographic signatures. We first summarize the cellular and tissue mechanisms of alternans that have been demonstrated both theoretically and experimentally, including 3 voltage-driven and 2 calcium-driven alternans mechanisms. Based on experimental and simulation results, we describe their relevance to mechanisms of arrhythmogenesis under different disease conditions, and their link to electrocardiographic characteristics of alternans observed in patients. Our major conclusion is that alternans is not only a predictor, but also a causal mechanism of potentially lethal ventricular and atrial arrhythmias across the full spectrum of arrhythmia mechanisms that culminate in functional reentry, although less important for anatomic reentry and focal arrhythmias.


Assuntos
Cálcio , Coração , Humanos , Arritmias Cardíacas , Morte Súbita Cardíaca/etiologia , Eletrocardiografia/métodos
15.
Mol Cell ; 65(1): 52-65, 2017 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-27916661

RESUMO

Tetrameric assembly of channel subunits in the endoplasmic reticulum (ER) is essential for surface expression and function of K+ channels, but the molecular mechanism underlying this process remains unclear. In this study, we found through genetic screening that ER-located J-domain-containing chaperone proteins (J-proteins) are critical for the biogenesis and physiological function of ether-a-go-go-related gene (ERG) K+ channels in both Caenorhabditis elegans and human cells. Human J-proteins DNAJB12 and DNAJB14 promoted tetrameric assembly of ERG (and Kv4.2) K+ channel subunits through a heat shock protein (HSP) 70-independent mechanism, whereas a mutated DNAJB12 that did not undergo oligomerization itself failed to assemble ERG channel subunits into tetramers in vitro and in C. elegans. Overexpressing DNAJB14 significantly rescued the defective function of human ether-a-go-go-related gene (hERG) mutant channels associated with long QT syndrome (LQTS), a condition that predisposes to life-threatening arrhythmia, by stabilizing the mutated proteins. Thus, chaperone proteins are required for subunit stability and assembly of K+ channels.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Canal de Potássio ERG1/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico HSP47/metabolismo , Canais de Potássio/metabolismo , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Linhagem Celular Tumoral , Canal de Potássio ERG1/química , Canal de Potássio ERG1/genética , Células HEK293 , Proteínas de Choque Térmico HSP40/química , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP47/química , Proteínas de Choque Térmico HSP47/genética , Proteínas de Choque Térmico HSP70/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Síndrome do QT Longo/genética , Síndrome do QT Longo/metabolismo , Potenciais da Membrana , Chaperonas Moleculares , Mutação , Miócitos Cardíacos/metabolismo , Canais de Potássio/química , Canais de Potássio/genética , Multimerização Proteica , Estabilidade Proteica , Estrutura Quaternária de Proteína , Interferência de RNA , Canais de Potássio Shal/genética , Canais de Potássio Shal/metabolismo , Fatores de Tempo , Transfecção
16.
Eur Heart J ; 45(36): 3751-3763, 2024 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-39115049

RESUMO

BACKGROUND AND AIMS: Type 1 long QT syndrome (LQT1) is caused by pathogenic variants in the KCNQ1-encoded Kv7.1 potassium channels, which pathologically prolong ventricular action potential duration (APD). Herein, the pathologic phenotype in transgenic LQT1 rabbits is rescued using a novel KCNQ1 suppression-replacement (SupRep) gene therapy. METHODS: KCNQ1-SupRep gene therapy was developed by combining into a single construct a KCNQ1 shRNA (suppression) and an shRNA-immune KCNQ1 cDNA (replacement), packaged into adeno-associated virus serotype 9, and delivered in vivo via an intra-aortic root injection (1E10 vg/kg). To ascertain the efficacy of SupRep, 12-lead electrocardiograms were assessed in adult LQT1 and wild-type (WT) rabbits and patch-clamp experiments were performed on isolated ventricular cardiomyocytes. RESULTS: KCNQ1-SupRep treatment of LQT1 rabbits resulted in significant shortening of the pathologically prolonged QT index (QTi) towards WT levels. Ventricular cardiomyocytes isolated from treated LQT1 rabbits demonstrated pronounced shortening of APD compared to LQT1 controls, leading to levels similar to WT (LQT1-UT vs. LQT1-SupRep, P < .0001, LQT1-SupRep vs. WT, P = ns). Under ß-adrenergic stimulation with isoproterenol, SupRep-treated rabbits demonstrated a WT-like physiological QTi and APD90 behaviour. CONCLUSIONS: This study provides the first animal-model, proof-of-concept gene therapy for correction of LQT1. In LQT1 rabbits, treatment with KCNQ1-SupRep gene therapy normalized the clinical QTi and cellular APD90 to near WT levels both at baseline and after isoproterenol. If similar QT/APD correction can be achieved with intravenous administration of KCNQ1-SupRep gene therapy in LQT1 rabbits, these encouraging data should compel continued development of this gene therapy for patients with LQT1.


Assuntos
Terapia Genética , Canal de Potássio KCNQ1 , Miócitos Cardíacos , Síndrome de Romano-Ward , Animais , Coelhos , Canal de Potássio KCNQ1/genética , Terapia Genética/métodos , Síndrome de Romano-Ward/genética , Síndrome de Romano-Ward/terapia , Animais Geneticamente Modificados , Potenciais de Ação , Eletrocardiografia , RNA Interferente Pequeno/genética , Síndrome do QT Longo/genética , Síndrome do QT Longo/terapia , Modelos Animais de Doenças
17.
Eur Heart J ; 45(29): 2647-2656, 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-38751064

RESUMO

BACKGROUND AND AIMS: Risk scores are proposed for genetic arrhythmias. Having proposed in 2010 one such score (M-FACT) for the long QT syndrome (LQTS), this study aims to test whether adherence to its suggestions would be appropriate. METHODS: LQT1/2/3 and genotype-negative patients without aborted cardiac arrest (ACA) before diagnosis or cardiac events (CEs) below age 1 were included in the study, focusing on an M-FACT score ≥2 (intermediate/high risk), either at presentation (static) or during follow-up (dynamic), previously associated with 40% risk of implantable cardioverter defibrillator (ICD) shocks within 4 years. RESULTS: Overall, 946 patients (26 ± 19 years at diagnosis, 51% female) were included. Beta-blocker (ßB) therapy in 94% of them reduced the rate of those with a QTc ≥500 ms from 18% to 12% (P < .001). During 7 ± 6 years of follow-up, none died; 4% had CEs, including 0.4% with ACA. A static M-FACT ≥2 was present in 110 patients, of whom 106 received ßBs. In 49/106 patients with persistent dynamic M-FACT ≥2, further therapeutic optimization (left cardiac sympathetic denervation in 55%, mexiletine in 31%, and ICD at 27%) resulted in just 7 (14%) patients with CEs (no ACA), with no CEs in the remaining 57. Additionally, 32 patients developed a dynamic M-FACT ≥2 but, after therapeutic optimization, only 3 (9%) had CEs. According to an M-FACT score ≥2, a total of 142 patients should have received an ICD, but only 22/142 (15%) were implanted, with shocks reported in 3. CONCLUSIONS: Beta-blockers often shorten QTc, thus changing risk scores and ICD indications for primary prevention. Yearly risk reassessment with therapy optimization leads to fewer ICD implants (3%) without increasing life-threatening events.


Assuntos
Antagonistas Adrenérgicos beta , Desfibriladores Implantáveis , Síndrome do QT Longo , Humanos , Feminino , Masculino , Adulto , Síndrome do QT Longo/terapia , Antagonistas Adrenérgicos beta/uso terapêutico , Medição de Risco , Adulto Jovem , Adolescente , Criança , Pessoa de Meia-Idade , Morte Súbita Cardíaca/prevenção & controle , Morte Súbita Cardíaca/etiologia , Antiarrítmicos/uso terapêutico , Pré-Escolar , Eletrocardiografia , Fatores de Risco
18.
J Cell Mol Med ; 28(18): e70094, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39317949

RESUMO

Cancer is the leading public health problem worldwide. However, the side effects accompanying anti-cancer therapies, particularly those pertaining to cardiotoxicity and adverse cardiac events, have been the hindrances to treatment progress. Long QT syndrome (LQTS) is one of the major clinic manifestations of the anti-cancer drug associated cardiac dysfunction. Therefore, elucidating the relationship between the LQTS and cancer is urgently needed. Transcriptomic sequencing data and clinic information of 10,531 patients diagnosed with 33 types of cancer was acquired from TCGA database. A pan-cancer applicative gene prognostic model was constructed based on the LQTS gene signatures. Meanwhile, transcriptome data and clinical information from various cancer types were collected from the GEO database to validate the robustness of the prognostic model. Furthermore, the expression level of transcriptomes and multiple clinical features were integrated to construct a Nomo chart to optimize the prognosis model. The ssGSEA analysis was employed to analysis the correlation between the LQTS gene signatures, clinic features and cancer associated signalling pathways. Our findings revealed that patients with lower LQTS gene signatures enrichment levels exhibit a poorer prognosis. The correlation of enrichment levels with the typical pathways was observed in multiple cancers. Then, based on the 17 LQTS gene signatures, we construct a prognostic model through the machine-learning approaches. The results obtained from the validation datasets and training datasets indicated that our prognostic model can effectively predict patient outcomes across diverse cancer types. Finally, we integrated this model with clinical features into a nomogram, demonstrating its potential as a valuable prognostic tool for cancer patients. Our study sheds light on the intricate relationship between LQTS and cancer pathways. A LQTS feature based clinic decision tool was developed aiming to enhance precision treatment of cancer.


Assuntos
Síndrome do QT Longo , Neoplasias , Humanos , Síndrome do QT Longo/genética , Neoplasias/genética , Prognóstico , Transcriptoma/genética , Regulação Neoplásica da Expressão Gênica , Perfilação da Expressão Gênica , Bases de Dados Genéticas , Biologia Computacional/métodos , Biomarcadores Tumorais/genética , Nomogramas , Aprendizado de Máquina
19.
J Biol Chem ; 299(1): 102777, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36496072

RESUMO

Long QT syndrome (LQTS) is a human inherited heart condition that can cause life-threatening arrhythmia including sudden cardiac death. Mutations in the ubiquitous Ca2+-sensing protein calmodulin (CaM) are associated with LQTS, but the molecular mechanism by which these mutations lead to irregular heartbeats is not fully understood. Here, we use a multidisciplinary approach including protein biophysics, structural biology, confocal imaging, and patch-clamp electrophysiology to determine the effect of the disease-associated CaM mutation E140G on CaM structure and function. We present novel data showing that mutant-regulated CaMKIIδ kinase activity is impaired with a significant reduction in enzyme autophosphorylation rate. We report the first high-resolution crystal structure of a LQTS-associated CaM variant in complex with the CaMKIIδ peptide, which shows significant structural differences, compared to the WT complex. Furthermore, we demonstrate that the E140G mutation significantly disrupted Cav1.2 Ca2+/CaM-dependent inactivation, while cardiac ryanodine receptor (RyR2) activity remained unaffected. In addition, we show that the LQTS-associated mutation alters CaM's Ca2+-binding characteristics, secondary structure content, and interaction with key partners involved in excitation-contraction coupling (CaMKIIδ, Cav1.2, RyR2). In conclusion, LQTS-associated CaM mutation E140G severely impacts the structure-function relationship of CaM and its regulation of CaMKIIδ and Cav1.2. This provides a crucial insight into the molecular factors contributing to CaM-mediated arrhythmias with a central role for CaMKIIδ.


Assuntos
Canais de Cálcio Tipo L , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Calmodulina , Síndrome do QT Longo , Humanos , Arritmias Cardíacas/genética , Arritmias Cardíacas/fisiopatologia , Cálcio/metabolismo , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo L/metabolismo , Calmodulina/genética , Calmodulina/metabolismo , Síndrome do QT Longo/genética , Miócitos Cardíacos/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Mutação , Estrutura Secundária de Proteína/genética , Ligação Proteica/genética , Cristalografia
20.
Int J Cancer ; 2024 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-39244732

RESUMO

An example of chemotherapy-induced cardiotoxicity in cancer survivors is acquired long QT syndrome (aLQTS), which may cause serious yet preventable life-threatening consequences. Our objective was to identify and characterize childhood acute lymphoblastic leukemia (ALL) survivors with possible aLQTS using maximal exercise testing. In this cross-sectional study with exploratory analysis, a total of 250 childhood ALL survivors were evaluated for abnormal QT interval prolongation using the McMaster cycle exercise test. A total of 198 survivors (102 males; 96 females), having reached their V ̇ O 2 $$ \dot{\mathrm{V}}{\mathrm{O}}_2 $$ peak (mean 32.1 ± 8.4 mL/kg/min; range 15.5-57.8 mL/kg/min), were included in our analyses. Two survivors were excluded for possible congenital LQTS. QT intervals were corrected for heart rate using the Bazett, Fridericia, and Rautaharju formulas at rest (supine, sitting, and standing positions), at the end of each stage of the CPET, and at 1, 3, and 5 minutes into the recovery period. The corrected QT (QTc) of borderline (n = 37) and long QT survivors (n = 20) was significantly longer than normal survivors (n = 141) at rest, exercise, and recovery. Out of 57 survivors presenting an abnormal QTc prolongation, 40 survivors (70%) showed no QT interval anomalies at rest but developed various anomalies during exercise. No significant differences were found between the groups for any of the measured clinical characteristics or cardiac parameters. The standardization of exercise testing in the regular follow-up of oncology patients is necessary for appropriate cardiac prevention and surveillance to enhance the health and quality of life of the ever-increasing number of cancer survivors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA